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1. Introduction. Let (M, g) and (M, g) be two Riemannian or pseudo-
Riemannian manifolds of class C∞. A mapping γ : (M, g) → (M, g) is said
to be geodesic if it preserves geodesics, i.e. maps geodesics of (M, g) onto
geodesics of (M, g). The metrics g and g are then said to be geodesically
corresponding .

Suppose that both g and g are metrics on the same manifold M . Let
F(M) be the ring of differentiable functions and X(M) the F-module of
differentiable vector fields on M . Each of the conditions below is necessary
and sufficient for the metrics g and g to be geodesically corresponding:

∇XY = ∇XY + (Xψ)Y + (Y ψ)X,(1)
(∇Xg)(Y, Z) = 2(Xψ)g(Y, Z) + (Y ψ)g(X,Z) + (Zψ)g(X,Y ),(2)

for all X,Y, Z ∈ X(M), where ψ ∈ F(M), and ∇ and ∇ are the Levi-Civita
connections with respect to g and g.

A manifold (M, g) admits a geodesic mapping if and only if there exist
a function ϕ ∈ F(M) and a symmetric non-singular bilinear form a on M
satisfying

(3) (∇Xa)(Y, Z) = (Y ϕ)g(X,Z) + (Zϕ)g(X,Y )

for all X,Y, Z ∈ X(M) ([9]).
In a chart (U, x) on M the local components of g, g, a,Xϕ and Xψ

given by

gij = g(Xi, Xj), gij = g(Xi, Xj), aij = a(Xi, Xj),
ϕi = Xiϕ, ψi = Xiψ

satisfy

aij = exp(2ψ)gstgsigtj ,(4)
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ϕi = − exp(2ψ)gstgsiψt,(5)

where Xi = ∂/∂xi ∈ X(U) and the gij are the components of (gij)−1.
A geodesic mapping is said to be non-trivial if it is non-affine, which is

equivalent to ϕ 6= const on M .
By (1), the curvature tensors and Ricci tensors of (M, g) and (M, g) are

related by

R(X,Y )Z = R(X,Y )Z + P (X,Z)Y − P (Y, Z)X,(6)
S(X,Y ) = S(X,Y ) + (n− 1)P (X,Y ),(7)

where
P (X,Y ) = Hψ(X,Y )− (Xψ)(Y ψ)(8)

and Hψ is the Hessian of ψ.
Following W. Roter ([7]), the manifold (M, g) is said to be nearly con-

formally symmetric if the tensor

L(X,Y ) =
1

n− 2

[
S(X,Y )− r

2(n− 1)
g(X,Y )

]
is a Codazzi tensor, where S is the Ricci tensor and r denotes the scalar
curvature.

N. S. Sinyukov ([9)] and E. N. Sinyukova ([10]) investigated manifolds
whose Ricci tensor satisfies

(9) (∇XS)(Y, Z) = σ(X)g(Y, Z) + ν(Y )g(X,Z) + ν(Z)g(X,Y ),

where σ and ν are some 1-forms. Such manifolds are known under dif-
ferent names (see [9], [10], [3]). In what follows a Riemannian (or pseudo-
Riemannian) manifold satisfying (9) with non-constant scalar curvature will
be called a Sinyukov manifold . Such manifolds always admit non-trivial
geodesic mappings and every Sinyukov manifold is nearly conformally sym-
metric (see Lemma 1).

Let (M, g) admit a non-trivial geodesic mapping onto the manifold (M, g)
defined by the 1-form dψ (see (2)). In [5] it was proved that (M, g) (dimM
≥ 3) is a conformally flat Sinyukov manifold if and only if (M, g̃ = exp(2ψ)g)
is of constant sectional curvature. In the present paper we prove that (M, g)
with nowhere vanishing Weyl conformal curvature tensor is a Sinyukov mani-
fold if and only if (M, g̃ = exp(2ψ)g) is either an Einstein manifold admitting
non-trivial geodesic mappings or a Sinyukov manifold.

In [3] some properties of Sinyukov manifolds with non-null vector Φ
defined by (24) below were investigated. In the present paper we deal with
manifolds without any assumption on Φ. Finally, the local structure theorem
for Sinyukov manifolds is given.
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2. Preliminaries. If g̃ is a metric on M and there exists λ ∈ F(M)
such that g̃ = exp(2λ)g, then g and g̃ are said to be conformally related or
conformal to each other, and the transformation g → g̃ is called a conformal
change. As is well-known, the Christoffel symbols, the curvature tensors
and the Ricci tensors of the manifolds (M, g) and (M, g̃) are then related by

(10) ∇̃XY = ∇XY + (Xλ)Y + (Y λ)X − g(X,Y )Λ,

where the vector field Λ is defined by g(X,Λ) = Xλ for X ∈ X(M);

g(R̃(X,Y )Z, V ) = g(R(X,Y )Z, V )(11)
+Q(X,Z)g(Y, V )−Q(Y, Z)g(X,V )
+ g(X,Z)Q(Y, V )− g(Y, Z)Q(X,V )

for arbitrary X,Y, Z, V ∈ X(M);

(12) Q(X,Y ) + L(X,Y ) = L̃(X,Y ),

where the tensor fields Q and L are given by

Q(X,Y ) = Hλ(X,Y )− (Xλ)(Y λ) + 1
2g(Λ,Λ)g(X,Y ),(13)

L(X,Y ) =
1

n− 2

[
S(X,Y )− r

2(n− 1)
g(X,Y )

]
(14)

with Hλ being the Hessian of λ, and r standing for the scalar curvature of
(M, g). The tensor field L̃ on (M, g̃) is defined analogously.

The Weyl conformal curvature tensor C satisfying

g(C(X,Y )Z, V ) = g(R(X,Y )Z, V ) + g(X,V )L(Y, Z)− g(Y, V )L(X,Z)(15)
+ L(X,V )g(Y, Z)− L(Y, V )g(X,Z)

is invariant under conformal change, i.e. C̃ = C.
From (12) and (13) we get easily

(16) g(C(X,Y )Z,Λ) = D(X,Y, Z)− D̃(X,Y, Z),

where

(17) D(X,Y, Z) = (∇XL)(Y, Z)− (∇Y L)(X,Z)

and the tensor field D̃ on (M, g̃) is defined in the same manner.
In the sequel we shall use the following theorem and lemmas.

Theorem 1 ([9]). If (M, g) admits a non-trivial geodesic mapping onto
a manifold (M, g) defined by a 1-form dψ, then the manifold (M,a), where a
satisfies (3), admits a geodesic mapping onto (M, g̃ = exp(2ψ)g) determined
by the same 1-form dψ.

Lemma 1 ([12], [1]). On a Sinyukov manifold the tensor D given by (17)
vanishes, i.e. L is a Codazzi tensor.
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Lemma 2 ([9)]. If on (M, g) relation (9) is satisfied at a point p, then

(18) σ(X) =
n

(n− 1)(n+ 2)
(Xr), ν(X) =

n− 2
2(n− 1)(n+ 2)

(Xr)

for any X ∈ Tp(M). Consequently , (M, g) is a Sinyukov manifold if and
only if the scalar curvature r 6=const and the condition (9) holds everywhere
on M.

We define (1,1) tensor fields Ric and A as follows:

g(Ric(X), Y ) = S(X,Y ),(19)
g(A(X), Y ) = a(X,Y )(20)

for all X,Y ∈ X(M).

Lemma 3 ([10], [3]). If (M, g) is a Sinyukov manifold and dϕ 6= 0 at a
point p ∈M , then

(21) a(Ric(X), Y ) = a(X,Ric(Y )),

(22) a(X,N)− tr(A)
n

ν(X) = S(X,Φ)− r

n
(Xϕ),

(23) (Xϕ)
[
S(Y, Z)− r

n
g(Y, Z)

]
− (Y ϕ)

[
S(X,Z)− r

n
g(X,Z)

]
= ν(X)

[
a(Y, Z)− tr(A)

n
g(Y, Z)

]
− ν(Y )

[
a(X,Z)− tr(A)

n
g(X,Z)

]
at p for all X,Y, Z ∈ Tp(M), where N and Φ are given by

(24) g(X,N) = ν(X), g(X,Φ) = Xϕ.

3. Properties of conformal and geodesic mappings of Sinyukov
manifolds. Let p ∈ M be such that dϕ 6= 0 and (3) hold at p. Choose
a local coordinate system (U, x) so that p ∈ U . By Rlijk, Sij , ϕij we de-
note the components of the tensors R,S and Hϕ in this coordinate system.
Differentiating covariantly (3) and applying the Ricci identity we get

(25) aitR
t
jkl + atjR

t
ikl = ϕligjk + ϕljgik − ϕkigjl − ϕkjgil.

Differentiating covariantly (25) with respect to xm, contracting with glm

and applying the Ricci identity, by (3) and (9), we obtain

(26) 4ϕtRtjki = ϕkSij − ϕiSjk

+
n+ 2
n− 2

[νtatkgij − νtatigkj + νiakj − νkaij ] + bigjk − bkgij ,

where the νi are the components of the 1-form ν, the νi are the components
of the field N (i.e. νi = gitνt) whereas bi = ϕit;sg

ts and the semicolon
denotes covariant differentiation on (M, g). Moreover, substituting (22) and
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(23) into (26), we get

4ϕtRtjki =
4

n− 2
(ϕiSjk − ϕkSij)(27)

+
n+ 2
n− 2

(ϕtStkgij − ϕtStigkj) + bigjk − bkgij ,

where ϕi = ϕtg
ti are the components of the field Φ.

Now, we shall prove

Proposition 1. If (M, g) is a Sinyukov manifold and the Weyl confor-
mal curvature tensor C 6= 0 and dϕ 6= 0 at a point p ∈M , then

g(Φ,C(X,Y )Z) = 0,(28)
g(N,C(X,Y )Z) = 0(29)

on some neighbourhood U1 of p, where Φ and N are as in (24). So, for
the metrics g̃1 = exp(2ϕ)g and g̃2 = exp(2ν)g, where ν ∈ F(U1) and Xν =
ν(X), the tensors L̃1, L̃2 defined by (14) are Codazzi tensors.

P r o o f. Transvecting (27) with gjk we get

(30) bi =
n+ 6
n− 2

ϕtSti −
4r

(n− 1)(n− 2)
ϕi.

Substituting (30) into (27), in view of (15), we find (28). Beginning with (9)
and following the above argument we obtain (29). Thus the proposition is
proved.

Proposition 2. If (M, g) is a Sinyukov manifold , then on the set Uϕ =
{p ∈M : dϕ 6= 0 at p} the following identities hold :

Hϕ(X,Y ) =
1

n− 2

[
a(Ric(X), Y )− r

n(n− 1)
a(X,Y )(31)

− tr(A)
n

S(X,Y ) + (n− 2)%1g(X,Y )
]

+ F (Xϕ)(Y ϕ),

Hψ(X,Y )− (Xψ)(Y ψ)(32)

= − 1
n− 2

S(X,Y ) +
r

n(n− 1)(n− 2)
g(X,Y )

− tr(A)
n(n− 2)

exp(−2ψ)g(Ric(X), Y )

+K1g(X,Y ) + F (Xψ)(Y ϕ),

(∇Xν)(Y ) =
1

n− 2

[
S(Ric(X), Y )− r

n− 1
S(X,Y )(33)

+ (n− 2)%2g(X,Y )
]

+Gν(X)ν(Y ),
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where F,G ∈ F(Uϕ), K1 = −%1 exp(−2ψ)−exp(−2ψ)g(Φ, Ψ) and Ψ is given
by g(X,Ψ) = Xψ, and

(34) %1 =
∆ϕ

n
− 1
n(n− 2)

g(Ric(X), A(Y )) +
r tr(A)

n(n− 1)(n− 2)
,

(35) %2 =
∆ν

n
− 1
n(n− 2)

|S|2 +
r2

n(n− 1)(n− 2)

with ∆ϕ, ∆ν standing for the traces of the Hessian Hϕ and ∇ν with respect
to g. If Φ or N is non-null , then F = 0 or G = 0 respectively.

P r o o f. Transvecting (25) with ϕl and applying (27) and (30) we obtain

(36)
1

n− 2

[(
Stkati −

r

n− 1
aik

)
ϕj −

(
Sik −

r

n− 1
gik

)
ajtϕ

t

+ Stjϕtaik − ϕtSst ajsgik +
(
Stkatj −

r

n− 1
ajk

)
ϕi

−
(
Sjk −

r

n− 1
gjk

)
aitϕ

t + ϕtStiajk − ϕtSst aisgjk

]
= ϕkiϕj + ϕkjϕi − ϕtiϕ

tgjk − ϕtjϕ
tgik,

where Sji = Sitg
tj . Transvecting (36) with gjk and making use of (21) we get

ϕitϕ
t = %1ϕi +

1
n− 2

Stiatsϕ
s − r

n(n− 1)(n− 2)
aitϕ

t(37)

− tr(A)
n(n− 2)

Sitϕ
t,

where

%1 =
∆ϕ

n
− 1
n(n− 2)

Stsats +
r tr(A)

n(n− 1)(n− 2)

and Sij = Sitg
tj . Substituting (37) into (36), in view of (22) and (23), we

easily obtain (31). Hence, by metric contraction and the use of (34), we
have either F = 0, provided that Φ is non-null, or F 6= 0, provided that
Φ is null. Moreover, (4) and (5) yield ϕi = −aitψt, whence, by covariant
differentiation and the use of (3) and (31), we get (32). Finally, beginning
with (9) relations (33) and (35) can be obtained in a similar way to (31)
and (34). This completes the proof.

Lemma 4. If (M, g) is a Sinyukov manifold , then

Xϕ = ων(X)

on Uϕ, where ω ∈ F(Uϕ) and X ∈ X(Uϕ).
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P r o o f. Consider the following two cases.

(i) The vector field Φ is null (see (24)). Since g(Ric(X), Y )=g(X,Ric(Y ))
(cf. [8], p. 294), by (32), we get Xϕ = −τ(Xψ), τ ∈ F(Uϕ). It follows that
if Φ is null, then so is Ψ . From (4) and (5) we have

(38) aitϕ
t = τϕi.

Moreover, (37) yields

(39)
(
τ − tr(A)

n

)
Sitϕ

t =
(

rτ

n(n− 1)
− (n− 2)%1

)
ϕi.

In a local chart, (23) takes the form

(40) ϕi

(
Sjk −

r

n
gjk

)
− ϕj

(
Sik −

r

n
gik

)
= νi

(
ajk −

tr(A)
n

gjk

)
− νj

(
aik −

tr(A)
n

gik

)
,

whence, transvecting with ϕk and making use of (38) and (39), we get

(41) Sitϕ
t = τ1ϕi,

where τ1 ∈ F(Uϕ). Differentiating covariantly (41) and transvecting the
resulting equation with ϕi we find νtϕt = 0. Finally, transvecting (40) with
ϕj we obtain

ϕi

(
Stkϕ

t − r

n
ϕk

)
= νi

(
τ − tr(A)

n

)
ϕk.

Consider two cases.

1) τ = tr(A)/n. Then Stkϕ
t = (r/n)ϕk at each point where ϕi 6= 0.

Differentiating covariantly with respect to xl and alternating the resulting
equation in i, l, in view of (9) and (18), we have ϕiνl = ϕlνi, and the result
follows.

2) τ 6= tr(A)/n. Alternating the above result in i, k and applying (41)
we obtain the assertion.

(ii) The vector field Φ is non-null. Differentiating covariantly (22) and
alternating the resulting equation, by (21), (18), (3), (31) and (33), we
obtain

(42)
2(n+ 2)

n
(ϕiνj − ϕjνi) +G(aitνtνj − ajtν

tνi)

= F (Sitϕtϕj − Sjtϕ
tϕi).

If Φ and N are non-null, then the result follows from (42) and Proposition 2.
Finally, let N be a null vector field. Differentiating (33) covariantly, then
applying the Ricci identity and comparing the resulting equation to (29), in
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view of (9) and (18), we have

(43) %2;i =
2

n− 2
Sitν

t + %3νi,

where %3 ∈ F(Uϕ). On the other hand, (33) gives

StiStpν
p − r

n− 1
Sitν

t + (n− 2)%2νi = 0.

Differentiating covariantly with respect to xk, then transvecting with νk, by
the use of (43), we obtain Stpνtνp = 0. Hence, by transvection of (40) with
νjνk, we have

(44) −ϕtνt
(
Sitν

t − r

n
νi

)
= νiatpν

tνp.

Now, transvecting (40) with ϕiνj and applying the last result, we get
Sktν

t = (r/n)νk at each point where ϕtϕt 6= 0 and ϕtνt = 0. Then transvec-
tion of (40) with νk results in νiajtν

t − νjaitν
t = 0. Hence and from (42),

by Proposition 2 we have ϕi = ωνi. On the other hand, if ϕtνt 6= 0 in (44),
then Stiν

t = τ2νi, τ2 ∈ F(Uϕ). Therefore, transvecting (40) with ϕiνj and
using (22), we obtain aitν

t = τ3νi, τ3 ∈ F(Uϕ), whence, by (42), we have
ϕi = ωνi again. From the above considerations it follows that the case when
Φ is non-null but N is null does not occur. This completes the proof.

4. Main results. From (23) and Lemma 4 it follows that

(45) ω

(
Sij −

r

n
gij

)
= aij −

tr(A)
n

gij +Bνiνj ,

in a local chart (U, x), where B ∈ F(Uϕ). Transvecting (45) with gij we get
Bνtν

t = 0. Hence and from Lemma 4 it follows that if the vector field Φ is
non-null, then B = 0. Now we shall prove

Proposition 3. Assuming that (3) and (9) are satisfied at a point p ∈
Uϕ and Φ is a null vector field , we have ν(X) = 0, X ∈ Tp(M), and (U, g)
is an Einstein manifold.

P r o o f. Suppose that the vector field Φ is null. Differentiating covari-
antly (45), then making use of (3), (9) and (18) we get

(46) ωk

(
Sij −

r

n
gij

)
= Bkνiνj +B(νi;kνj + νiνj;k),

where ωk = Xkω, Bk = XkB and the semicolon stands for covariant dif-
ferentiation on (M, g). If ω = const, then νi = 0 is a consequence of the
results of [10]. If ωk 6= 0 at p, then, by covariant differentiation of ϕi = ωνi,
we obtain Xiω = ω1νi and Xi(ω1) = ω2νi, where ω1, ω2 ∈ F(U). Moreover,
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differentiating covariantly (46) and applying the Ricci identity, by (29), we
find

(47) νiTjkl + νjTikl = 0,

where

Tjkl =
[

B

n− 2
Sjk −

(
Br

n(n− 1)(n− 2)
− ω1

)
gjk

]
νl(48)

−
[

B

n− 2
Sjl −

(
Br

n(n− 1)(n− 2)
− ω1

)
gjl

]
νk.

If νi 6= 0, then (47) results in Tjkl = 0. Thus, by (48),

B

n− 2
Sij −

(
Br

n(n− 1)(n− 2)
− ω1

)
gij = B1νiνj , B1 ∈ F(U).

Hence, metric contraction with respect to i, j gives

(49) ω1 = − Br

n(n− 1)
.

Therefore

(50) Sij −
r

n
gij = B2νiνj ,

where B2 = (n− 2)B1/B.
From (49) it follows that if r 6= 0, then Bi = B3νi, B3 ∈ F(U). Substi-

tuting (50) into (46) and taking into account the above considerations, we
obtain νiνj;k − νkνj;i = 0 at each point where B 6= 0. Hence

(51) νi;j = G1νiνj ,

where G1 ∈ F(U). From (50) we obtain (Sit − (r/n)git)νt = 0, whence, by
covariant differentiation and the use of (51) and (18), we have n−2

n νiνj = 0.
So, νi = 0 if Φ is a null vector field. Then (9) results in (∇XS)(Y, Z) = 0,
which implies (∇XS)(Y, Z) − (∇Y S)(X,Z) = 0 for X,Y, Z ∈ Tp(M). Now
the second part of our proposition is a consequence of the results of [11].
This completes the proof.

From Lemma 4, Proposition 3 and the results of [10] (cf. [3]) we obtain

Theorem 2. A manifold (M, g) admitting a non-trivial geodesic mapping
onto a pseudo-Riemannian manifold is a Sinyukov manifold if and only if
both r 6= const and the condition

(52) a(X,Y ) = ω[S(X,Y )− (σ + c)g(X,Y )]

holds everywhere, where ω = const 6= 0, c = const, σ ∈ F(M) and Xσ =
σ(X), X,Y ∈ X(M).

From Theorem 2 we obtain
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Corollary 1. On a Sinyukov manifold Xϕ = ων(X), ω = const 6= 0.

Corollary 2 ([9]). A Sinyukov manifold (M, g) always admits a non-
trivial geodesic mapping onto a pseudo-Riemannian manifold.

Moreover, from Proposition 3 we have

Corollary 3. On a Sinyukov manifold the vector field Φ is non-null.

Now we shall prove

Proposition 4. Suppose that (M, g) is a Sinyukov manifold and let g be
a metric satisfying (2), i.e. g is geodesically corresponding to g. If p ∈ Uϕ,
then

(53) Hψ(X,Y )− (Xψ)(Y ψ)

= − 1
(n− 2)ω

a(X,Y ) +Kg(X,Y ) +Kg(X,Y )

at p, where X,Y ∈ Tp(M),

K = − 2
n− 2

(σ + c) +
r

(n− 1)(n− 2)

and

(54) K =
[

tr(A)
n(n− 2)

(σ + c)− %1 − g(Ψ,Φ)
]

exp(−2ψ) = const,

Hψ is the Hessian of the function ψ, %1 is given by (34) and X(σ+c) = σ(X).

P r o o f. Equation (53) results immediately from (32) and (52). Differ-
entiating covariantly (31) and applying the Ricci identity, by (3), (9), (52)
and (28), we obtain

Xi(%1) =
2

n− 2
Sitϕ

t +
[

2r
(n− 2)2(n− 1)

− 2(n+ 2)
n(n− 2)2

(σ + c)
]
(Xiϕ).

Then differentiating covariantly (54), by (3), (31), (32), (52) and the above
identity, we easily find that K is constant on Uϕ. Thus the proposition is
proved.

Theorem 2 and Proposition 4 result in

Corollary 4. On a Sinyukov manifold ,

(55) g(Ψ,C(X,Y )Z) = 0.

Moreover , on (M, g̃ = exp(2ψ)g) the tensor field L̃ given by (14) is a Codazzi
tensor.

P r o o f. (52), (4) and (5) yield −Xϕ = ω[S(X,Ψ) − (σ + c)(Xψ)].
Differentiating covariantly (53) and applying the Ricci identity, in view of
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(3), (2) and the above equation, we have (55). Together with (16) and (17),
this implies that L̃ is a Codazzi tensor. This completes the proof.

Suppose that the 1-form dψ defines a geodesic mapping of a Sinyukov
manifold (M, g) onto a pseudo-Riemannian manifold (M, g). Theorem 1
states that the manifold (M,a), where a is given by (3), admits a geodesic
mapping onto the manifold (M, g̃ = exp(2ψ)g) determined by the same
1-form dψ.

Theorem 3 ([5]). A manifold (M, g) (dimM ≥ 3) is a conformally flat
Sinyukov manifold if and only if (M, g̃ = exp(2ψ)g) is of constant sectional
curvature.

From (2) and (10) we obtain

Lemma 5. On a manifold (M, g̃ = exp(2ψ)g),

(56) (∇̃Xg)(Y, Z) = ϕ̃(Y )g̃(X,Z) + ϕ̃(Z)g̃(X,Y ),

where ϕ̃(X) = g(X,Ψ) exp(−2ψ). Thus, on (M, g̃) the tensor g satisfies the
same condition as does the tensor a on (M, g).

Theorem 4. Suppose that a manifold (M, g) admits a non-trivial geo-
desic mapping onto a manifold (M, g) defined by a 1-form dψ. Let UC =
{p ∈ M : C 6= 0 at p}, where C is the Weyl conformal curvature tensor.
Then (UC , g) is a Sinyukov manifold if and only if either

(i) (UC , g̃ = exp(2ψ)g) is an Einstein manifold which admits a geodesic
mapping determined by the 1-form −dψ, or

(ii) (UC , g̃ = exp(2ψ)g) is a Sinyukov manifold which admits a geodesic
mapping determined by the 1-form −dψ.

P r o o f. On (M, g̃ = exp(2ψ)g), by (12)–(14), (52) and Proposition 4,
we get

(57) S̃(X,Y ) = (n− 2)Kg(X,Y ) + K̃g̃(X,Y ),

where

K̃ =
r̃

2(n− 1)
+

r

2(n− 1)
exp(−2ψ)

− (σ + c) exp(−2ψ) +
n− 2
n

g(Ψ, Ψ) exp(−2ψ).

Differentiating covariantly (57) and making use of (56) we have

(58) (∇̃Z S̃)(X,Y ) = ν̃(X)g̃(Y, Z) + ν̃(Y )g̃(X,Z) + σ̃(Z)g̃(X,Y ),

where ν̃(X) = (n − 2)Kϕ̃(X), σ̃(X) = X(K̃). As in [9], p. 131 (see also
Lemma 2), one can prove that

(59) ν̃(X) =
n− 2

2(n− 1)(n− 2)
(Xr̃ ), σ̃(X) =

n

(n− 1)(n+ 2)
(Xr̃ ).
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Consider the following two cases.

(i) The scalar curvature r̃ of (M, g̃) is constant. Since (M, g̃) admits a
non-trivial geodesic mapping onto (M,a), we see, by the above considera-
tions, that r̃ = const if and only if K = 0. Then (57) implies that (M, g̃)
is an Einstein manifold. Conversely, if (M, g̃) is an Einstein manifold which
admits a geodesic mapping corresponding to −dψ, then, as in [9], p. 130
(see also [12]), we easily conclude that (M, g) is a Sinyukov manifold.

(ii) If r̃ is not constant, then from (58) and (59) it follows that (M, g̃) is
a Sinyukov manifold. This completes the proof.

Notice that if (M, g̃) is an Einstein manifold, then, by the results of [6],
so is (M,a). Hence and from Theorem 4 we have

Corollary 5. If g̃ = exp(2ψ)g is an Einstein metric, then ã =
exp(2ψ)a is a Sinyukov metric.

5. Local structure theorem. The local structure theorem for con-
formally flat Sinyukov manifolds is given in [5]. Let a be a differentiable
symmetric bilinear form on Ua ⊆ M satisfying (3) and having t different

eigenvalues
1

λ, . . . ,
t

λ. From the very definition, at each point p ∈ Ua they
coincide with the eigenvalues of the endomorphism Ap of the tangent space
Tp(M) corresponding to a, i.e. g(AX,Y ) = a(X,Y ) for all X,Y ∈ X(Ua).
Let (U, x) be a chart on M such that U ⊆ Ua. Suppose that

α
v is an eigen-

vector of the matrix aij corresponding to the eigenvalue
α

λ, i.e. satisfying the
condition

(60) (aij −
α

λ gij)
α
v j = 0.

Following [4], one can prove that ϕt
α
v t = 0 and

α
vi =

α

B(Xi

α

λ), where
α

B ∈
F(U). Transvecting (60) with ψi and making use of (4) and (5) we have
ψi

α
v i = 0. From [2], it follows that if (M, g) admits a geodesic mapping

then exp(−2ψ) =
∏t
α=1(fα)τα , where τα denotes the algebraic multiplicity

of
α

λ = fα(xnα+τα), n1 = 0, nβ = τ1 + . . .+ τβ−1, β = 2, . . . , t. Hence

(61)
α
viα =

α

Fψiα and
α
vj = 0 for j 6= iα,

where iα = nα + 1, . . . , nα + τα,
α

F ∈ F(U), α = 1, . . . , t.

Lemma 6. On a Sinyukov manifold the eigenvectors of the matrix aij(p),
p ∈ Ua, are non-null.

P r o o f. Suppose, to the contrary, that the eigenvector
α
v corresponding

to the eigenvalue
α

λ is a null vector. Differentiating covariantly (61) with
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respect to xk, then transvecting the resulting equation with
α
v i and applying

the relation ψjiα = 0 for j 6= jα, we obtain ψkt
α
v t = 0. Therefore, from (53)

and (60), we have

− 1
(n− 2)ω

α

λ+K +K(fα)−1
t∏

β=1

(fβ)−τβ = 0.

Since

XiK = − 2
(n− 2)ω

ϕi and ϕ =
1
2

t∑
β=1

τβfβ

(see [2]), it is easily seen that the above relation is false if the manifold
admits a non-trivial geodesic mapping. This completes the proof.

Assume that a manifold (M, g) admits a geodesic mapping onto a man-
ifold (M, g). If at p ∈M the eigenvectors of the matrix aij(p) are non-null,
then in some neighbourhood of p there exists a coordinate system such that
the components of the metric tensors g and g take the form ([2])

(62)

gµµ = eµ

t∏
β=1
β 6=µ

(fβ − fµ)τβ , gµµ =
t∏

β=1

(fβ)−τβ (fµ)−1gµµ,

gi%j% =
t∏

β=1
β 6=%

(f% − fβ)τβ
%
gi%j% , gi%j% =

t∏
β=1

(fβ)−τβ (f%)−1gi%j% ,

where fµ = fµ(xµ), f% = const 6= 0, eµ = ±1, µ = 1, . . . , k, % = k + 1, . . . , t,
t ≤ 2k + 1, τ1 = . . . = τk = 1, τ% > 1, i%, j% = n% + 1, n% + 2, . . . , n% + τ%,
n1 = 0, nγ = τ1+τ2+. . .+τγ−1, γ = 2, . . . , t and

%
gi%j%(xn%+1, . . . , xn%+τ%) are

metric tensors on τ%-dimensional submanifolds
%

M, exp(−2ψ) =
∏t
α=1(fα)τα .

The following lemma is a consequence of (25), (31), (15) and (52).

Lemma 7. If (M, g) is a Sinyukov manifold and the Weyl conformal
curvature tensor C 6= 0 at a point p then, at p,

(63) a(X,C(Y, Z)V ) + a(V,C(Y, Z)X) = 0.

Taking into account (63) in the coordinate system in which the metric
has the form (62) and applying the equality aiαjα = fαgiαjα we find

Lemma 8. If
%
g are metrics of one-dimensional manifolds, then the ad-

joint metric

∗
g =

k∑
µ=1

t∏
β=1
β 6=µ

(fβ − fµ)τβ (dxµ)2 +
t∑

%=k+1

t∏
β=1
β 6=%

(f% − fβ)τβ (dy%)2
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is a metric of a conformally flat manifold. In particular , if aij(p), p ∈
Ua, has n distinct eigenvalues, then (Ua, g) is a conformally flat Sinyukov
manifold.

Theorem 5. Suppose that a 1-form dψ defines a geodesic mapping of a
Sinyukov manifold (M, g) with C 6= 0 everywhere on M. If g̃ = exp(2ψ)g is
a Sinyukov metric, then on a neighbourhood of each point p ∈M there exists
a coordinate system such that the metrics g and g̃ take one of the following
forms:

(i) if k = 1 and t = 2, then

(64) g =
1

4(c1 − x1)W1(x1)
(dx1)2 + (c1 − x1)

2

hαβ dx
αdxβ , g̃ = (x1)−1g,

where
W1(z) = A2z

2 +A1z +A0,

A0, A2, c1 = const 6= 0, A1 = const,
2

h =
2

h(x2, . . . , xn) is an (n − 1)-
dimensional Einstein metric with the Ricci tensor

2

S = −(n− 2)W1(c1)
2

h,

α, β = 2, . . . , n;
(ii) if k = 1 and t = 3, then we have

(65) g =
(n− 2)ω
W2(x1)

(dx1)2 +
3∑
%=2

(c% − x1)
%

hi%j% dx
i% dxj% , g̃ = (x1)−1g,

where
W2(z) = 4(c2 − z)(c3 − z)(c1 + z),

c%, c1, ω = const 6= 0, % = 2, 3,
2

h =
2

h(x2, . . . , xτ2+1) is a τ2-dimensional
Einstein metric with the Ricci tensor

2

S = (τ2 − 1)(c2 − c3)(c1 + c2)K
2

h,

3

h =
3

h(xτ2+2, . . . , n) is a τ3-dimensional Einstein metric with te Ricci tensor
3

S = (τ3 − 1)(c3 − c2)(c1 + c3)K
3

h,

K = 1
(n−2)ω , i2, j2 = 2, . . . , τ2 + 1, i3, j3 = τ2 + 2, . . . , n, 1 + τ2 + τ3 = n;

(iii) if k > 1, then

g =
k∑
µ=1

k∏
η=1
η 6=µ

xη − xµ

W3(xµ)
(dxµ)2 +

t∑
%=k+1

k∏
µ=1

(f% − xµ)
%
gi%j% dx

i% dxj% ,(66)

g̃ = (x1 . . . xk)−1g,
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where

W3(z) = (−1)k+14Ak+2z
k+2 +Ak+1z

k+1 + . . .+A1z + 4A0,

A0, A1, . . . , Ak+2 = const, A0, Ak+2 6= 0, f% = const 6= 0, and the f% are
roots of the polynomial W3,

%
g are τ%-dimensional Einstein metrics with the

Ricci tensors
%

S = (τ% − 1)K%
%
g

and K% = (−1)k+1 1
4W

′
3(f%), k > 1, t ≤ 2k + 1, % = k + 1, . . . , t, i%, j% =

n% + 1, . . . , n% + τ%, n1 = 0, nγ = τ1 + τ2 + . . .+ τγ−1, γ = 2, . . . , t, τ% > 1.

P r o o f. Solving (53) in the local coordinate system in which g and g are
of the form (62) and using the equality aiαjα = fαgiαjα , in the same way as
in the proof of Theorem 3 of [1], we obtain our assertion.

Theorem 6. Let Rn be endowed with a metric of the form either (64)

or (65) or (66), where h,
2

h or
3

h and at least one of the forms
%
g are non-

conformally flat Einstein metrics. Then (Rn, g) (and (Rn, g̃)) is a non-
conformally flat Sinyukov manifold.

P r o o f. By elementary computation one can easily verify that (9) holds
on (Rn, g) (and the analogous condition is satisfied on (Rn, g̃)). The com-
ponents of the 1-form σ (ν = n−2

2n σ) are respectively:

1) for the metric (64):

σ1 = −nA2, σα = 0
(
σ̃1 =

−nA0c1
(x1)2

, σ̃α = 0
)
, α = 2, . . . , n,

2) for the metric (65):

σ1 =
n

(n− 2)ω
, σα = 0

(
σ̃1 =

−nc1c2c3
(n− 2)ω(x1)2

, σ̃α = 0
)
,

α = 2, . . . , n,

3) for the metric (66):

σµ = nAk+2, σi% = 0
(
σ̃µ =

−nA0

(xµ)2
, σ̃i% = 0

)
, µ = 1, . . . , k.

Moreover, in the metrics (64), (65) and (66), the conformal curvature tensor

C 6= 0 if and only if
2

h (resp.
2

h or
3

h, resp. at least one of
%
g) is a non-

conformally flat metric. This completes the proof.

R e m a r k. In [4] the local structure theorem for Einstein manifolds
admitting geodesic mappings is proved. If g̃ = exp(2ψ)g is an Einstein
manifold, then, by Theorem 4(i), Corollary 5 and the results of [4], the
local structure of Sinyukov manifolds can be easily obtained. This, together
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with Theorem 5, provides a complete description of the local structure of
Sinyukov manifolds.

From Theorems 5, 6 and the results of [4] we have the following

Corollary 6. If M is a Sinyukov manifold and dimM ≤ 4, then M is
conformally flat.
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70-310 SZCZECIN, POLAND
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