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BOUNDARIES AND THE FATOU THEOREM FOR SUBELLIPTIC
SECOND ORDER OPERATORS ON SOLVABLE LIE GROUPS

BY

EWA DAMEK anp ANDRZEJ HULANICKI (WROCLAW)

1. Introduction. This paper is a continuation of our paper [DH]. We
are going to study the behavior of the Poisson integrals on the Furstenberg—
Guivarc’h—Raugi boundaries for bounded functions harmonic with respect to
a second order, left-invariant, nonnegative, subelliptic differential operator
L on a solvable Lie group S = NA, which is a semidirect product of a
nilpotent Lie group N and an Abelian Lie group A acting diagonally on N.

In [DH] we have identified all such boundaries. A boundary is an S-space
X ~ RX equipped with a probability measure v (see Section 2 for a precise
definition of S) such that the Poisson integral

F(s) = [ f(sz)dv(z) = Pf(s)
X

of a function f in LP(RX), 1 < p < 00, is an L-harmonic function on S.

The main point of the present paper is to prove the almost everywhere
admissible convergence of the Poisson integrals of functions f € LP, p > 1,
on an arbitrary boundary X, which is an analog of the Fatou theorem. The
admissible approach to the boundary in the general case is defined in very
much the same way as in the case when X is a group ([K], [St], [Sj] and [D]).

Our theorem will be proved under the additional assumption that A acts
rationally on N. In the case when the boundary X can be identified with a
subgroup or a factor group of NV, this theorem has already been proved in
[D]. In the general case, however, a much more refined technique seems to
be necessary and only the methods developed by M. Christ [Chr| combined
with the older ones by P. Sjogren [Sj] have allowed us to obtain the result.

The rationality assumption, satisfied automatically in the case of sym-
metric spaces, i.e. when N A is the solvable part of the Iwasawa decomposi-
tion of a semisimple Lie group, was necessary in [D]. It is also crucial here.
It is a challenging problem to establish whether the Fatou theorem is valid
without it.
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The paper is organized as follows. After the preliminary Section 2 we
discuss the admissible convergence to the boundary in Section 3, where we
also formulate the main theorem and make some comments. The proof of the
main theorem consists of several steps. These are put in separate sections.

The authors are grateful to Michael Christ for very illuminating conver-
sations concerning his methods as described in [Chr|. Thanks are also due
to Fulvio Ricci for inspiration the authors have derived from his magnificent
TEMPUS lectures on maximal functions along curves held at the Institute
of Mathematics of Wroctaw University in September 1991 ([R]).

2. Preliminaries. Let s be a solvable Lie algebra. We assume that s
is the direct sum of two subalgebras, s = n @ a, where n is nilpotent and a
Abelian. We assume that there exists a basis E1, ..., E, of n such that for
every H in a,

[H,Ej}:<>\j,H>Ej, )\]—Ga*, ]:1,,n
We write {\1,...,A,} = A. For A in A let
n*={Y en:adyY = (\, H)Y for all H in a}.

We say that a subspace n’ of n is homogeneous if adgn’ C n’ for every H
in a.

Let

S=exps, N =expn and A =expa.

Then S = N A is a semidirect product of the groups NV and A, with A acting
on N by

(2.1) anp{ijEj}a_l = exp{ije<>‘j’1°ga>Ej}.
J J

Let L be a second order, left-invariant, degenerate elliptic operator with-
out a constant term:

L=X?+...+X2+ X,.

We shall assume that Xg, X1, ..., X,, satisfy the Hérmander condition, i.e.

the smallest Lie subalgebra which contains Xy, ..., X, is equal to s. We
write

(2.2) Xo=Yo+ 2y, Yo€En, Zyc<a.

Now let

AO = {)\ S A <)\,Z0> 2 0}
We define the subalgebra
no(L) = @ n?

AEA)
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and the corresponding subgroup Ny(L) = expng(L). Let ng be a homoge-
neous subalgebra of n containing ng(L) and let Ny = expnyg.

In [DH] we have shown that the boundaries of the pair S, L are precisely
the S-spaces X = S/NyA = N/Ny. To be more precise, we write S x X >
(s,u) — su € X for the natural action of S on X. We select a point e in X
and we define the map p: S > s — se € X. For a measure v on X and a
bounded measure or a distribution with compact support p on S we write
u * v for the natural convolution corresponding to this action. We say that
(X,v) is a boundary for the pair S, L if X is an S-space, v a probability
measure on X and

(2.3) Lxv=0, or equivalently, fi; xv =v for each t > 0,

where {/i; }+~0 is the semigroup of probability measures on S whose infinites-
imal generator is L = X7 + ...+ X2 — Xo, and

(2.4) s tends weak™ to a point mass on X as t — oo, for almost all
trajectories s; of the diffusion process on S generated by L.

Conversely, any locally compact Hausdorff S-space for which there exists
a probability measure v such that (2.3) and (2.4) hold is of the form S/NyA,
for some homogeneous subalgebra ny = log Ny of n containing ny(L) [DH].

Let f be a function on X and suppose f € LP(RX) for some p, 1 < p < co.
Then (2.3) implies that the function

(2.5) F(s)= [ f(sz)dv()
X

on S is L-harmonic. We call (2.5) the Poisson integral of f. As is proved
in [DH], v is the weak™ limit of p(u:) as t — oco. Let us list some properties
of v proved in [DH].

(2.6) v has a smooth density dv(z) = P(z) dz.

The function P is called the Poisson kernel for the boundary X. Let || - ||
be a norm in X.

(2.7)  There exists n > 0 such that [ [|y||"P(x)dz < oc.

Consequently,

(28) PeLP forsome 3 < 1.

(2.9)  For every multiindex I there are constants ¢, M such that
9" P)] < e(1+ [yl

(2.10)  There exist ¢, € > 0 such that P(y) < c(1+ |ly||)~=.

3. Almost everywhere admissible convergence. Now we fix
a boundary X = S/NgA with Ny = expng. Let n; be a homogeneous
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subspace of n; such that n = n; ® ny. Without loss of generality we may
assume that F,..., E, is a linear basis of n;. Let

Ay ={M, M)

For a given compact subset K of S, and y € N, let FyK ={yaz:a €A, z €
K}. We say that s tends admissibly to the boundary X, s € S, and we write
s — X, ifSGFyK and

lim(\, loga(s)) = —oo  for every A € Ay,

where a(s) is the image of s under the canonical homomorphism of S onto
A= S/N. A simple verification shows that (2.1) implies

lim sz -x = p(s)

s—X
uniformly for x in a compact subset in X and z in a compact subset of S.
Consequently, for f € C.(X) and every compact subset K of S we have

(3.1) A, [ fyaze)P(a)de = f(p(y))
X

uniformly in z € K. We shall use the abbreviation

Pf(s) = ff(sx)P(x) dx.
X

A natural generalization of (3.1) to the almost everywhere convergence of
Pf(s) to f(p(s)) for fin LP(X) could be the following: For every function
fin LP(X), 1 < p < oo, there is a set Xy C X such that | X\ Xy| =0 and

if p(y) € Xo, then lim [ f(yazz)P(x)dz = f(p(y)).

This is true if p is one-to-one on N (see [D]). Then the maximal function

Mf(y)= sup [ flyaza)P(z)dz
a€A,zeK X

is bounded on LP(N). If, however, Ny # e, then M f has no chance of being
in LP(N), since if e.g. Ny is a normal subgroup of N, then M f is constant
on cosets of Ny. To formulate our almost everywhere convergence theorem
for the admissible convergence as defined above, we consider a selector from
the cosets and redefine the maximal function appropriately.

Let as above n; be a homogeneous subspace of n such that n = n; & ng.
In view of the easy Proposition (1.25) of [DH], if N; = expny, then

(32) N1 x Ny (y,Z) =Yz € NiNyg =N

is a diffeomorphism such that if x = yz, then y and z depend polynomially
on z in the coordinates given by exp on Ny, Ny and N, respectively. Clearly
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X ~ N; ~ RX for some natural number x. Thus, V7 is a selector from the
cosets N/Ny = X. We transfer the action of S on X to the action on Nj:
let # : S — Ny be defined as follows. For s in S we write s uniquely as
s = yza with y € Ny, z € Ny, a € A and we put 7(s) = y. Then

(3.3) m(s1m(s2y)) = w(s182y) for s1,s2 €5, y € Ny.

This defines an action of S on Ny : S x Ny 2 (s,y) — w(sy) € Ny, and, of
course, P|y, is an isomorphism between the S-spaces N; and X.

We shall also consider a group of transformations of N7 “from the right”
generated by the mappings N1 > x — 7(zu) € N;p for v in Ny, and we
shall prove that this is a (finite-dimensional) nilpotent group. Of course
this group is equal to N7 if Nj is a subgroup of N, but the latter does not
hold in general.

Our main theorem will be proved under the following

(3.4) RATIONALITY ASSUMPTION. There exists a basis Ey,..., E, of
n; and a basis Hi,...,H; of a such that the corresponding functionals
Aty ..., Ay take integral values on Hy, ..., Hy.

Let yg € Ny and K be a compact subset of S. We consider the maximal
function

M;g (y1) = sup f | fl(y1yoazz) P(z) du.
acA,zeK X

We are going to prove the following

(3.5) THEOREM. Under the rationality assumption, for p > 1 for a
constant C = Ck y,,p we have

1My Flzn vy < Clfllen )
Theorem (3.5) has an immediate consequence:

(3.6) MAIN THEOREM. Let f € LP(X) for some p > 1. For every yy in
Ny there is a subset X, in X such that the Lebesgue measure of X\ Xy, is0
and such that for every compact subset K of S, if y = y1yo and p(y) € X,
we have

Pf(y1yoaz) = f(p(y))

lim
(M log a)——o0, AEA;
uniformly for z € K.

Remarks.

(3.7) If yo = e and N; is a subgroup of N this is precisely the “almost
every admissible convergence theorem” of [D] and if also S is the N A part
of the Iwasawa decomposition of a semisimple Lie group with L being the
Laplace-Beltrami operator on the symmetric space S, it is the main theorem
of [Sj].
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(3.8) It is an open question whether the set X, can be selected inde-
pendently of yy. Certainly the existence of such a universal set would be
implied by a more general version of the approach to the boundary. Indeed,
let us say that s in S tends to the boundary X strongly admissibly s — X
if for a compact subset Ky of N and a compact subset K of S,

5 € U yAK

p(y)=z,y€Ko

and lim(\,loga) = —oo for every A € Ay. Then for every compact subset
C of X, sz — p(s) uniformly in € C. Hence
(3.9) lim [ f(yaze)P(z)dz = f(p(y))

ya— X P

for f € Co(X). It is not true, however, that (3.9) holds for almost all
p(y) € X, even for f in L*>(X) (see [S]).

4. Reduction to lacunary dilations. By the rationality assumption
we see that the set

r={Hea:H=Y o, o; €L}
has the property that
(4.1) (My)eZ foryel, Ne A

Let U be a subset of a with compact closure such that every H in a can be
written uniquely in the form

H=u+~, welU ~vel.
For a in A we write [a] for the unique v in I" such that loga = u + v with
vin I’y uwin U.
For a compact subset K of S let K/ = exp(UK). By the Harnack
inequality, there is a constant ¢ such that

F(s) < cF
max F'(s) < cF(e)

for every nonnegative harmonic function F'. Consequently, since L is left-
invariant,

P|f|(zas) < cP|f|(z[a]) for s€ K', x € N.
Therefore, for a fixed compact subset K of S and yy € Ny,

M;g (y1) < esup P|f|(y1yolal)
acA

<c¢ sup P|f|(yiyoa) = cMf(y1), w1 € N1
logacl’
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As p establishes an isomorphism of the S-spaces X and Np ((3.3)), the
maximal function M can be considered as a function from LP(N;) into
LP(Ny). For u € Ny we write u = exp{z;zl u;E;}. Consequently,

(4.2) Mf(y1) = sug f |f] (w(ylyo exp { ZX:UJ.GM,A,»E].}))]D(U) du.
vl Ny j=1

Now we proceed as in [Sj]. In view of (2.10), there exist two constants ¢ and
¢ such that

(4.3) P(u) §cmin{1,\uj|75 ci=1,...,x}.

Let &, ={u: P(u) >2"™}, m=0,1,... By (4.3), for some ¢y, cs and all
m > 0,

(4.4) Em CHu |uj] < 29™, j=1,...,x}.

Moreover, since VP grows at most polynomially (see (2.9)), thereisa o > 0
such that

(4.5) dist(Em, Epyyr) = 27°™,

We divide N; into disjoint cubes of size 27, Let Qp, ., 7 = 1,...,7m, be
those cubes whose intersection with &,, is not empty. By (4.5), we have
(46) Qi C Emer.

Hence j,, < 29"X|E,, 1], where x = dim N;. But, since P € LP for some
B < 1 (see (2.8)), by the Chebyshev inequality we have |E,, 1| < c2m(1—=5)
and so

G < gemx+m(1-0)

Let now
X
Manif ) = s [ 1f1(7 (vamoexp { D ure ™ B} ) ) Pl du
€l Q. k=1
m,J
Then
oo j’m
Mf(y)<ed > Mu;if(n).
m=1j=1

Thus the estimate
(4.7) My fllLe < 27" XmP| fllze,  J=1,...,fm,

to be proved below, implies

o oo
1M £l < €3 22| fll o = ¢ 3 270 | £l
m=1 m=1
The rest of the paper is devoted to the proof of (4.7). We are going to
prove the following
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(4.8) THEOREM. Let o1,...,0, € R and rq,...,1 be positive real num-
bers and
(49) Mf(yr) = sup(ry...r) 7" / |1 (y19005 (1)) du,
¥

|uj—oj|<rj,j=1,...,x

where for u = eXP{Z;;l u;Ej},

X
(4.10) dy(u) = exp { Z ujeh’)‘f)Ej}.
j=1
Then for every p > 1 there exist constants c, and C independent of o1, . .., 0y
and ri,...,ry such that
+ max |oj| ¢
(4.11) [Mfllze < cp(1+1logm ———— | | fllce-
minr;

The center (01, ...,0,) of the cube @,, ; belongs to &,,+1, so, by (4.4),
max |og| < ;22D while rj, = 27¢™ k= 1,...,x. Thus Theorem (4.8)
implies (4.7). Because of homogeneity of the right hand side of (4.11), it
is sufficient to prove Theorem (4.8) for m = ... = r, = 1 and arbitrary
O1y++.,0x.

5. A nilpotent group of transformations. The aim of this section
is to show that the transformations

(5.1) Nis>zw—m(ry) € Ny, y€EN,

generate a nilpotent group of transformations acting transitively on N;. Let
Ei,...,E, be a basis of n; such that [H, E;| = (\;, H)E;, \j € A;. We
define a natural family of dilations {d, },~o on N; by

X
5, = exp { ZT<Z°’>‘1>$J-E]-},

j=1
where z = exp{Z;‘:1 z;E;} and Zj is as in (2.2). We order the basis

Ey,...,Ey in such a way that if (\;, Zy) = d;, then d; < ... < d,. Of
course we may assume d; = 1.

For a polynomial in the variables z1, ..., z, we define a degree by putting
(52) d@g Ty = dj,
(5.3) if I = (i1,...,1,) is a multiindex, then deg zl = Zijdj,
(5.4) deg Z crz! = max{degx’}.

A mapping ¢ from N; into a nilpotent Lie group G is called a polynomial
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if for a basis X1,..., Xs of the Lie algebra of G we have

¢(6Xp{jz:%Ej}) = exp{zj:Wj(w)Xj}v

where the W; are polynomials.

(5.5) THEOREM. The mappings (5.1) generate a subgroup G of a homo-
geneous group G such that for a fized yo in Ng the mapping ¢ : Ny — G
defined by

(5.6) m(zyou) = ¢(u)x
is a polynomial and ¢(e) = e.

Proof. In view of Proposition (1.22) in [DH] there are polynomials
Py, ..., P, such that if u € Ny, then

(5.7) (m(zuw)); = z; + u; + Pi(x,u),

(5.8) P; depends only on x1,...,2;_1,U1, ..., Ui_1,
(5.9) Pi(z,0) = P;(0,u) =0,

(5.10) deg, P; < d;,

(5.11) Pi(8,z,8,u) = r% P(z,u).
Therefore for x — 7(zy) = m(x7(y)), y € N, we have

(5.12) m(zy)i =z + P(z,y),

where deg, P/ < d;, P! depends only on z1,...,2,-1 and P/(z,yo) = 0 for
Yo € No.

Let V; be the linear span of the polynomials in x1,...,z;_1 of degree
at most d; — 1. We form a group G with underlying set V1 @ ... @ V.
Let P = (P1,...,Py) be a generic element of G. Then P acts on N; as a
transformation Tp defined by

(513) (Tpl‘)i ::Ei—i-Pi(l‘l,...,:L“i,l).

The mapping P — Tp is injective. We have to show that for P and R in G
there is an element PR in G such that Tpr = Tp ©® TR, and T;l = Tp-1 for
some P~ ! in G. In fact, since

(TpTrx); = (Trx); + Pi(Trx)1, ..., (Trx)i-1)
and
(Tpﬂ?)j =Ty + Rj(xl, RN ,LL’jfl)
with R; € V;, 7 = 1,...,4, P; € V;, there are W; € V;, i = 1,...,x, such
that (TpTrx); = x; + Wi(x1,...,2;—1). Similarly, if
(5.14) yi = x; + Pi(x1,...,mi—1),
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we solve (5.14) for z; and obtain
(Tp'y)i = yi + P (y),
where Pi_1 is a polynomial in yq,...,y;—1 and
(5.15) P y) = Py + Pr(Y), -+ gi1 + P ()

From (5.15) we prove by induction that deg Pi_1 < d;.
Putting for 7 > 0, 6, = d(10gr)z, and

(5.16) 6. P(z) = (r" Py(6,-1),...,r P (6,12))
we easily verify that

Ts,.pr) = Ts5,p © Ts, R,

so {d,}r>0 is a group of automorphic dilations of G.

To complete the proof of Theorem (5.5) we take the natural basis of
monomials, 2% = (...,z%...),i=1,...,x, o] <di, in V1 ®...dV,. We
order it in the following way. We place 2% before %7 whenever i < j or
if i =7 and |a] > |B|. If i = j and |a] = |F| the order is irrelevant. Let
(y1,...,yn) be the coordinates in G with respect to this basis. In these
coordinates the multiplication in G is given by

(5.17) vy )i = vi +yi + Wiy, y),

where W, is a polynomial which depends on y1,...,yi—1, ¥},...,¥;_; and
such that W;(0,y’) = W;(y,0) = 0. Now we identify V} & ... ® V) with the
Lie algebra of G and the ordered basis X1, ..., X of monomials becomes
a basis of the Lie algebra. By (5.17), the transformation of coordinates

y= (Y1, ym)— (21,...,20n), where y = exp{zij\il z; X}, is triangular,
i.e. z; =y; + Ri(y), where the polynomial R; depends only on y1,...,y;—1.
Now, by (5.12) we have

m(xy)i = xi + Pj(2,y) = x; + Z (Zag,ﬁyﬂ)l’a’i-
a B
Hence, if y = you, v € Ny and

P(u) = (Za: (Zﬁ:a;[gyﬂ)xa,l?._.,za: (%:az,gyB)xa’X) €q,

then in view of (5.17), ¢(u) = eXp{Zj]\/i1 W;(u)X;}, where W; are polyno-
mials. Moreover, we see that m(zyou) = Ty, and the proof is complete.

Now we transfer our maximal function (4.9) to the group G and use
the transference principle (see [CW]). This means that we define a maximal



FATOU THEOREM 131

function on LP(G) by

M f(z) = sup f | f] (x exp { Z Wj(é}u)Xj}) du,

VEL | —ok| <1, k=1,....x j=1

and we are going to prove
IM|[Lr—ro < ep(1 +log* {max for|})©.

Expanding W;(u) as sums of monomials u® and rearranging the basis X,
possibly multiplying by constants, we rewrite the maximal function M as

M f(x) = sup f | f] (m exp{ Z(éyu)aXa}) du,

yerl’

|uk—ok|<1, k=1,...,x acA
where A C NX is a finite set of multiindices o = (a1, ..., @, ), which does
not contain the multiindex (0, ...,0). Thus it suffices to prove the following

(5.18) THEOREM. Let G be a connected, simply connected nilpotent Lie
group and A a finite subset of NX\{(0,...,0)}. For each a € A let X,, be
an element of the Lie algebra of G. Consider a mazimal function on LP(Q)
defined by

M f(z) = sup f |f] (x exp{ Z (5,Yu)aXa}) du.

ver |luk—ok|<1, k=1,...,x acA
Then there exist constants c, and C independent of o1,...,0, such that
(5.19) |M||Lo—rr < Cp(1 +logT {max |ox|})°.

6. Maximal function after M. Christ [Chr]. The maximal function
M f in Theorem (5.18) is bounded on LP(G) as proved by M. Christ [Chr].
What we need here is the estimate (5.19) of its norm. This is attained by a
careful examination of the proof given in [Chr|. We introduce appropriate
dilations both in Nj identified with RX and in the free nilpotent group G
whose algebra is freely generated by X,, o € A. To put these two things
together we rewrite the main steps of Christ’s arguments here adapted to
our situation.

As in [Chr], we begin by recalling the transference principle again to
replace the group G by the nilpotent free group G whose Lie algebra is
generated by X,, a € A. For every sequence J = {J,}aca with J, € Z,
ie. J € ZA =P, we define a unique dilation on G by

d; X, =e¢’"X,.
Let ¢ € C(RX) with ¢(u) =1 for w in {u : V=1, |ur —ox| < 1} and

-----
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supp ) C {u: Vi=1,.  |ur —ox| < 2}. We define a measure  on G by
[ rdn= [ f(exo{ > uXa})w(u)du
G RX acA

and the dilated measures py by
f fduy = f f(exp{ ZeJauo‘Xa})w(u) du.
G RX acA

As in Christ [Chr], we deduce Theorem (5.18) from the following theorem
which we are going to prove now.

(6.1) THEOREM. There is a constant ¢, independent of max |og| such
that the mazimal function

M f(y) = sup | f] * ps(y)
JeP

is bounded on LP(G) with
1MLy 10 < Cp(1 +log™ {max |ox[})7,
where q is a constant depending only on G (see Proposition (6.4)).

The proof follows closely the proof of the main theorem of [Chr|. We
recall here the main steps to show how we obtain the required estimate
C,(1 + log™ max |og|)9. Obviously we may assume that max |oy| > 1.

Let {d,}r>0 be the unique family of automorphic dilations of G such
that

6. X, =rlolx,,.
For a measure v on G we define 6,v by (f,d,v) = (f 0 d,,v). Now we put
r = max |og|.
For each I in P = (Z+)M\ {0} we let
gr={YV eg:d;Y ="y for all J € P},

where (I, J) =3 c 4 IaJo. For each K in PT we define max K = max{K, :
ac A} and |[K| =) K,.

Let g be the sum of the gy such that I, # 0. Then g is the ideal in
g spanned by X,. Let d, = dimg®. We fix a b, in C°(g®) with [ b, = 1.
For k in NT let

kd k k
bo (Ui, ..., uq,) =e" by (e uy,..., e uq,).
We define measures o, and A, i by
O,k = €XP, (ba,k(u)du)a )\a,k =0a,k — Oa,k—1, k > 1a

where exp, denotes the push-forward of a measure.
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We choose a linear ordering of A which will remain fixed. For K in P™

we define
AK = H )\a,Kav

acA
where [] denotes the convolution product of measures taken according to
the ordering. For a subset F of A we define

E
T = H 0,0,
acE

where the convolution product is taken according to the order of A. We
write

r r Kr __ K E,r __ E
Onk =0r0ak, Aok =0rAak, A" =06,A4", 77" =04,7".

The Dirac measure concentrated at a point x is denoted by e,, and e is
the measure concentrated at the identity of G. We decompose e as

o= [lte-ano)+ong= [[e=amo+ > exr™
acA weA Wy

where the cg are integers. Expanding e — oy, o = >, A4, for each o, we

have
w= Z pox AT 4 Z cpp*TET,
KeP+ 0£AECA
and dilating gives

K, E,
Ly = ZMJ*AJT+ Z cppy kT
KeP+ P#ECA

Thus to prove Theorem (6.1) we consider two operators

(6.2) ./\/ll:stup‘f* Z g x AT
JEPT Kkep+t
and
(6.3) My i f— sup )f* Z cops 7, |,
JeP 0£LECA

and we prove that they satisfy the appropriate bounds on LP. First we prove
(6.4) PROPOSITION. For every p > 1 we have
[Millr—rr < Cp(1 + log™ {max|o[})?,
where ¢ = |A| + 3 c4 da-
For a fixed K we define
(6.5) M7 f(2) = sup || % s x AT ().
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Now we are going to prove the following propositions:
(6.6) PROPOSITION. There are (,C,e > 0 such that for every r,
| MET|| 22 < CréeslKl
(6.7) PROPOSITION. For every p > 1 there exists a constant C), such that
for every r,
1Mooz < Cp(1 + | [)Zocade,
Proof of Proposition (6.6). For a fixed K we define

Sich@) = (301 < pg+ AT (@) )1/2-

Jep
Of course,
K,r K,r 2 1/2

sup £ 5 1+ AL < (Y01 5y x AT @P) T = Skf(a).

JeP Jep
We write

Tyf =frpy+AY" and T=) &1,
JeP

with an arbitrary choice of signs. We are going to prove that
(6.8) T 2p2 < Orce 1K,

where the constant is independent of the choice of signs. This will give the
same bound on ||Sk||z2_ 2 and so the desired estimate on || M%7 ||p2_, 2.
First notice that

|Tsllz2—z2 < C
uniformly in J in P, K in P* and r > 0, since the norms of the measures
K,r .
py and A7 are uniformly bounded.
We will prove that there are €, (,c > 0 such that
(69) HT;TJHL2~>L2 + ”TIT;HL2~>L2 S CT'Ce_a‘I_J‘_eIK‘
for all I,J € P and K € PT. This, by the Cotlar-Stein lemma, implies
|72 p> < Crée <K =<l
IeP

and so (6.8) follows. Thus it suffices to prove (6.9). To do this we write
(fop5) = (fod.—1,py). Then

(fom) = ff(exp{Ze Xa} ) (u) du,
acA

where ¥, (u) = rX9(ruy, . . ., 7uy ). Moreover, s A" = 6, (7 + AX).
We prove (6.9) where the operators T'; are replaced by the operators
[ fxux Af . The support of the measure p'; * A? does not depend on
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r any more and the estimate (6.9) is just Lemmas (4.3) and (4.4) of [Chr]
except that the dependence on r is not explicit. To show that in fact it is as
in (6.9) we examine carefully the proof of Lemma (4.5) in [Chr| and Lemma
(3.4) in [Ch], which are the main tools in the proof of (4.3) and (4.4) in
[Chr].

We reformulate Lemma (4.5) in [Chr] to emphasize the dependence of
the estimate on ||¢.||c.

For two natural numbers n > D, with D = dim G, we consider a family
F of functions F : R® — RP which satisfy the following conditions:

The coordinate functions F;, 7 = 1,..., D, are homogeneous polynomials
(with respect to the usual dilations in R™) whose degrees are uniformly
bounded by a number M, and for a compact set X C R"”,

sup{||Fl|ce () : F € F} = C < oo.
For a subset E of {1,...,n} with |E| = D, the Jacobian determinant
JE = (8F/6x5)56}3

is a homogeneous polynomial. We assume that for every F' in F there is a
set Fr and a multiindex g such that 977 Jg, /027 is a constant and

1 YE TF
};1612]8 Jgp /07| > 0.

Finally, let ¢ € C*°(R™), supp¢ C K, and let g = Fi(¢pdx) be the
push-forward measure and X’ a fixed compact set in G = RP.

(6.10) (Reformulation of Lemma (4.5) of [Chr]). Under the assumptions
above there are constants C,e > 0 such that for every measure o supported
in K', every o > 0, every measure v supported in a set of diameter o such
that [o dv =0 and F € F,

1€p x o x| < Co®|[@llcrlloflp vz

As in [Chr] we apply the above lemma to the function

D 4 ' ‘
o=II1w@), o) Ry,

j=1i=1
which satisfies
Igllcr < CriPXT,
and proceeding as in [Chr] we obtain (6.9). This completes the proof of
Proposition (6.6).
To prove the LP estimate, p > 1, we recall the following

(6.11) LEMMA (cf. [St], [NS], [Sj]). Let N be a nilpotent group and E1, . ..
..., Ey, a basis of its Lie algebra. For every p > 1 there exists a constant c,
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such that for the operator T defined by

Tf(z)= sup (r1...7,) " " f f(a: H exp(yiemiEi)> dy

n
meL lyi—oi|<r;,i=1,...,n i=1

we have

n 0;
T e —rr < CpH <1 +log |T|>

i=1
Proof of Proposition (6.7). Since u = f|u'—o-\<1 Sp)¥(u) du, it
is enough to prove

Jsup 1] ¢ (epuy * A7) ln < Cyl1+ | Poct,

For that consider the measure
eérle(u) * AK = 6r—1 (eF(u) * AK’T).
Writing §, -1 F(u) = [[,c 4 Za, Where 2, € expg®, we have
es _, r) * AN = H Vo,
acA

where

Vo = €z, * €5, qap) * Ao Ko * €(Isqzs) !
and all z, belong to a compact set independent of r, w and K. Since exp g® is

a normal subgroup, v, is a smooth measure supported in exp g*. Moreover,
there are ¢, cy,...,cq, independent of r,u and K such that the density of

Vo is dominated by |Bg,| ‘1, , where Br, = {2 = Hj‘;l exp(z; E;) :
|z; — ¢;| < ce Ka}. Therefore the operator

Mo f(x) = Sljpf * (0rva)s ()
both on exp g® and G is dominated by the operator T' of Lemma (6.11) with
loi|/ri < |cilce®e,i=1,..., d,. Therefore

| Ma||o—rr < C(1+ Ky)%.
Finally, the operator

sup | f|  (ep(uy * A7)y = sup |f| * ( 11 5r7/a)
7 d acA J

is dominated by the composition of the operators M,,a € A, and Proposi-
tion (6.7) follows.

Proof of Proposition (6.4). To complete the proof of Proposition
(6.4), we argue as in [Chr]. We take p’ such that 1 < p’ < p < 2 and we
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interpolate between the L? estimate of Proposition (6.6) and the LP estimate
of Proposition (6.7) to obtain

(6.12) sup |f] ¢ gy AT e < Core K 1o
Consequently,

IMallLr—re < Y IIMST Lo

KeP
<Gy > (1 + |K|)Secada
{K:max K<e~!(Clogr+1)}
+C, Z rCeelKl

{K:max K>~ 1(Clogr+1)}
< C,(1+logr),

which completes the proof of Proposition (6.4).

Proof of Theorem (6.1). To complete the proof of Theorem (6.1)
it suffices to show that for My as defined in (6.3) we have

(613) ||M2HLP_>LP < C(l + IOgT‘)q.

This will be proved as follows. First we prove our Theorem (6.1) for |A| = 1,
i.e. when G = R. Then we assume that the theorem is true for every Ay C A
with Ay # A. Under this assumption we prove (6.13) and thus complete
the proof of Theorem (6.1).

If |[A] =1, then G = R and our maximal operator is of the form

Mf(@)=sup [ |f(z+eTuf.. us)
YEZ RX

Y(ug .. up)duy ... dug,.

First we fix u5?...uS" = b # 0. Since « runs over all integers, we may
assume 1/2 < b <1 and so

Mf(z) < 2M/ f sup f |f(z+eTul)| dul)du2 o duy,
|uk —ok|<2k#1 veL lui—of|<2
where o) = b'/*10,. Now we consider the one-dimensional operator

Mf = sup f |f(x 4+ eTu*t)| du,

V€L lu—o|<2

and we prove that

IMl[zr—zr < Cp(1 +1log™ [o]).
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If |o| > 3 we change the variable u®* — v and we see that

— 1
M () < sup — / |f(x + e v)fo~ 7/ gy
~eZ 1 « ap—1
l[v—o%t|<c(|o[+2)*1

1
< sup ——(Jo| — 2) e+ I £+ &) do,
“ =0t |<c(Jo|+2)1 !
whence for f € LP by Lemma (6.11),
Ml < Cp(1 +1log™ )| fll o-
If |o| < 3, then

Mf@) <sup [ |f(z+eu™) du,
VEL |uj<a
which is bounded by C||f||s, as proved in [Chr].

Now we are going to prove the induction step. We show that for every
E C A we have

(6.14) Hsgpf*u(]*rf’r\,;p <CA+logm)f|lLe-

We fix E and we split g as g = g0 P oo, Where
go =span{g® : a € E}, go, =span{gs:V, I, =0}.

Then g is an ideal in g and g, is the free nilpotent Lie algebra of the same
step as g on |A| — |E| generators.

Let Gp = expgp and G = expgo. Every element x in G admits a
unique representation
(6.15) z=wv, wE Gy, veE Gy,
(6.16) r=2vw, w e€Gy, veQqG.

Since Gy is a normal subgroup, F(u) = Fuo(u)Fo(u) with Fo(u) =
exp()_ ¢ U Xa). Therefore

px BT = f er.(u) * (€ry(u) * 77 )Y (u) du.

Let |-| be a norm on G homogeneous with respect to the dilations d, and
let B = {z € Gy : |z| < R}. Since 6,-1 F(supp¢) and 0,—1 Foo (Supp ) are
contained in a bounded set, so does §,—1 Fy(supp ¢), i.e. Fy(supp) C B,y
Also supp 78" C B,,,, whence

supp(ep, (u) * 87y c B,, for u € supp .
Since 75" has smooth density on Gy and

1757 e < B[ TH |,
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there exists a constant C' independent of r such that
€Fy(u) * rBr < C\BCT|_113CT
and so
px BT < C(fepm(u)w(u) du) * ]BCT|_1lBCT.

The measure 1/ = [ ep_ ()9 (u) du is supported in G and has the same
properties as . Also both Gy and G, are invariant under the dilations d,
J € ZA. Therefore our maximal function is estimated by the composition
of two operators,

M, f(z) = sup{f * p}(z) : T € Z*\F},

where p; is defined in the same way as p; at the beginning of this section,
and
Nif(z) = sup{f «d;(6,v)(x) : r € RY, J e Z4}

<sup{f*dyv(z): J€Z*} = Nyof(z)
where v = |B.|7'1p,. In view of (6.15) and (6.16) it is sufficient to prove

(6.17) IMifregey < C(1+logr) A\ EIFRacaveday £, o )
and
(6.18) [N2fllzr(coy < CllfllLr(co)-

But (6.17) is just our inductive hypothesis and (6.18) is proved by a simple
iteration argument (Lemma (6.11)).
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