| VOL. LXVIII | 1995 | FASC. 1 |
| :--- | ---: | ---: |

## ON THE DENSITY OF SETS IN $(\mathbf{A} / \mathbb{Q})^{n}$ DEFINED BY POLYNOMIALS <br> BY <br> LAWRENCE CORWIN and <br> CAROLYN PFEFFER (NEW BRUNSWICK, NEW JERSEY)

A theorem of Hermann Weyl (see [1]) states that if $\alpha_{1}, \ldots, \alpha_{n}$ are irrational, then the set

$$
\left\{\left(\alpha_{1} x, \alpha_{2} x^{2}, \ldots, \alpha_{n} x^{n}\right) \bmod \mathbb{Z}: x \in \mathbb{N}\right\}
$$

is dense in $(\mathbb{R} / \mathbb{Z})^{n}$. (The condition that the $\alpha_{j}$ all be irrational is also clearly necessary; for instance, if $\alpha_{1}=p / q \in \mathbb{Q}$, then the points $\left(\alpha_{1} x, \ldots, \alpha_{n} x^{n}\right)$ all lie on the hyperplanes $(1 / q) \mathbb{Z} \times \mathbb{R}^{n-1}$.) Weyl's proof of his theorem relied on another well-known theorem of his. Say that the sequence $\left\{y_{n}: n \in \mathbb{N}\right\}$ is uniformly distributed mod 1 if for every interval $[a, b] \subseteq[0,1]$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{Card}\left\{y_{j}: j \leq n \text { and } y_{j} \in \mathbb{Z}+[a, b]\right\}=b-a
$$

That is, for every interval $I$, the probability of an element in the first $n$ terms of the sequence belonging to $I \bmod 1$ converges to the length of $I$. Weyl proved that if $P(x)=\sum_{j=1}^{\infty} \alpha_{j} x^{j}$ is a polynomial such that at least one of the $\alpha_{j}$ is irrational, then $\{P(1), P(2), \ldots\}$ is uniformly distributed.

This paper is concerned with similar results in the case where $\alpha_{1}, \ldots, \alpha_{n}$ are in the adeles $\mathbf{A}$ (over the rationals), $x$ takes on values in $\mathbb{Q}$, and we are interested in the compact group $\mathbf{A} / \mathbb{Q}$. The result analogous to Weyl's first theorem is:

Theorem 1. Let $\alpha_{1}, \ldots, \alpha_{n}$ be non-rational elements of $\mathbf{A}$. Then the set $\left\{\left(\alpha_{1} x, \alpha_{2} x^{2}, \ldots, \alpha_{n} x^{n}\right) \bmod \mathbb{Q}: x \in \mathbb{Q}\right\}$ is dense in $(\mathbf{A} / \mathbb{Q})^{n}$.

This theorem is useful in the following setting: let $G$ be the discrete group of $\mathbb{Q}$-rational points of a nilpotent algebraic group defined over $\mathbb{Q}$. The Lie algebra $\mathfrak{g}$ corresponding to $G$ is a $\mathbb{Q}$-vector space, and it is natural to consider coadjoint orbits in the dual of $\mathfrak{g}$. A consequence of Theorem 1 is that the closure of any such orbit is "flat" (a coset of the annihilator of a subspace

[^0]of $\mathfrak{g}$ ). We will show in a future paper how this can be used in studying the representations of $G$; Theorem 1 appears to have some independent interest, however. We prove it below.

It is harder to give a precise analogue to Weyl's theorem on uniform distributions, because $\mathbb{Q}$, unlike $\mathbb{N}$, does not have a natural order. (It is true that if a countable set $R$ is dense in a separable compact group $G$, then $R$ can be arranged in a sequence so that it is uniformly distributed; a proof is given on pp. 185-186 of [4]. However, the proof says nothing about the order, and, of course, such a result does not help us to prove anything about density.) Weyl used the following criterion: $\left\{y_{n}\right\}$ is uniformly distributed $\Leftrightarrow \lim _{N \rightarrow \infty} N^{-1} \sum_{n=1}^{N} e^{2 \pi i r y_{n}}=0$ for all non-zero $r \in \mathbb{Z}$. In our procedure, a similar role is played by:

Proposition 1. Let $G$ be any compact Abelian group. The countable set $R$ is dense in $G$ if for any finite set $\left\{X_{1}, \ldots, X_{k}\right\}$ of non-trivial characters of $R$ and every $\varepsilon>0$, there is a finite subset $\left\{z_{1}, \ldots, z_{N(\varepsilon)}\right\}$ of $R$ such that

$$
\frac{1}{N(\varepsilon)}\left|\sum_{n=1}^{N(\varepsilon)} X_{j}\left(z_{n}\right)\right|<\varepsilon, \quad 1 \leq j \leq k
$$

Proof. Let $d x$ be normalized Haar measure on $G$. If $R$ is not dense in $G$, then there is a continuous non-negative function $\phi$ on $G$ such that $\int_{G} \phi(x) d x=1$ and $R \cap \operatorname{supp} \phi=0$. By Stone-Weierstrass, we can find a function $f(x)=\sum_{j=1}^{n} c_{j} \chi_{j}(x)\left(\chi_{j} \in \widehat{G}, \forall j\right)$ such that $\|\phi-f\|_{\infty}<1 / 3$. Then

$$
\left|\int_{G}(f(x)-\phi(x)) d x\right| \leq \int_{G}|f(x)-\phi(x)| d x<1 / 3
$$

Let $\chi_{1}$ be the trivial character. Since $\int_{G} \chi_{j}(x) d x=0$ for $j>1$, we have

$$
\left|c_{1}-1\right|<1 / 3, \quad\left|c_{1}\right|>2 / 3
$$

The hypothesis says that for $f_{1}=f-c_{1} \chi_{1}$, there exists a finite subset $\left\{z_{1}, \ldots, z_{N}\right\}$ of $R$ such that

$$
N^{-1}\left|\sum_{n=1}^{N} f_{1}\left(z_{n}\right)\right|<1 / 3
$$

Then

$$
N^{-1}\left|\sum_{n=1}^{N} f\left(z_{n}\right)\right| \geq c_{1}-1 / 3>1 / 3
$$

However, $\phi\left(z_{n}\right)=0$ for all $n$ and $\|f-\phi\|<1 / 3$; hence

$$
N^{-1}\left|\sum_{n=1}^{N} f\left(z_{n}\right)\right| \leq 1 / 3
$$

a contradiction. This proves Proposition 1.

We now consider the case where $G=(\mathbf{A} / \mathbb{Q})^{n}$. A standard reference for the facts we need about harmonic analysis on $\mathbf{A}$ is Tate's thesis, in [2]. We recall that $\mathbf{A}=\mathbb{R} \times \prod_{p \text { prime }}^{\prime}\left(\mathbb{Q}_{p} ; \mathbb{Z}_{p}\right)$; this means that a typical element of $\mathbf{A}$ is

$$
\mathbf{x}=\left(x_{\infty}, x_{2}, x_{3}, \ldots\right)
$$

$$
x_{\infty} \in \mathbb{R}, x_{p} \in \mathbb{Q}_{p}, x_{p} \in \mathbb{Z}_{p} \text { except for finitely many } p
$$

We write $\mathbf{A}=\mathbb{R} \times \mathbf{A}_{\mathrm{f}}, \mathbf{A}_{\mathrm{f}}=\prod_{p \text { prime }}^{\prime}\left(\mathbb{Q}_{p} ; \mathbb{Z}_{p}\right) ; \mathbf{A}_{\mathrm{f}}$ is topologized by decreeing that $\prod_{p \text { prime }} \mathbb{Z}_{p}$ is open. Then $\mathbf{A}$ is a topological ring. We embed $\mathbb{Q}$ in A diagonally, by $x \mapsto(x, x, \ldots)$. Then $\mathbb{Q}$ is discrete and cocompact in $\mathbf{A}$.

We define fundamental characters $\chi_{p}$ on $\mathbb{Q}_{p}\left(\right.$ where $\left.\mathbb{Q}_{\infty}=\mathbb{R}\right)$ by

$$
\chi_{\infty}(x)=e^{-2 \pi i x} ; \quad \chi_{p}\left(a / p^{n}\right)=e^{2 \pi i a / p^{n}} \quad \text { for } a \in \mathbb{Z} ; \quad \chi_{p}=1 \quad \text { on } \mathbb{Z}_{p}
$$

Define $\chi \in \widehat{A}$ by

$$
\chi(\mathbf{x})=\prod_{p} \chi_{p}\left(x_{p}\right)
$$

(All but finitely many terms in the product are 1.) A fundamental result is:
Theorem ([2]). (a) The map $\mathbf{y} \mapsto \chi_{\mathbf{y}}, \chi_{\mathbf{y}}(\mathbf{x})=\chi(\mathbf{x y})$, is a topological isomorphism of $\mathbf{A}$ onto $\widehat{\mathbf{A}}$.
(b) Under this identification of $\mathbf{A}$ with $\widehat{\mathbf{A}}, \mathbb{Q}^{\perp}=\mathbb{Q}$. Therefore $(\mathbf{A} / \mathbb{Q})^{\wedge} \simeq$ $\mathbb{Q}$. Similarly, $\left((\mathbf{A} / \mathbb{Q})^{n}\right)^{\wedge} \simeq \mathbb{Q}^{n} ;$ for $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in(\mathbf{A} / \mathbb{Q})^{n}$ and $q=$ $\left(q_{1}, \ldots, q_{n}\right) \in \mathbb{Q}^{n}, \chi_{q}(\mathbf{x})=\prod_{j=1}^{n} \chi_{q_{j}}\left(x_{j}\right)$.

We now apply Proposition 1 (and its corollary) to prove Theorem 1. Since any character $\chi^{\prime}$ of $(\mathbf{A} / \mathbb{Q})^{n}$ satisfies $\chi^{\prime}\left(\left(\mathbf{a} r, \mathbf{a} r^{2}, \ldots, \mathbf{a} r^{n}\right)\right)=\chi(f(r))$ for some non-trivial polynomial $f: \mathbb{Q} \rightarrow \mathbf{A}$ without constant term and with at least one non-rational coefficient, it suffices to show that if $f_{1}, \ldots, f_{k}$ are such polynomials and $\chi$ is the standard character, then for every positive integer $n$ there is a subset $R_{n} \subseteq \mathbb{Q}$ such that

$$
\left|R_{n}\right|^{-1}\left|\sum_{x \in R_{n}} \chi\left(f_{j}(x)\right)\right|<n^{-1} \quad \text { for all } j=1, \ldots, k
$$

The coefficients of the polynomials are determined $\bmod \mathbb{Q}$; we normalize most of them by letting the real components be 0 whenever they are rational. We assume that all real components of $f_{j}$ are 0 for $1 \leq j \leq k_{1}$ and that some real component is irrational for $j>k_{1}$; we deal with the $j \leq k_{1}$ first. The estimates that we need are consequences of the following statements, all easy to verify:
(a) Write $f_{p, j}$ for the $\mathbb{Q}_{p}$-component of $f_{j}$. Suppose that $\chi_{p, j}$ is not trivial; then for every $m \geq 0$ there is an $M>0$ such that $\chi_{p}\left(f_{p, j}\left(a / p^{m}+p^{M}\right)\right)=$ $\chi_{p}\left(f_{p, j}\left(a / p^{m}\right)\right.$ ), for all $a \in \mathbb{Z}$. (For $\chi_{p}$ is trivial on $\mathbb{Z}_{p}$, and Taylor's Theorem shows that one can choose $M$ such that $f_{p, j}\left(a / p^{m}+p^{M}\right)-f_{p, j}\left(a / p^{m}\right) \in \mathbb{Z}_{p}$.)
(b) Let $m, M$ be as in (a), and let $q$ be prime to $p$. Then for any $b \in \mathbb{Z}$,

$$
\sum_{a=1}^{p^{M}} \chi_{p}\left(f_{p, j}\left(\frac{a}{p^{m}}\right)\right)=\sum_{a=1}^{p^{M}} \chi_{p}\left(f_{p, j}\left(\frac{a}{p^{m}}+\frac{b}{q}\right)\right)
$$

(For there is an integer $r$ such that $b / q-r \in(p)^{M+m}$; from (a), we may replace $b / q$ in the sum with $r$. But it is also clear from (a) that the sum is independent of $r$.)
(c) Write

$$
A(j ; p, m, M)=\left|p^{-(m+M)} \sum_{a=1}^{p^{m+M}} \chi_{p}\left(f_{p, j}\left(\frac{a}{p^{m}}\right)\right)\right|
$$

where $m, M$ are related as in (a). Let $S=\left\{p_{1}, \ldots, p_{\nu}\right\}$ be a finite set of primes (with $\infty \notin S$ ) such that $p \in S$ if $f_{p, j}$ has a coefficient not in $\mathbb{Z}_{p}$. For $p_{\sigma} \in S$, let $m_{\sigma}, N_{\sigma}$ correspond as in (a), let $p_{S}^{m}=\prod_{p_{\sigma} \in S} p_{\sigma}^{m_{\sigma}}$ (and similarly for $\left.p_{S}^{M}, p_{S}^{m+M}\right)$. Then

$$
\left(p_{S}^{M+m}\right)^{-1} \sum_{a=1}^{p_{S}^{m+M}} \chi\left(f_{j}\left(\frac{a}{p_{S}^{m}}\right)\right)=\prod_{\sigma \in S} A\left(j ; p_{\sigma}, m_{\sigma}, M_{\sigma}\right)
$$

(For if $p \notin S$, then $f_{p, j}\left(a / p_{S}^{m}\right) \in \mathbb{Z}_{p}$ and $\chi_{p} \mid \mathbb{Z}_{p} \equiv 1$. Therefore $\chi\left(f_{j}\left(a / p_{S}^{m}\right)\right.$ ) $=\prod_{\sigma \in S} \chi_{p_{\sigma}}\left(f_{p_{\sigma}, j}\left(a / p_{S}^{m}\right)\right)$. Now the claim follows from (b).)

Since $A\left(j ; p_{\sigma}, m_{\sigma}, M_{\sigma}\right) \leq 1$ in any case, we can make

$$
A(j ; S, m, M)=\left|\left(p_{S}^{M+m}\right)^{-1} \sum_{a=1}^{p_{S}^{m+M}} \chi\left(f_{j}\left(\frac{a}{p_{S}^{m}}\right)\right)\right|
$$

smaller than any prescribed $\varepsilon>0$ by making one $A\left(j ; p_{\sigma}, m_{\sigma}, M_{\sigma}\right) \leq 1$ for each $j$. This is possible by a theorem of Hua [3]: for any integer $n>0$ and any $\delta>0$, there is a constant $C_{n, \delta}$ such that if $\varphi(x)=\sum_{j=1}^{n} a_{j} x^{j}$, with $a_{j} \in \mathbb{Z}$ for all $j$, and if $q \in \mathbb{Z}$ satisfies $\left(a_{1}, \ldots, a_{n}, q\right)=1$, then

$$
q^{-1}\left|\sum_{x=1}^{q} \exp (2 \pi i \varphi(x) / q)\right|<C_{n, \delta} q^{\delta-1 / n}
$$

The application to the present setting is immediate.
We still need to deal with the $f_{j}$ such that $j>k_{1}$ (so that the real character is non-trivial). The simplest procedure seems to be the following: given $\varepsilon$, suppose that we have selected $S, m$, and $M$ such that $A(j ; S, m, M)<\varepsilon$ for all $j \leq k_{1}$. We may now choose the coefficients of each $f_{j}$ with $j>k_{1}$ such that $f_{j, p}\left(a / p_{S}^{m}\right) \in \mathbb{Z}_{p}$ for all finite $p$ when $j>k_{1}$. (Recall that we are free to
change each coefficient by an element of $\mathbb{Q}$.) Then for all $l \in \mathbb{Z}$ and $j>k_{1}$,

$$
\chi\left(f_{j}\left(\frac{a}{p_{S}^{m}}+l p_{S}^{m}\right)\right)=\chi_{\infty}\left(f_{j, \infty}\left(\frac{a}{p_{S}^{m}}+l p_{S}^{m}\right)\right)
$$

From Weyl's original result, we know that there is a $K$ such that

$$
K^{-1}\left|\sum_{l=1}^{K} \chi_{\infty}\left(f_{j, \infty}\left(\frac{a}{p_{S}^{m}}+l p_{S}^{m}\right)\right)\right|<\varepsilon \quad \text { for } 1 \leq a \leq p_{S}^{m+M}, j>k_{1}
$$

since the above expression tends to 0 as $K \rightarrow \infty$. Hence

$$
\left(K p_{S}^{m+M}\right)^{-1}\left|\sum_{l=1}^{K} \sum_{a=1}^{p_{S}^{m+M}} \chi\left(f_{j}\left(\frac{a}{p_{S}^{m}}+l p_{S}^{m}\right)\right)\right|<\varepsilon \quad \text { if } j>k_{1}
$$

For $j<k_{1}$,

$$
\left(K p_{S}^{m+M}\right)^{-1}\left|\sum_{l=1}^{K} \sum_{a=1}^{p_{S}^{m+M}} \chi\left(f_{j}\left(\frac{a}{p_{S}^{m}}+l p_{S}^{m}\right)\right)\right|=A(j ; S, m, M)<\varepsilon
$$

by (a) and the previous assumption. Thus the hypotheses of Proposition 1 are satisfied, and Theorem 1 is proved.

In the course of the proof, we have also proved the first part of the following theorem, and the second part has the same proof as Theorem 1:

Theorem 2. (a) Let $f: \mathbf{A} \rightarrow \mathbf{A}$ be a polynomial with adelic coefficients, and assume that at least one coefficient other than the constant term is not in $\mathbb{Q}$. Then the set $\{f(x) \bmod \mathbb{Q}: x \in \mathbb{Q}\}$ is dense in $\mathbf{A} / \mathbb{Q}$.
(b) Let $f_{1}, \ldots, f_{n}: \mathbf{A} \rightarrow \mathbf{A}$ be linearly independent polynomials without constant term, each with a non-rational coefficient. Then the set $\left\{\left(f_{1}(x), \ldots\right.\right.$ $\left.\left.\ldots, f_{n}(x)\right) \bmod \mathbb{Q}: x \in \mathbb{Q}\right\}$ is dense in $(\mathbf{A} / \mathbb{Q})^{n}$.

## REFERENCES

[1] J. W. S. Cassels, An Introduction to Diophantine Approximation, Cambridge Univ. Press, 1957.
[2] J. W. S. Cassels and A. Fröhlich, Algebraic Number Theory, Academic Press, London, 1967.
[3] L.-K. Hua, Sur une somme exponentielle, C. R. Acad. Sci. Paris 210 (1940), 520-523; see also: On an exponential sum, J. Chinese Math. Soc. 2 (1940), 301-312.
[4] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York, 1974.

DEPARTMENT OF MATHEMATICS
RUTGERS UNIVERSITY
NEW BRUNSWICK, NEW JERSEY 08903, U.S.A.


[^0]:    1991 Mathematics Subject Classification: Primary 11K41.
    Research of the first author supported by NSF Grant DMS91-05789.

