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1. Introduction. In recent years more and more attention has been paid in
mathematical papers to fractal functions and to fractal sets. There are various
definitions of those objects. We assume that a compact set K ∈ Rd+1 is fractal,
by definition, if its box (entropy) dimension dimb(K) 6= j for j = 0, 1, . . . , d + 1
and 0 < dimb(K) < d+ 1. At the same time the function f : Id → Rd, I = [0, 1],
is fractal, by definition, if its graph Γf = {(t, f(t)) : t ∈ Id} has box dimension
satisfying the inequalities d < dimb(Γf ) < d+1. For the definitions and properties
of lower dimb(K) and upper dimb(K) box (-counting) dimension we refer to [F].
In the case dimb(K)=dimb(K), dimb(K) is by definition the common value.

The relation between box dimension of the graph of a function and its Hölder
exponent is known for years. In particular, it is known that the Hölder condition
with some α, 0 < α ≤ 1, i.e.

(1.1) |f(t) − f(t′)| ≤ C · |t − t′|α for t, t′ ∈ Id,

implies that

(1.2) dimb(Γf ) ≤ d+ 1 − α.

Our aim is to describe some subclasses of functions f satisfying (1.1) for which
equality takes place in (1.2). The Hölder classes, as it was shown in [C1], can be
characterized by means of the coefficients of the Schauder basis expansions, and
it seems natural to apply this tool to solve our problem.

In Section 2 we describe the constructions of the Schauder and Haar bases
over cubes and state the main results on characterization of Hölder classes by
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means of the coefficients of the Schauder and Haar expansions. Section 3 contains
the main results on Hölder subclasses for which we have equality in (1.2).

2. Haar and Schauder bases. The orthogonal Haar functions over I, nor-
malized in the maximum norm, can be defined by means of the function sign(t).
Define

h0(t) =
sign(t+ 1

2 ) − sign(t− 1
2 )

2
,

h1(t) =
sign(t+ 1

2 ) + sign(t− 1
2 )

2
− sign(t) for t ∈ R

and

hj,k(t) = h1

(

2k(t−
2j − 1

2k+1
)
)

where j = 1, . . . , 2k; k = 0, 1, . . . .

The Haar orthogonal system on I with respect to the Lebesgue measure is simply

{1, hj,k, j = 1, . . . , 2k; k = 0, 1, . . .}.

We also note that

supp hj,k =
[ (j − 1)

2k
,
j

2k

]

.

Often it is more convenient to index the Haar system as follows: h1 = 1 and
hn = hj,k whenever n = 2k + j with some j = 1, . . . , 2k; k = 0, 1, . . .

To define the d-dimensional orthogonal Haar functions over Id properly we
decompose at first the set of multi-indexes Nd, where N = {1, 2, . . .}. Using the
norm |l|∞ = max(l1, . . . , ld) we introduce the decompositions

Nd = N−1 ∪
⋃

k≥0

Nk where Nk = {l : 2k < |l|∞ ≤ 2k+1},

N−1 contains 1 = (1, . . . , 1) only and

Nk =
⋃

∅6=e⊂D

Ne,k with D = {1, . . . , d},

where Ne,k = {l ∈ Nk : 2k < li ≤ 2k+1 only for i ∈ e}. Now, the Haar orthogonal
functions over Id are defined as follows: h0(t) = 1 and for l ∈ Ne,k

hl(t) =
∏

i∈e

hli−2k,k(ti)
∏

i∈D\e

|hli,k(ti)|.

Thus, the support of each hl, for l ∈ Ne,k, is a dyadic cube. Actually, over Id we
are given 2d − 1 functions orthogonal to 1, i.e. for each e, ∅ 6= e ⊂ D,

he(t) =
∏

i∈e

h1(ti)
∏

i∈D\e

h0(ti)
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and for l ∈ Ne,k

hl(t) = he

(

2k(t −
2j − 1

2k+1
)
)

,

where ji = li − 2k for i ∈ e and ji = li for i ∈ D \ e. Consequently, the support of
hl is the dyadic cube with center at 2j−1

2k+1 and with edges of length 1
2k .

Below we present the graph of the typical function he in case d = 2.

The modulus of continuity of f ∈ Lp(Id) in the Lp space is defined by the
formula

ωp(f ; δ) = sup
0<|h|<δ

(
∫

Id(h)

|f(t + h) − f(t)|pdt

)1/p

,

where |h| is the euclidean norm of h and Id(h) = {t ∈ Id : t + h ∈ Id}. For the
later use we introduce the orthogonal projections

Q0f = (f, h0)h0, Qkf =
∑

j∈Nk

(f, hj)hj

‖hj‖2
2

,

and

Pkf = Q0f + · · · +Qkf,
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where

(f, g) =

∫

Id

f(t)g(t)dt and ‖f‖p =

(
∫

Id

|f(t)|pdt

)1/p

.

It should be clear that over each dyadic cube of the k-th generation in Id the
function Qkf is constant and equal to the mean value of f over that particular
dyadic cube. Thus, the Haar orthogonal system {hj} has the norms ‖Qk‖p, 1 ≤
p ≤ ∞, bounded by 1. Consequently, the Haar system is a basis in the space Lp,
1 ≤ p <∞. Moreover, we have

(2.1) (2d − 1)−1/pAk,p ≤ ‖
∑

n∈Nk

an · hn‖p ≤ (2d − 1)1/p′

Ak,p,

where 1 ≤ p ≤ ∞, 1
p

+ 1
p′

= 1, an ∈ R, and

(2.2) Ak,p =

(

1

2dk

∑

n∈Nk

|an|
p

)1/p

.

Moreover, we know from [C2]

Proposition 2.3. Let 0 < α < 1
p
≤ 1 and let

f ∼
∑

n∈Nd

an · hn.

Then

(2.4) ωp(f ; δ) = O(δα) as δ → 0+

is equivalent to

(2.5) Ak,p = O(2−αk) as k → ∞.

Moreover, for f ∈ C(Id), 0 < α < 1, and p = ∞, conditions (2.4) and (2.5) are
equivalent.

To define the Schauder basis over Id we start with the function
ψ(t) = max[0, 1 − |t|] and the set D of all dyadic points in I. Define D0 = {0, 1},
Dk = {2j−1

2k : j = 1, . . . , 2k−1} and k = 1, 2, . . .. Thus

D =
⋃

k≥0

Dk,

and the Schauder functions over I are defined as follows

φτ (t) = ψ(2k(t− τ)) for τ ∈ Dk, k = 0, 1, . . .

For the Schauder functions over Id it is convenient to introduce C0 = D0, Ck =
Ck−1 ∪Dk. Then

Cd
k = Cd

k−1 ∪Dk,d,

where

Dk,d = {τ = (τ1, . . . , τd) ∈ C
d
k : ∃i τi ∈ Dk} and D0,d = Dd

0 .
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Now, define

(2.6) φτ (t) =
∏

i∈D

ψ(2k(ti − τi)) for τ ∈ Dk,d, k = 0, 1, . . .

In the two dimensional case all the basic Schauder functions are obtainable, by
suitable translations and rescaling, of the function presented by the picture below.

The system is called the diamond or multi-affine (cf. [R], [Se], [Sh]) basis in
the Banach space C(Id). We mention here some of its properties. Like in the
Haar case, we have with some constant C depending on the dimension only, for
1 ≤ p ≤ ∞, the inequalities

(2.7) p ·
1

C
· Bk,p ≤ ‖

∑

τ∈Dk,d

bτ · φτ ‖p ≤ C ·Bk,p,

with

(2.8) Bk,p =

(

1

|Dk,d|

∑

τ∈Dk,d

|bτ |
p

)
1
p

,

where |Dk,d| is the cardinality of Dk,d.

The biorthogonal to (φτ (t), τ ∈ Dd) system of linear functionals over C(Id)



52 Z. CIESIELSKI

is known (see e.g. [R]) and for given f ∈ C(Id) and τ ∈ Dd the corresponding
functionals are defined as follows:

bτ (f) = f(τ ) for τ ∈ D0,d,

bτ (f) =
1

2d

∑

ε∈{−1,1}d

(f(τ ) − f(τ ε)) for τ ∈ Dk,d, k ≥ 1

where τ ε = (τ ε
1 , . . . , τ

ε
d ) with

τi
ε =

{

τi + εi · 2
−k if τi ∈ Dk;

τi if τi ∈ Ck−1.

It is convenient to introduce the finite dimensional projections in the space C(Id)

Rk(f) =
∑

τ∈Dk,d

bτ (f) · φτ .

The fact that (φτ (t), τ ∈ Dd) is a Schauder basis in C(Id) can now be stated as
follows: for each f ∈ C(Id) the series

∞
∑

k=0

Rk(f)

converges to f in the maximum norm. Finally we state the main property (cf.
[C1], [R], [Sh])

Proposition 2.9. Let 0 < α < 1, f ∈ C(Id), and let

f =
∑

τ

bτφτ .

Then the following conditions are equivalent:

(i) ω∞(f ; δ) = O(δα),

(ii) max
τ∈Dk,d

|bτ | = O(2−αk),

(iii) ‖f −
∑

i≤k

Ri(f)‖∞ = O(2−αk).

3. Box dimension of graphs. In this section we are going to apply the Haar
and Schauder bases to compute the box dimension dimb(Γf ) for some reasonable
subclasses of the Hölder classes on cubes.

Theorem 3.1. Let 0 < α ≤ β ≤ 1 and let the function f be given on Id by
the Haar series

f =
∑

k

∑

n∈Nk

an · hn.
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If

Ak,∞ = max
Nk

|an| = O(
1

2αk
),

then

dimb(Γf ) ≤ d+ 1 − α.

Moreover, if for large k and some C > 0,

Ak,1 =
1

2kd

∑

Nk

|an| ≥ C ·
1

2βk
,

then

dimb(Γf ) ≥ d+ 1 − β.

Corollary 3.2. If there is a positive finite constant C such that for large k

1

C · 2βk
≤

1

2kd

∑

Nk

|an| ≤ max
Nk

|an| ≤ C ·
1

2αk
,

then

d+ 1 − β ≤ dimb(Γf ) ≤ d+ 1 − α.

Note, no continuity of f is assumed in this statement.

Theorem 3.3. Let 0 < α ≤ β ≤ 1 and let the function f be given on Id by
the Schauder series

f =
∑

k

∑

τ∈Dk,d

bτ · φτ .

If

Bk,∞ = max
Dk,d

|bτ | = O(
1

2αk
),

then

dimb(Γf ) ≤ d+ 1 − α.

Moreover, if for large k and some C > 0,

Bk,1 =
1

|Dk,d|

∑

Dk,d

|bτ | ≥ C ·
1

2βk
,

then

dimb(Γf ) ≥ d+ 1 − β.

Corollary 3.4. If there is a positive finite constant C such that for large k

1

C · 2βk
≤

1

|Dk,d|

∑

Dk,d

|bτ | ≤ max
Dk,d

|bτ | ≤ C ·
1

2αk
,

then

d+ 1 − β ≤ dimb(Γf ) ≤ d+ 1 − α.
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