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1. Introduction. Let (M, g) and (M, g) be two Riemannian or pseudo-
Riemannian manifolds of class C°°. A mapping v : (M, g) — (M,gq) is said
to be geodesic if it preserves geodesics, i.e. maps geodesics of (M, g) onto
geodesics of (M,g). The metrics g and g are then said to be geodesically
corresponding.

Suppose that both g and g are metrics on the same manifold M. Let
$(M) be the ring of differentiable functions and X(M) the F-module of
differentiable vector fields on M. Each of the conditions below is necessary
and sufficient for the metrics ¢ and g to be geodesically corresponding:

(1) VxY =VxY + (X9)Y + (Y§)X,
(2)  (Vx9)(YV,2) =2(Xy)g(Y,Z) + (Y)g(X, Z) + (Z)g(X,Y),

for all X,Y,Z € X(M), where ¢ € (M), and V and V are the Levi-Civita
connections with respect to g and g.

A manifold (M, g) admits a geodesic mapping if and only if there exist
a function ¢ € F(M) and a symmetric non-singular bilinear form a on M
satisfying

(3) (Vxa)(Y,2) = (Y)g9(X, Z) + (Zp)g(X,Y)

for all X, Y, Z € X(M) ([9)).
In a chart (U,z) on M the local components of ¢,7,a, X¢ and X1
given by

9ij = 9(Xi, X5), G5 = 9(Xi, Xj),  aij = a(Xi, Xj),
v =Xip, i =Xy
satisfy

(4) aij = exp(2¢)g5!gsige;,
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(5) ©; = — exp(2¢) g5t gy,

where X; = 9/0z' € X(U) and the g are the components of (g;;)~*.

A geodesic mapping is said to be non-trivial if it is non-affine, which is
equivalent to ¢ # const on M.

By (1), the curvature tensors and Ricci tensors of (M, g) and (M,7q) are
related by

(6) R(X,Y)Z =R(X,Y)Z+ P(X,2)Y — P(Y,Z2)X,
(7) S(X,Y)=8(X,Y)+ (n—1)P(X,Y),

where

(8) P(X,Y) = Hy(X,Y) = (X¢)(Y)

and H, is the Hessian of 1.
Following W. Roter ([7]), the manifold (M, g) is said to be nearly con-
formally symmetric if the tensor

1 T
no YY) - 2(n—1)

is a Codazzi tensor, where S is the Ricci tensor and r denotes the scalar
curvature.

N. S. Sinyukov ([9)] and E. N. Sinyukova ([10]) investigated manifolds
whose Ricci tensor satisfies

9) (VxS 2) =a(X)g(Y, Z2) + v(Y)g(X, Z) + v(2)g(X,Y),

L(X,Y)= 9(X,Y)

where ¢ and v are some 1-forms. Such manifolds are known under dif-
ferent names (see [9], [10], [3]). In what follows a Riemannian (or pseudo-
Riemannian) manifold satisfying (9) with non-constant scalar curvature will
be called a Sinyukov manifold. Such manifolds always admit non-trivial
geodesic mappings and every Sinyukov manifold is nearly conformally sym-
metric (see Lemma 1).

Let (M, g) admit a non-trivial geodesic mapping onto the manifold (M, 7)
defined by the 1-form di (see (2)). In [5] it was proved that (M, g) (dim M
> 3) is a conformally flat Sinyukov manifold if and only if (M, g = exp(2¢)g)
is of constant sectional curvature. In the present paper we prove that (M, g)
with nowhere vanishing Weyl conformal curvature tensor is a Sinyukov mani-
fold if and only if (M, g = exp(2¢)g) is either an Einstein manifold admitting
non-trivial geodesic mappings or a Sinyukov manifold.

In [3] some properties of Sinyukov manifolds with non-null vector @
defined by (24) below were investigated. In the present paper we deal with
manifolds without any assumption on @. Finally, the local structure theorem
for Sinyukov manifolds is given.



CONFORMALLY SYMMETRIC MANIFOLDS 151

2. Preliminaries. If g is a metric on M and there exists A € §(M)
such that g = exp(2))g, then g and g are said to be conformally related or
conformal to each other, and the transformation g — ¢ is called a conformal
change. As is well-known, the Christoffel symbols, the curvature tensors
and the Ricci tensors of the manifolds (M, g) and (M, g) are then related by
(10) VxY = VxY 4+ (XN)Y 4+ (YA X — g(X,Y)A,

where the vector field A is defined by ¢g(X, 4) = X\ for X € X(M);

(11) g(R(X,Y)Z,V)=g(R(X,Y)Z,V)
+QRX, 2)g(Y,V) = Q(Y, Z)g(X, V)
+9(X, 2)QY, V) —g(Y, Z)Q(X,V)
for arbitrary X,Y, Z,V € X(M);

(12) QIX,Y)+ L(X,Y) = L(X,Y),
where the tensor fields @) and L are given by

1 T
(14) L(X,Y) = n_29 S(X,Y) - mg(X>Y)

with H)y being the Hessian of A, and r standing for the scalar curvature of
(M, g). The tensor field L on (M, q) is defined analogously.

The Weyl conformal curvature tensor C' satisfying
(15) g(C(X,Y)Z, V) =g(R(X,Y)Z, V) + g(X,V)L(Y,Z) — g(Y,V)L(X, Z)
is invariant under conformal change, i.e. C=cC.

From (12) and (13) we get easily

(16) 9(C(X,Y)Z,A) = D(X,Y,Z) - D(X,Y, Z),
where
(17) D(X,Y,Z) = (VxL)(Y, Z) — (VyL)(X, )

and the tensor field D on (M, g) is defined in the same manner.
In the sequel we shall use the following theorem and lemmas.

THEOREM 1 ([9]). If (M, g) admits a non-trivial geodesic mapping onto
a manifold (M,q) defined by a 1-form di, then the manifold (M, a), where a
satisfies (3), admits a geodesic mapping onto (M, g = exp(2t)g) determined
by the same 1-form di.

LEMMA 1 ([12], [1]). On a Sinyukov manifold the tensor D given by (17)
vanishes, i.e. L is a Codazzi tensor.
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LEMMA 2 ([9)]. If on (M, g) relation (9) is satisfied at a point p, then
n n—2
R LA Cht At g o

for any X € T,(M). Consequently, (M,g) is a Sinyukov manifold if and
only if the scalar curvature r#const and the condition (9) holds everywhere
on M.

We define (1,1) tensor fields Ric and A as follows:
(19) g(Ric(X),Y)=S(X,Y),
(20) 9(A(X),Y) = a(X,Y)
for all X,Y € X(M).

LEmMMA 3 ([10], [3]). If (M, g) is a Sinyukov manifold and dp # 0 at a
point p € M, then
(21) a(Ric(X),Y) = a(X,Ric(Y)),
tr(A)

(18)  o(X)=

(X7)

(22) a(X,N) = =v(X) = S(X, ) - = (Xyp),

3

@) (X0)[s(.2) - Lg(v, 2)] - (v 506 2) - Za(x ]
tr(A) r(A)

—v(x)[a(r: 2) - (v, 2)] —v(1)|atx.2) -

at p for all X,Y,Z € T,(M), where N and & are given by
(24) 9(X,N) =v(X), g(X,®)=Xep.

(X.2)

3. Properties of conformal and geodesic mappings of Sinyukov
manifolds. Let p € M be such that dp # 0 and (3) hold at p. Choose
a local coordinate system (U,x) so that p € U. By Rlijk,Sij,goij we de-
note the components of the tensors R, S and H,, in this coordinate system.
Differentiating covariantly (3) and applying the Ricci identity we get

(25) ait R jii + atj R it = @uigin + uj ik — Prigjl — Pjgil-
Differentiating covariantly (25) with respect to z™, contracting with g'™
and applying the Ricci identity, by (3) and (9), we obtain
(26) 4R jri = ©1Sij — ©iSik
n 42
-2
where the v; are the components of the 1-form v, the v/* are the components

of the field N (i.e. v' = g®;) whereas b; = ¢i1.:9"® and the semicolon
denotes covariant differentiation on (M, g). Moreover, substituting (22) and

t t
W'atrgi; — V' aigr; + Viakj — Vkaij| + bigjx — brgij,
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(23) into (26), we get
4
(27) 4R = 5 (@iSir = ¢Siy)
n+2
n—2
where ¢! = ;g* are the components of the field ®.
Now, we shall prove

+

(0" Stk gij — ©'Stigr;) + bigir — b gij,

PROPOSITION 1. If (M, g) is a Sinyukov manifold and the Weyl confor-
mal curvature tensor C' # 0 and dp # 0 at a point p € M, then

(28) 9(2,C(X,Y)Z) =0,
(29) g(N,C(X,Y)Z) = 0
on some neighbourhood Uy of p, where ® and N are as in (24). So, for
the metrics g1 = egp(%p)g and go = exp(2v)g, where v € F(Uy) and Xv =
v(X), the tensors Ly, Ly defined by (14) are Codazzi tensors.

Proof. Transvecting (27) with g’* we get

n+6 4r

30 b; = v Sy — ——————— ;.
(30) n—27""" n—1(mn-27

Substituting (30) into (27), in view of (15), we find (28). Beginning with (9)
and following the above argument we obtain (29). Thus the proposition is
proved.

PROPOSITION 2. If (M, g) is a Sinyukov manifold, then on the set U, =
{p € M :dp # 0 at p} the following identities hold:

r

(31)  Hu(X,Y)= a(Ric(X),Y) —

n—2 n(n—1)
_ tr(4)
(32)  Hy(X,Y) = (X¢)(Y)
1

= - S(X,Y) +

n—2 nn—1)(n—2)
tr(A)

- s (20 (Rie(X). )

+ K 1g(X,Y) + F(X¥)(Y),

(33 (Vo)1)= [S(Ric(X),Y) -

a(X,Y)

S(X,Y) 4+ (n=2)a1g(X,Y) | + F(Xe)(Ye),

9(X.Y)

r

S(X,Y)

n—1

+ (n — 2)029(X, Y)] + Gr(X)v(Y),
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where F,G € F(U,), K1 = —01 exp(—2¢) —exp(—2¢)g(P,¥) and ¥ is given
by 9(X,¥) = Xvp, and

_ Ay 1 rtr(A)

(34) an=y n(n — Q)Q(I:mj(X)7 AY) + n(n—1)(n—2)’
Av 1 9 72
(35) e o YA o Y e

with Ap, Av standing for the traces of the Hessian H, and Vv with respect
to g. If @ or N is non-null, then F =0 or G = 0 respectively.

Proof. Transvecting (25) with (' and applying (27) and (30) we obtain
1 T r
(36) P |:<S]tgati - n_laik> Y — (Si — n_lgik>ajt90t
r
+ Siprair — 0" SFajegir + (S]iatj - n_1ajk> i
r
- <Sj - n_lgjk>ait90t + SDtStiajk - SOtSfaisgjk:|

= Okipj + OrjPi — PP ik — Pt P Giks

where Sg = S;:g'7. Transvecting (36) with ¢7% and making use of (21) we get

1 T
Lot — . t s ot
(37) pire! = 0190 + —— Sjasp D)
tr(A) t
~n(n— 2)5”’90 ’
where
Ap 1 rtr(A)
— Sts s
"=y n(n —2) s n(n—1)(n—2)

and SY = Sigt. Substituting (37) into (36), in view of (22) and (23), we
easily obtain (31). Hence, by metric contraction and the use of (34), we
have either F' = 0, provided that @ is non-null, or F' # 0, provided that
@ is null. Moreover, (4) and (5) yield ¢; = —a;9)", whence, by covariant
differentiation and the use of (3) and (31), we get (32). Finally, beginning
with (9) relations (33) and (35) can be obtained in a similar way to (31)
and (34). This completes the proof.

LEMMA 4. If (M, g) is a Sinyukov manifold, then
Xp =wr(X)
on Uy, where w € §(U,) and X € X(U,).
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Proof. Consider the following two cases.

(i) The vector field @ is null (see (24)). Since g(Ric(X),Y)=g(X, Ric(Y))
(cf. [8], p. 294), by (32), we get X¢ = —7(X), 7 € F(U,). It follows that
if @ is null, then so is ¥. From (4) and (5) we have

(38) a0’ = T;.
Moreover, (37) yields
tr(A) ' rT
(39) (7= " )it = (g~ (=20 )

In a local chart, (23) takes the form

T T
(40) @i <Sjk - ank) —p; (Sik — ngik)
tr(A tr(A
= Vi <ajk - ()gjk> .z (az‘k _ ld) )gik>7
n n

whence, transvecting with ¢* and making use of (38) and (39), we get
(41) Sip’ = 1104,

where 71 € §(U,). Differentiating covariantly (41) and transvecting the
resulting equation with ¢* we find v," = 0. Finally, transvecting (40) with

¢’ we obtain
T tr(A
i (StkSOt - SDk) =v; <T _ )>90k
n n

Consider two cases.

1) 7 = tr(A)/n. Then Siyp! = (r/n)pr at each point where p; # 0.
Differentiating covariantly with respect to z! and alternating the resulting
equation in 4, [, in view of (9) and (18), we have p,;v; = ¢v;, and the result
follows.

2) 7 # tr(A)/n. Alternating the above result in ¢,k and applying (41)
we obtain the assertion.

(ii) The vector field @ is non-null. Differentiating covariantly (22) and
alternating the resulting equation, by (21), (18), (3), (31) and (33), we
obtain

2(n+2)

(42) (piv; — i) + Glawr'v; — av'v;)

= F(Sug'pj — Sjep' i)
If ¢ and N are non-null, then the result follows from (42) and Proposition 2.

Finally, let N be a null vector field. Differentiating (33) covariantly, then
applying the Ricci identity and comparing the resulting equation to (29), in
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view of (9) and (18), we have

2
(43) 02 = nfsitl/t + o3v,

2
where g3 € F(U,). On the other hand, (33) gives

,
SiSipp? — —=Su" + (n = 2)0avs = 0.

Differentiating covariantly with respect to z*, then transvecting with v*, by
the use of (43), we obtain Sy,v'vP = 0. Hence, by transvection of (40) with
vIvk | we have

(44) —pv/t <SitVt - Tw) = Viatpl/tl/p.
n

Now, transvecting (40) with v/ and applying the last result, we get
Skt = (r/n)vy at each point where ;0" # 0 and ;' = 0. Then transvec-
tion of (40) with v* results in v;a;;v" — vja;vt = 0. Hence and from (42),
by Proposition 2 we have ¢; = wr;. On the other hand, if o' # 0 in (44),
then Syvt = v, 7o € F(U,). Therefore, transvecting (40) with 27 and
using (22), we obtain a; " = 7315, 73 € §(Uy,), whence, by (42), we have
w; = wy; again. From the above considerations it follows that the case when
@ is non-null but N is null does not occur. This completes the proof.

4. Main results. From (23) and Lemma 4 it follows that
r tr(A
(45) W<Sij - n%) = a5 — )

n
in a local chart (U, z), where B € §(U,). Transvecting (45) with g*/ we get
Byt = 0. Hence and from Lemma 4 it follows that if the vector field @ is
non-null, then B = 0. Now we shall prove

Gij + BVz‘I/j,

PROPOSITION 3. Assuming that (3) and (9) are satisfied at a point p €
U, and ¢ is a null vector field, we have v(X) =0, X € T,(M), and (U, g)
is an Finstein manifold.

Proof. Suppose that the vector field @ is null. Differentiating covari-
antly (45), then making use of (3), (9) and (18) we get

r
(46) Wk (Sij - ngij) = Byvivj + B(vikvy + vivjk),

where w, = Xpw, By = X B and the semicolon stands for covariant dif-
ferentiation on (M, g). If w = const, then v; = 0 is a consequence of the
results of [10]. If wy # 0 at p, then, by covariant differentiation of ¢; = wy;,
we obtain X,w = wyv; and X;(w1) = wav;, where wy,ws € F(U). Moreover,
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differentiating covariantly (46) and applying the Ricci identity, by (29), we
find

(47) Viljk + v Tig = 0,
where
B Br
4 Ty — |2 G, — _ .
I e T = L

[ o

If v; # 0, then (47) results in T}, = 0. Thus, by (48),

B Br
Sy~ — w1 )gi; = Biiv;, B .
n— QS] (n(n —1)(n—-2) w1>gj LVi¥i 1 €350)

Hence, metric contraction with respect to i, j gives

Br
4 ___Br
(49) 1 n(n —1)
Therefore
r
(50) Sij — —9ij = Bavivj,

where By = (n — 2)B;1/B.

From (49) it follows that if » # 0, then B; = Bsv;, Bs € §F(U). Substi-
tuting (50) into (46) and taking into account the above considerations, we
obtain v;v;.;, — v, = 0 at each point where B # 0. Hence
(51) Visjg = GlVZ‘Vj,
where G1 € §(U). From (50) we obtain (S;; — (r/n)gi;)v* = 0, whence, by
covariant differentiation and the use of (51) and (18), we have “=2y,1; = 0.
So, v; = 0 if @ is a null vector field. Then (9) results in (VxS)(Y,Z) =0,
which implies (VxS)(Y,Z) — (VyS)(X,Z) =0 for X,Y,Z € T,(M). Now
the second part of our proposition is a consequence of the results of [11].
This completes the proof.

From Lemma 4, Proposition 3 and the results of [10] (cf. [3]) we obtain

THEOREM 2. A manifold (M, g) admitting a non-trivial geodesic mapping
onto a pseudo-Riemannian manifold is a Sinyukov manifold if and only if
both r # const and the condition

(52) a(X,Y)=w[S(X,Y)— (0 +)g(X,Y)]

holds everywhere, where w = const # 0, ¢ = const, 0 € F(M) and Xo =
o(X), X, Y € X(M).

From Theorem 2 we obtain
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COROLLARY 1. On a Sinyukov manifold X ¢ = wv(X), w = const # 0.

COROLLARY 2 ([9]). A Sinyukov manifold (M, g) always admits a non-
trivial geodesic mapping onto a pseudo-Riemannian manifold.

Moreover, from Proposition 3 we have
COROLLARY 3. On a Sinyukov manifold the vector field @ is non-null.
Now we shall prove

PROPOSITION 4. Suppose that (M, g) is a Sinyukov manifold and let g be
a metric satisfying (2), i.e. g is geodesically corresponding to g. If p € Uy,
then

(53)  Hy(X,Y) — (X)(Y)

_:W%EWMKH+K%KH+KMKY)
at p, where X,Y € T,,(M),
L A ARl pr 3 pr
and
(54) K = [n:?l;(f)Q)(J +c¢)— 01— g(¥,P)| exp(—2¢) = const,

Hy, is the Hessian of the function 1, o1 is given by (34) and X (c+c) = o(X).

Proof. Equation (53) results immediately from (32) and (52). Differ-
entiating covariantly (31) and applying the Ricci identity, by (3), (9), (52)
and (28), we obtain
2 2 2(n + 2)

Xi = 75’1 ¢ — Xz .
(01) = S5 %%up" + [(n—2)2(n— " nn =2z T X))
Then differentiating covariantly (54), by (3), (31), (32), (52) and the above
identity, we easily find that K is constant on U,. Thus the proposition is
proved.

Theorem 2 and Proposition 4 result in

COROLLARY 4. On a Sinyukov manifold,
(55) 98, C(X,Y)Z) = 0.
Moreover, on (M, g = exp(21)g) the tensor field L given by (14) is a Codazzi
tensor.

Proof. (52), (4) and (5) yield —X¢ = w[S(X,¥) — (0 + ¢)(Xv)].
Differentiating covariantly (53) and applying the Ricci identity, in view of
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(3), (2) and the above equation, we have (55). Together with (16) and (17),
this implies that L is a Codazzi tensor. This completes the proof.

Suppose that the 1-form di defines a geodesic mapping of a Sinyukov
manifold (M, g) onto a pseudo-Riemannian manifold (M,g). Theorem 1
states that the manifold (M, a), where a is given by (3), admits a geodesic

mapping onto the manifold (M,g = exp(2¢)g) determined by the same
1-form dv.

THEOREM 3 ([5]). A manifold (M, g) (dim M > 3) is a conformally flat
Sinyukov manifold if and only if (M, g = exp(2v)g) is of constant sectional
curvature.

From (2) and (10) we obtain

LEMMA 5. On a manifold (M, g = exp(21)g),
(56) (Vx9)(Y, 2) = 3(Y)g(X, Z) + §(2)g(X.Y),
where p(X) = g(X,¥) exp(—2v). Thus, on (M, q) the tensor g satisfies the
same condition as does the tensor a on (M, g).

THEOREM 4. Suppose that a manifold (M,g) admits a non-trivial geo-
desic mapping onto a manifold (M,q) defined by a 1-form di. Let Uo =

{pe M:C #0 at p}, where C is the Weyl conformal curvature tensor.
Then (Uc, g) is a Sinyukov manifold if and only if either

(i) (Ue,g = exp(2¢)g) is an Einstein manifold which admits a geodesic
mapping determined by the 1-form —dvy, or

(ii) (Ue,g = exp(24)g) is a Sinyukov manifold which admits a geodesic
mapping determined by the 1-form —du.

Proof. On (M,g = exp(2¢)g), by (12)—(14), (52) and Proposition 4,
we get

(57) S(X,Y) = (n-2)Kg(X,Y)+ Kg§(X,Y),

where

T T

2n—1) 21
~ (o + ) exp(~20) + 2, 0) exp(~20).

Differentiating covariantly (57) and making use of (56) we have

(58) (V29)(X,Y) = 0(X)3(Y, Z) + 2(Y)3(X, Z) + 5(2)§(X,Y),

where 7(X) = (n — 2)K3(X), 5(X) = X(K). As in [9], p. 131 (see also
Lemma 2), one can prove that

K= exp(—2¢)

(59 PX) = et (XF). F) =
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Consider the following two cases.

(i) The scalar curvature 7 of (M, g) is constant. Since (M,g) admits a
non-trivial geodesic mapping onto (M, a), we see, by the above considera-
tions, that 7 = const if and only if K = 0. Then (57) implies that (M, g)
is an Einstein manifold. Conversely, if (M, g) is an Einstein manifold which
admits a geodesic mapping corresponding to —di, then, as in [9], p. 130
(see also [12]), we easily conclude that (M, g) is a Sinyukov manifold.

(ii) If 7 is not constant, then from (58) and (59) it follows that (M,gq) is
a Sinyukov manifold. This completes the proof.

Notice that if (M, g) is an Einstein manifold, then, by the results of [6],
so is (M, a). Hence and from Theorem 4 we have

COROLLARY 5. If g = exp(2¢)g is an Einstein metric, then a =
exp(2¢)a is a Sinyukov metric.

5. Local structure theorem. The local structure theorem for con-
formally flat Sinyukov manifolds is given in [5]. Let a be a differentiable

symmetric bilinear form on U, C M satisfying (3) and having ¢ different
1 t
eigenvalues ), ..., A. From the very definition, at each point p € U, they

coincide with the eigenvalues of the endomorphism A,, of the tangent space

T, (M) corresponding to a, i.e. g(AX,Y) =a(X,Y) for all X,Y € X(U,).

Let (U, z) be a chart on M such that U C U,. Suppose that v is an eigen-
«

vector of the matrix a;; corresponding to the eigenvalue ), i.e. satisfying the
condition

(60) (aij — g\gij) %j = 0

« 6 «
Following [4], one can prove that ¢, 0 = 0 and 0; = B(X; \), where B €
§(U). Transvecting (60) with ¢ and making use of (4) and (5) we have

Y; 0% = 0. From [2], it follows that if (M,g) admits a geodesic mapping
then exp(—21) = Hi:l( fa)Te, where 7, denotes the algebraic multiplicity

«
of A= fo(z™F7e) ny =0, ng=71+...+73-1, 3=2,...,t. Hence
(3 o «
(61) v, = F;, and v; =0 for j # iq,

where iq =no+1,...,00+Ta, F€FU),a=1,...,t.

LEMMA 6. On a Sinyukov manifold the eigenvectors of the matriz a;;(p),
p € Ug, are non-null.

Proof. Suppose, to the contrary, that the eigenvector v corresponding
(3

to the eigenvalue A is a null vector. Differentiating covariantly (61) with
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respect to ¥, then transvecting the resulting equation with 0% and applying

the relation vj;, = 0 for j # j,, we obtain Yt 0 = 0. Therefore, from (53)
and (60), we have

t
]' ¢ —1 —7'5 _
(n_2)w A+K+K(foc) ﬂlzll(fﬁ) _O
Since
2 1<
XK=—+—"—0; = = E
(n—2)w” nd v = =1 ol

(see [2]), it is easily seen that the above relation is false if the manifold
admits a non-trivial geodesic mapping. This completes the proof.

Assume that a manifold (M, g) admits a geodesic mapping onto a man-
ifold (M,g). If at p € M the eigenvectors of the matrix a;;(p) are non-null,
then in some neighbourhood of p there exists a coordinate system such that
the components of the metric tensors g and g take the form ([2])

t
Gup = €p H f,ﬁ - fu s g;m = H(fﬁ)im(fu)ilg,u,ua

p=1
ﬁ#u
(62) . .
T3¢ = T, -
gigjg = H (fQ - fﬂ) ﬁgigjg7 gigjg = H(f,@) ﬁ(fQ) 1gi9jg’

B=1 B=1

BF#e
where f, = fu(z"), fp=const #0,e, =%1, u=1,... .k, 0=k+1,...,t,
t<2k+1,mm=...=7,=1,7,>1,05,J,=np+1,n,+2,...,n, + 7y,
ny =0,ny =71+72+... 471,y =2,...,tand gigjg(x"é’*l, .., x"etTe) are

0
metric tensors on 7,-dimensional submanifolds M, exp(—2¢) = Htazl (fa)™
The following lemma is a consequence of (25), (31), (15) and (52).

LEMMA 7. If (M,g) is a Sinyukov manifold and the Weyl conformal
curvature tensor C #£ 0 at a point p then, at p,

(63) a(X,C(Y, Z)V) + a(V,C(Y, Z)X) = 0.

Taking into account (63) in the coordinate system in which the metric
has the form (62) and applying the equality a;_;, = fagi. . we find

LEmMmA 8. If 5 are metrics of one-dimensional manifolds, then the ad-
joint metric

k t
=> [ (s = £ (da*)? Z I (fe = f2)7 (dy?)?
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is a metric of a conformally flat manifold. In particular, if a;;(p), p €
Ua, has n distinct eigenvalues, then (U,,g) is a conformally flat Sinyukov
manifold.

THEOREM 5. Suppose that a 1-form dv defines a geodesic mapping of a
Sinyukov manifold (M, g) with C # 0 everywhere on M. If g = exp(21))g is
a Sinyukov metric, then on a neighbourhood of each point p € M there exists
a coordinate system such that the metrics g and g take one of the following
forms:

(i) if k=1 and t = 2, then

1

2
(64) g= e — 2 (@) (dx1)2 + (1 — gjl)ha/g dxadxﬁ7 g = (;pl)—lg,

where

Wi(z) = Ag2? + Ayz + Ay,
2 2
Ag, Ag,c; = const # 0, Ay = const, h = h(2?,...,2") is an (n — 1)-
dimensional Einstein metric with the Ricci tensor

S = —(n—2Wi(er)h,

a,B=2,...,m;
(ii) if k =1 and t = 3, then we have
3
(n—2w 19 Iy ; ; ~ 1y—1
65 = dx’)* + o —x )h; ;i dx'e dzle, = (z ,
) 9= gty @+ 3 (e =i, 7=
where
Wa(z) = 4(c2 — 2)(c3 — 2)(c1 + 2),
2 2
Coyc1,w = const # 0, o = 2,3, h = h(2?,...,2™") is a To-dimensional
FEinstein metric with the Ricci tensor
2 2
S = (7'2 — 1)(62 — 63)(61 + CQ)Kh,
3 3
h = h(z™%2 ... n) is a 3-dimensional Einstein metric with te Ricci tensor
3 3

S = (T3 — 1)(63 — CQ)(Cl —+ C3)Kh,

K= (g i22=2. .., n+ligj=n+2. . nl+ntn=mn
(iii) if k > 1, then

k k t k
1”7 — x“ 2 Q ie 'Q
09 =2 S+ 2 11U = e, dotede
pu=1 17;1 o=k+1 p=1
nN#EK



CONFORMALLY SYMMETRIC MANIFOLDS 163

where
Wa(2) = (1) 144y 0282 4 A1 28T 4 4 Az + 44,
Ao, Ar, ... Ajyo = const, Ag, Ap42 # 0, f, = const # 0, and the f, are

roots of the polynomial W, 5 are To-dimensional Einstein metrics with the
Ricci tensors
0
§=(rp~ 1K, §
and K, = (1M Wi(f,), k> 1, t <2k+1, 0 =k +1,...,t, ip,j, =
ne+1,...,n,+7p,m1 =0,y =71 +T0+...+7_1,7y=2,...,t, 7, > 1.
Proof. Solving (53) in the local coordinate system in which g and g are

of the form (62) and using the equality a;_;, = fa9i.j., in the same way as
in the proof of Theorem 3 of [1], we obtain our assertion.

THEOREM 6. Let R™ be endowed with a metric of the form either (64)

2 3
or (65) or (66), where h, h or h and at least one of the forms § are non-
conformally flat Einstein metrics. Then (R™,g) (and (R™,q)) is a non-
conformally flat Sinyukov manifold.

Proof. By elementary computation one can easily verify that (9) holds

on (R™, ¢) (and the analogous condition is satisfied on (R",g)). The com-

ponents of the 1-form o (v = %-25) are respectively:

2n
1) for the metric (64):

- —nA ~
01 =-"nAsy, 0,=0 (leg;l)o;l, Ua:()), a=2,...,n,

2) for the metric (65):

1= " o0 (5= "% < _|
1 (n _ 2)(4)’ « 1 (Tl, _ 2)w(x1)2? « 9

3) for the metric (66):
—nA
UH:nAk+Q7 O'Z‘QIO <&M:x’rio 51'9:0), le,...,k.

Moreover, in the metrics (64), (65) and (66), the conformal curvature tensor
2

2 3
C # 0 if and only if h (resp. h or h, resp. at least one of f]) is a non-
conformally flat metric. This completes the proof.

Remark. In [4] the local structure theorem for Einstein manifolds
admitting geodesic mappings is proved. If § = exp(2¢)g is an Einstein
manifold, then, by Theorem 4(i), Corollary 5 and the results of [4], the
local structure of Sinyukov manifolds can be easily obtained. This, together
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with Theorem 5, provides a complete description of the local structure of
Sinyukov manifolds.

From Theorems 5, 6 and the results of [4] we have the following
COROLLARY 6. If M is a Sinyukov manifold and dim M < 4, then M is

conformally flat.
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