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THE DUGUNDJI EXTENSION THEOREM
AND EXTENSION DEGREE

BY

KATSUYA EDA (TOKYO)

1. Introduction. Generalizing the Tietze extension theorem, J. Dugun-
dji [7] proved that any locally convex topological linear space L is an absolute
extensor for metrizable spaces, i.e. for any metrizable space X and its closed
subset A, every continuous map from A to L extends over X. To clarify the
use of local convexity in the proof, we introduce a new notion of extension
degree D(A,X) for a closed set A in X. According to the definition below,
D(A,X) = 0 if and only ifA is a retract ofX. As we shall see in Theorem 1.2,
this notion is strongly related to the essentiality of local convexity in the
Dugundji theorem.

Now, we state the definition of the extension degree and main results of
this paper. The set of non-negative integers is denoted by ω. For a subset
X of a linear space L and n ∈ ω, we define

〈X〉n =
{ n∑

i=0

λixi : xi ∈ X,
n∑

i=0

λi = 1
}
⊂ L.

Definition 1.1. Let A be a closed subset of a space X. For a pair
(X,A), the extension degree D(A,X) is the minimal n such that for any
locally convex topological linear space L any continuous map f : A → L
extends to a continuous map from X to 〈f(A)〉n. If such an n does not
exist, we set D(A,X) = ∞.

Let L(X) be an algebraic linear space generated by X and

Ln(X) =
{ n∑

i=0

λixi : xi ∈ X, |λi| ≤ 1
}
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for n ∈ ω. In the sequel we deal with various topologies on L(X) which make
L(X) a topological linear space containing X as a topological subspace.

Theorem 1.2. Suppose that for each n ∈ ω there exist a compact metriz-
able space Xn and a closed set Pn ⊂ Xn with D(Pn, Xn) > n. Let X =∏

n∈ω Xn and P =
∏

n∈ω Pn. Then L(P ) has the direct limit topology of
a tower of compact metrizable spaces such that L(P ) is a topological linear
space and the canonical embedding of P in L(P ) does not extend continu-
ously over X.

The free topological linear space FL(X) on a space X is defined cate-
gorically as usual, that is, FL(X) is algebraically the same as L(X) and for
any topological linear space L any continuous map f : X → L extends to
a continuous linear map from FL(X) to L. The free locally convex topo-
logical linear space FLlc(X) is defined similarly. FLn(X) and FLlc

n (X) are
the subspaces of FL(X) and FLlc

n (X) respectively with the same base set
Ln(X).

Theorem 1.3. Let X be a separable space with a non-separable closed set
A. Then there exists no continuous map from X to FLlc(A) which extends
the canonical embedding of A in FLlc(A). Consequently , D(A,X) = ∞.

It is known that there exists a compact separable space with a non-
separable closed set. For instance, let ω1 be the set of all countable ordinal
numbers and 2 = {0, 1} the discrete space with two points. Then the product
space 2ω1 is separable [11] and contains a closed subspace homeomorphic
to the space ω1 + 1. Therefore, this theorem provides a simple proof of
the well-known result of [1, 14] about closed convex sets in locally convex
topological linear spaces: There exists a closed convex subset of a locally
convex topological linear space which is not an absolute extensor for compact
spaces.

Answering the author’s question, K. Sakai proved the following theorem.

Theorem 1.4. If a closed set A is a neighborhood retract of a normal
space X, then D(A,X) ≤ 1.

According to this theorem, to find a pair (A,X) with D(A,X) ≥ 2 we
must search for spaces which are not ANR’s.

Theorem 1.5. There exists a closed subset P of I2 such that D(P, I2)=2.

R e m a r k 1.6. After the submission of the first version of this paper,
R. Cauty [5] has constructed a σ-compact metrizable topological linear space
L which is not an absolute extensor for metrizable spaces. Though the
construction of Theorem 1.2 of the present paper gives a less satisfactory
result, it still seems to be interesting to decide whether there exists a closed
subset A of a finite-dimensional Euclidean space E with D(A,E) ≥ n for
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n ≥ 3. Cauty’s space L is not an absolute extensor for compact metrizable
spaces by [16, Corollary 3.7], that is, there exist a compact metrizable pair
(X,A) and a continuous map ϕ from A to L which does not extend over X.
For such (X,A), D(A,X) = ∞ holds. To see this, suppose the existence of
a continuous map ψ : X → 〈A〉n ⊂ FLlc(A) for some n which extends the
canonical embedding of A in FLlc(A). Since ψ(X) is a compact subset of
〈A〉n, there exists m such that ψ(X) ⊂ FLlc

m(A). Since FLm(A) is compact,
FLm(A) and FLlc

m(A) have the same topology. Thus ψ can be regarded as
a continuous map to FL(A). The freeness of FL(A) implies that ϕ extends
over X, which is a contradiction.

Since Cauty’s proof uses Dranishnikov’s space, it is unclear whether his
result gives some information about the existence of a finite-dimensional
pair (X,A) with D(A,X) ≥ 3.

2. The Graev extensions of pseudo-metrics and proof of Theo-
rem 1.2. We first introduce an extension of a continuous pseudo-metric on
a space X to L(X) [15] and investigate its properties. Since this extension is
defined analogously to the Graev metric for free abelian topological groups
[12], we call it the Graev extension. (See also [2].)

Let % be a continuous pseudo-metric on a space X and take a point p∗ ∈
X. We assume X ⊂ L(X) and extend % to X ∪{0} by %(x, 0) = 1+%(x, p∗).
For u, v ∈ L(X), define

%(u, v) = inf
{ m∑

i=0

|λi|%(xi, yi) :

u =
m∑

i=0

λixi, v =
m∑

i=0

λiyi, xi, yi ∈ X ∪ {0}, λi ∈ R
}
.

The above infimum is actually realized, that is, we have the following.

Proposition 2.1. For any continuous pseudo-metric % on X and u, v ∈
L(X), there exist xi, yi ∈ X∪{0} and λi ∈ R such that %(u, v) =

∑m
i=0 |λi|×

%(xi, yi), u =
∑m

i=0 λixi, v =
∑m

i=0 λiyi and xi, yi ∈ X appear in the reduced
form of u or v. In case v = 0, the above holds with the additional condition
that xi 6= 0 for each i. Consequently , % extends %. In particular , if % is a
metric, % also becomes a metric and L(X) becomes a normed linear space.

Here,
∑m

i=0 λixi is the reduced form of u if u =
∑m

i=0 λixi, λi 6= 0,
xi ∈ X and xi 6= xj for i 6= j. Though the above fact seems to be known
[15], we have not been able to find its full proof in the literature. Since
we use it frequently, we present the proof in Appendix for completeness. It
is easy to check that ‖u‖ = %(u, 0) is a seminorm on L(X), i.e. ‖u‖ ≥ 0,
‖u+ v‖ ≤ ‖u‖+ ‖v‖ and ‖ru‖ = |r|‖u‖ for r ∈ R.
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According to the universal property of FLlc(A), D(A,X) is determined
by extensions of the canonical embedding of A in FLlc(A). On the other
hand, Tkachenko [15] proved that the topology of FLlc(A) is determined
by the Graev extensions of all continuous pseudo-metrics on A. As for free
abelian topological groups [10, p. 362], this fact can be briefly proved using
the Kakutani theorem [13, p. 68].

Lemma 2.2. Let % be a pseudo-metric on X. Then the canonical linear
map h : L(X) → R, i.e. h(

∑n
i=0 λixi) =

∑n
i=0 λi for xi ∈ X and λi ∈ R,

is continuous with respect to the Graev extension %. Consequently , 〈X〉n is
closed in L(X) with respect to %.

P r o o f. By Proposition 2.1, we can let %(
∑m

i=0 λixi, 0) =
∑n

j=0 |µj | ×
%(yj , zj), where

∑n
j=0 µjyj =

∑m
i=0 λixi and

∑n
j=0 µjzj = 0 and yj 6= 0 for

each j. Let F = {j : zj = 0}. Then
∑

j 6∈F µj = 0 and %(yj , zj) ≥ 1 for each
j ∈ F . Hence,∣∣∣ m∑

i=0

λi

∣∣∣ =
∣∣∣ n∑

j=0

µj

∣∣∣ =
∣∣∣ ∑

j∈F

µj

∣∣∣ ≤ ∑
j∈F

|µj |%(yj , zj) ≤ %
( m∑

i=0

λixi, 0
)
,

which implies the continuity of h.

The next lemma is a version of Graev’s theorem [12, Theorem 4] about
free (abelian) topological groups over compact spaces; almost the same
statement has been proved by Borges [4, Theorem 2.2]. The proof can
be done categorically using the following known fact: Let Xn ⊂ Xn+1 and
Yn ⊂ Yn+1 (n ∈ ω) be compact subsets of spaces X and Y respectively.
Then lim−→{Xn × Yn : n ∈ ω} = lim−→{Xn : n ∈ ω} × lim−→{Yn : n ∈ ω}. Hence,
we omit the proof.

Lemma 2.3. Suppose that Yn (n ∈ ω) are compact subsets of a topological
linear space L satisfying the following :

(1) L =
⋃

n∈ω Yn and Yn ⊂ Yn+1 (n ∈ ω);
(2) For each m ∈ ω, there exists n ∈ ω such that Ym + Ym ⊂ Yn and

rYm ⊂ Yn for any r ∈ R with |r| ≤ m.

Then the direct limit lim−→{Yn : n ∈ ω} regarded in the category of topolog-
ical spaces (see e.g. [8]) is a topological linear space with the same algebraic
operations as L.

Lemma 2.4. Let A be a compact metrizable subset of X and % a metric
for A. Suppose that D(A,X) > n. If ϕ : X → L(A) is a continuous
extension of the canonical embedding of A with respect to the metric %, then
ϕ(X) is not contained in 〈A〉n ∩ Ln(A).

P r o o f. Let L be a locally convex topological linear space. Then
each continuous map f : A → L extends to a continuous linear map
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f : FLlc(A) → L. Since L(A) is locally convex by Proposition 2.1, the
topology of FLlc(A) is finer than that of L(A). Since FLlc

n (A) is compact,
the topology of FLlc

n (A) is the same as that of Ln(A), i.e. FLlc
n (A) = Ln(A)

as spaces. Suppose that ϕ(X) ⊂ 〈A〉n ∩ Ln(A). Then f extends to a con-
tinuous linear map fϕ : X → L. By linearity of f ,

fϕ(X) ⊂ f(〈A〉n ∩ Ln(A)) ⊂ f(〈A〉n) ⊂ 〈f(A)〉n,
which contradicts D(A,X) > n.

P r o o f o f T h e o r e m 1.2. For each n ∈ ω, let %n be a metric on Pn

such that %n(x, y) ≤ 1 for every x, y ∈ Pn. Define a metric % on the product
space P by %(x, y) =

∑∞
n=0 2−n%n(x(n), y(n)). For k ∈ ω, let πk : P → Pk

be the projection and ik : Xk → X be an injection defined by ik(x)(k) = x
and ik(x)(n) = p∗n for n 6= k, where p∗n ∈ Pn. By Proposition 2.1, % induces
a norm on L(P ). By Lemma 2.3, the direct limit lim−→{Lm(P ) : m ∈ ω} = L]

is a topological linear space.
Suppose that the canonical embedding of P in L] extends to a continuous

map ϕ : X → L]. Let U = {u ∈ X : hϕ(u) > 0}, where h is the canonical
linear map in Lemma 2.2. Since h−1((0,∞)) is %-open in L(P ) and hence
open in L], U is an open neighborhood of P in X. Define ϕ′ : U →
L] by ϕ′(u) = ϕ(u)/h(u). Since L] has the direct limit topology, ϕ(X)
is contained in some Lk(P ) and hence ϕ′(U) is contained in some 〈P 〉k.
Choose k ∈ ω large enough so that ik(Xk) ⊂ U . Since πk extends to
a continuous linear map πk : L(P ) → L(Pk), we get a continuous map
πkϕ

′ik : Xk → 〈Pk〉k ∩ Lk(Pk) which extends the canonical embedding of
Pk. This contradicts D(Pk, Xk) > k by Lemma 2.4.

The following is a corollary to Lemma 2.3.

Corollary 2.5. Let X be a compact space. Then the free topological
linear space FL(X) is the direct limit lim−→{FLn(X) : n ∈ ω}.

P r o o f. Since FLn(X) (n ∈ ω) satisfy the properties in Lemma 2.3, the
direct limit lim−→{FLn(X) : n ∈ ω} becomes a topological linear space. The
direct limit topology is finer than the original one in general and hence the
conclusion follows from the freeness of FL(X).

R e m a r k 2.6. As we have already remarked, the Graev extensions of all
continuous pseudo-metrics on X determine the topology of the free locally
convex topological linear space FLlc(X), which is similar to the case of free
abelian topological groups. In addition, as is well known, Corollary 2.5 holds
for free topological groups and free abelian topological groups. However,
Corollary 2.5 does not hold for FLlc(X). A simple example is given as
follows. Let X = {cn, c : n ∈ ω} be a non-trivial convergent sequence, i.e.
cm 6= cn for m 6= n and limn→∞ cn = c. Then limn→∞

∑n
k=1 n

−1ck = c in
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FLlc(X) and consequently {
∑n

k=1 n
−1ck, c : 1 ≤ n ∈ ω} is a compact set in

FLlc(X) which is not contained in any FLlc
n (X). Hence, FLlc(X) is not a

direct limit of FLlc
n (X)’s. On the other hand, as mentioned in Remark 1.6,

FLn(X) and FLlc
n (X) have the same topology for a compact space X.

3. Proofs of Theorems 1.3 and 1.4

Lemma 3.1. Let X be a non-separable space and X ⊂ Y ⊂ FLlc(X).
Then Y is not separable.

P r o o f. Suppose that Y is separable, i.e. Y has a countable dense subset
D. Let E be the set of points of X which appear in the reduced forms of
members of D. Then E is obviously countable, hence is not dense in X.
There exist a point x ∈ X and a continuous pseudo-metric % on X such that
%(x,E) ≥ 1. By Proposition 2.1, %(x,D) ≥ 1, which contradicts the fact
that D is dense in Y .

P r o o f o f T h e o r e m 1.3. Suppose that the canonical embedding of
A in FLlc(A) extends to a continuous map ϕ : X → FLlc(A). Then ϕ(X)
is separable and contains A, which contradicts Lemma 3.1.

P r o o f o f T h e o r e m 1.4. Let U be an open neighborhood of A in X
and r : U → A. Choose an open neighborhood V of A such that V ⊂ U
and let h : X → [0, 1] be an Urysohn function such that h(A) = {1} and
h(X\V ) = {0}. Let L be a topological linear space and a ∈ A. Then each
continuous map f : A→ L can be extended to ϕ : X → L by

ϕ(x) =
{
h(x)f(r(x)) + (1− h(x))f(a) if x ∈ V ;
f(a) otherwise.

Then ϕ(X) ⊂ 〈f(A)〉1. Since ϕ|U and ϕ|X\V are continuous, ϕ is continu-
ous.

R e m a r k 3.2. We have applied a retraction in the proof of Theorem 1.4,
but we cannot prove it just tracing the proof of the Dugundji theorem. In
fact, let f : A→ L be a continuous map from a closed subset A of a separable
metrizable space X to a locally convex topological linear space L. The proof
of the Dugundji extension theorem is based on a locally finite open cover.
Hence, there exists a countable subset C of A such that the image of the
extension of f is contained in the union of f(A) and the convex hull of
f(C). As the Baire category technique in the proof of Theorem 1.5 shows,
we cannot replace the convex hull of f(C) by 〈f(C)〉1 even in a simple case
of Theorem 1.4, e.g. a circle in the plane.

4. Proof of Theorem 1.5 and a related result. For the proof of
Theorem 1.5, we recall a pseudo-circle in [3]. For a pseudo-arc and pseudo-
circle, we refer the reader to [6, Chap. 9]. A pseudo-arc is defined as the
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inverse limit of chains of closed disks, and a pseudo-circle is defined as the
inverse limit of closed chains of closed disks. A pseudo-circle P ⊂ I2 (⊂ R2)
satisfies the following:

(1) P is a continuum which divides R2 into two components;
(2) For any ε > 0 there exists an auto-homeomorphism of R2 such that

the distance of the image of the circle S1 and P is less than ε;
(3) P contains no non-trivial arc.

For a metric space X = (X, %), let F(X) be the hyperspace of finite
subsets of X with metric %(F,G) = max{%(x,G), %(y, F ) : x ∈ F, y ∈ G}
for F,G ∈ F(X), where %(x,G) = min{%(x, y) : y ∈ G}.
Lemma 4.1. Let X = (X, %) be a metric space and L(X) a normed

linear space with the Graev extension %. Let f : Y → L(X) be a continuous
map such that f(Y ) ⊂ 〈X〉k\〈X〉k−1. Then f induces a continuous map
g : Y → F(X) defined by g(u) = {xu

i : 0 ≤ i ≤ k} if f(u) =
∑k

i=0 λ
u
i x

u
i is a

reduced form. If Y is path-connected and X has no non-trivial arc, then g
is constant.

P r o o f. To see the continuity of g at u ∈ Y , let 0 < ε < 1 so that
%(xu

i , x
u
j ) > 2ε if i 6= j and let M = min{|λu

i | : 0 ≤ i ≤ n}. Suppose
that %(f(u), f(v)) < Mε. We recall that only xu

i ’s, xv
i ’s and 0 appear in the

term which realizes the infimum concerning %(f(u), f(v)) by Proposition 2.1.
Observe that the cardinalities of g(u) and g(v) are both k + 1. Now, we fix
i. Since %(xu

i , x
u
j ) > 2ε if i 6= j and %(xu

i , 0) ≥ 1, there exists a unique j such
that %(xu

i , x
v
j ) < ε, which implies %(g(u), g(v)) < ε. Hence, g is continuous

at u.
Suppose that g is not constant. Since Y is path-connected, F(X) has

a non-trivial arc in X. Hence, X also has a non-trivial arc, which is a
contradiction.

Lemma 4.2. Let h : I2 → R2 be a continuous map which is the identity
on P . Then any point in the bounded component of R2\P belongs to h(I2).

P r o o f. Suppose that there exists a point q in the bounded open com-
ponent of R2\P which does not belong to h(I2). Take ε > 0 so that
%(q, P ) > 2ε. Since h is uniformly continuous, there exists 0 < δ < ε/2
such that %(x, y) < δ implies %(h(x), h(y)) < ε/2. By the property (2)
of a pseudo-circle, there exists a continuous map f : S1 → I2\{q} such
that %(f(u), P ) < δ for any u ∈ S1 and f is not null-homotopic. For
each u ∈ S1, take x ∈ P so that %(f(u), x) < δ. Then %(f(u), hf(u)) ≤
%(f(u), x) + %(x, hf(u)) = %(f(u), x) + %(h(x), hf(u)) < ε/2 + ε/2 = ε. On
the other hand, %(f(u), q) > 3ε/2. Therefore, hf : S1 → R2\{q} is homo-
topic to f . On the other hand, hf is null-homotopic, since I2 is contractible.
This is a contradiction.
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P r o o f o f T h e o r e m 1.5. We denote the Euclidean metric for R2 by
% and let ‖x‖ = %(x, 0). There is a natural linear map ψ : L(P ) → R2,
i.e. ψ(

∑k
i=0 λixi) =

∑k
i=0 λixi for xi ∈ P and k ∈ ω. First, we show that

ψ is continuous. To avoid ambiguity, we denote the restriction of % to P
by %P . In the definition of %P , p∗ ∈ P has been chosen and %P (0, p∗) = 1.
Note that the 0 in L(P ) is not in P , but the 0 in R2 may belong to P .
Therefore, %(0, p∗) = ‖p∗‖ may not be equal to 1. Take N ≥ 1 so that
%(0, p∗) ≤ N . Suppose that %P (u, v) < ε/N . Then

∑m
i=0 |λi|%P (xi, yi) <

ε/N , u =
∑m

i=0 λixi, v =
∑m

i=0 λiyi, for some xi, yi ∈ X ∪ {0} and λi ∈ R.
Now,

‖ψ(u)− ψ(v)‖ =
∥∥∥ m∑

i=0

λixi −
m∑

i=0

λiyi

∥∥∥
≤

m∑
i=0

|λi|‖xi − yi‖ ≤
m∑

i=0

|λi|N%P (xi, yi) < ε,

which shows the continuity of ψ.
To obtain a contradiction, suppose that the canonical embedding of P

in L(P ) extends to a %P -continuous map ϕ : I2 → 〈P 〉1 ⊂ L(P ). We are
interested in parts of ϕ(I2) which are not in P . We define pq = {tp+(1−t)q :
0 ≤ t ≤ 1} ⊂ L(P ) for distinct points p, q ∈ P . Since P is closed by
Lemma 2.2, ϕ−1(L(P )\P ) is a countable union of connected open subsets
of I2. Let O be one of such open components. Then by the assumption and
Lemma 4.1 there exist distinct p, q ∈ P such that ϕ(O) ⊂ pq. Therefore,
there exists a countable family C consisting of pairs of members of P such
that ϕ(I2)\P ⊂

⋃
{pq : {p, q} ∈ C}. Now, ψϕ(I2) ⊂ P ∪

⋃
{ψ(pq) : {p, q} ∈

C}. Since ψ is linear, each ψ(pq) is a nowhere dense closed set in R2. By
the Baire category theorem, there exists a point p in the bounded open
component of R2\P such that p does not belong to ψϕ(I2). Since ψϕ is the
identity on P , we get a contradiction by Lemma 4.2.

In the proof of the Dugundji extension theorem [7], one takes a locally
finite refinement. The multiplicity of this refinement depends on the dimen-
sion of I2\P , i.e. D(P, I2) ≤ 2, which now implies D(P, I2) = 2.

In the proof of Theorem 1.5, we show D(P, I2) = 2 for a pseudo-circle
P . Now, we show this also holds for a pseudo-arc P . A pseudo-arc P ⊂ I2
(⊂ R2) satisfies the following:

(1) P is a degenerate continuum;
(2) For any points p, q ∈ P and any ε > 0 there exists an arc from p to

q such that the distance of the arc and P is less than ε;
(3) P contains no non-trivial arc.

Theorem 4.3. For a pseudo-arc P in I2, D(P, I2) = 2.



EXTENSION DEGREE 33

To prove this theorem, we use words of infinite length and refer the
reader to [9]. Since we use the listed properties of a pseudo-arc, the proof
is also valid for a pseudo-circle. Let L be a set of ordered pairs (p, q) for
distinct points p, q ∈ P such that either (p, q) ∈ L or (q, p) ∈ L and only one
of them holds. We take L as the set of letters. In the remaining part of this
section, we assume that L(P ) is endowed with the Graev extension % of the
Euclidean metric % on P . For a continuous map f : [a, b] → 〈P 〉1 ⊂ L(P ),
let W f : W f → L be the σ-word defined as follows:

W f = {(c, d) : a ≤ c < d ≤ b, f(c), f(d) ∈ P,
f((c, d)) ⊂ pq for some (p, q) ∈ L},

and the ordering of W f is induced from the ordering on [0, 1]; W f ((c, d)) =
(f(c), f(d)) if (f(c), f(d)) ∈ L; W f ((c, d)) = (f(d), f(c))−1 otherwise. First
we state an easy lemma about a free product.

Lemma 4.4. Let G be a group and 〈F 〉 the free group generated by F =
{α0, . . . , αm}. For 0 ≤ i ≤ n, let gi be elements of the free product 〈F 〉 ∗G
such that gi ∈ G or gi = αε for some α ∈ F and ε = ±1. If g0 . . . gn = e,
then there exists an increasing sequence 0 ≤ m0 < . . . < mk ≤ n with the
following properties:

(1) For each 0 ≤ i < k, either gj ∈ G for every mi ≤ j < mi+1 or
gmi = g−1

mi+1−1 ∈ 〈F 〉;
(2)

∏
i∈I gmi . . . gmi+1−1 = e, where i ∈ I if and only if gj ∈ G for every

mi ≤ j < mi+1.

P r o o f. Fix a reduction of g0 . . . gn to the empty word. Of course, each
gj ∈ {α, αε : α ∈ F} is canceled in the reduction process. Make pairs which
cancel together; then pairings are not tangled. Hence, picking outermost
pairs, we easily get the desired sequence.

Lemma 4.5. Let f : [0, 1] → 〈P 〉1 be a path such that f(0), f(1) ∈ P and
f(0) 6= f(1). Then W f 6= e, where e is the unit of×L

Z.

P r o o f. We deform f to a path g so that

(1) g((a, b)) = f(a) if f(a) = f(b) ∈ P and f((a, b)) ⊂ f(a)p for some
p ∈ P with p 6= f(a) and

(2) g(x) = f(x) otherwise.

Then W g = W f and hence we may assume that f shares the same property
as g, i.e. f(x) 6∈ P corresponds to some W f ((a, b)) by Lemma 4.1. To argue
by contradiction, suppose W f = e. For a finite subset F = {α0, . . . , αk} of
Im(W f ), we can take ai (0 ≤ i ≤ m) so that

(1) a0 = 0 < a1 < . . . < am−1 < am = 1 and f(ai) ∈ P ;
(2) W f = W f |(a0,a1) . . .W f |(am−1,am);
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(3) W f |(ai,ai+1) ∈ {α, αε : α ∈ F, ε = ±1} ∪W(L\F ), where W(L \ F )
is the set of σ-words consisting of letters in L \ F .

By Lemma 4.4, we get a subsequence bj (0 ≤ j ≤ n) of ai (0 ≤ i ≤ m)
and J ⊂ {0, . . . , n} so that b0 = 0, bn = 1, f(bj) = f(bj+1) if j 6∈ J , and∏

j∈J W
f |(bj ,bj+1) = e, where j ∈ J iff W f |(bj ,bj+1) ∈ W(L\F ) and the

product is performed according to the ordering of [0, 1]. Define h : [0, 1] →
〈P 〉1 by h(x) = f(bj) for bj ≤ x ≤ bj+1 if W f |(bj ,bj+1) 6∈ W(L\F ); and
h(x) = f(x) otherwise. Then h is a path from f(0) to f(1), Wh ∈ W(L\F )
and Wh =

∏
j∈J W

f |(bj ,bj+1) = e.
Let Fn ⊂ Fn+1 be finite subsets of L such that Im(W f ) =

⋃∞
n=0 Fn. We

define fn inductively using Fn and the above process of passing from f to
h. If fn(x) 6= f(x), then for some ε-neighborhood Uε(x) of x, fn(Uε(x)) =
{f(x)} and moreover fm is constant on this neighborhood for m ≥ n. Sup-
pose that fn(x) is not eventually constant. There exists a sequence of closed
intervals [an, bn] (n ≥ m) for some m such that an+1 ≤ an < x < bn ≤ bn+1

and fn(an) = f(an) = f(bn) = fn(bn). Hence, limn→∞ fn(x) exists and
the continuity of limn→∞ fn(x) at such an x is clear. On the other hand,
if fn(x) = f(x) for any n, then the continuity of the limit at x follows
from that of f . Now, limn→∞ fn(x) is a non-trivial path in P , which is a
contradiction.

Lemma 4.6. If f : [0, 1] → 〈P 〉1 is a loop and null-homotopic relative to
{0, 1}, then W f = e.

P r o o f. Suppose W f 6= e. Then there exists a finite subset F of L with
(W f )F 6= e. Deforming f as in the first step of the proof of Lemma 4.5,
we get a loop homotopic to f relative to {0, 1}. Hence, we may assume the
existence of subintervals (ai, bi) (0 ≤ i ≤ m) of [0, 1] such that bi ≤ ai+1,
f(ai), f(bi) ∈ P and

⋃m
i=0(ai, bi) =

⋃
(p,q)∈F f

−1pq. Let H : [0, 1]× [0, 1] →
〈P 〉1 be the homotopy from f to the constant f(0), i.e. H(s, 0) = f(0),
H(s, 1) = f(s), H(0, t) = H(1, t) = f(0). Let O be an open component
of

⋃
(p,q)∈F H

−1pq which contains some (ai, bi) × {1}. Then there exists a
unique (p, q) ∈ F such that H(O) ⊂ pq by Lemma 4.1 and hence H(x) = p
or q for x ∈ O\O. Let i0 < . . . < ik be all the i’s such that (ai, bi)×{1} ⊂ O.
Then H(bij , 1) = H(aij+1 , 1) for 0 ≤ j ≤ k − 1 and H(bik

, 1) = H(ai0 , 1).
Therefore, Wϕh|(ai0 ,bi0 ) . . .Wϕh|(aik

,bik
) = e. Let O and O′ be distinct open

components of
⋃

(p,q)∈F H
−1pq. Then O ∩ [0, 1]× {1} and O′ ∩ [0, 1]× {1}

are never nested. Considering the innermost components with respect to
this situation on [0, 1]× {1}, we see that W f |(a0,b0) . . .W f |(am,bm) = e. But
W f |(a0,b0) . . .W f |(am,bm) = (W f )F 6= e, which is a contradiction.

P r o o f o f T h e o r e m 4.3. As for a pseudo-circle, D(P, I2) ≤ 2 clearly.
To show D(P, I2) ≥ 2 by contradiction, suppose that a continuous map ϕ :
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I2 → 〈P 〉1 extends the canonical embedding of P . Take a path f : [0, 1] → I2
such that f(0), f(1) ∈ P and f(0) 6= f(1). Since Wϕf 6= e by Lemma 4.5,
there exists a finite subset F of L such that (Wϕf )F 6= e. Take ε > 0 so
that %(P, p/2+ q/2) > ε for any (p, q) ∈ F and then a path g : [0, 1] → I2 so
that g(0) = f(1), g(1) = f(0) and %(P,ϕg(t)) < ε for any 0 ≤ t ≤ 1. Define
h by h(t) = f(2t) for 0 ≤ t ≤ 1/2 and h(t) = g(2t − 1) for 1/2 ≤ t ≤ 1.
Since ϕh goes through I2, ϕh is a loop null-homotopic relative to {0, 1}. On
the other hand, Wϕh 6= e, which contradicts Lemma 4.6.

Appendix. Here, we give a proof of Proposition 2.1. We introduce
some notions and state easy facts for them.

Let 〈λi : i ∈ I〉 and 〈µj : j ∈ J〉 be indexed finite families of non-zero
reals. We call 〈µj : j ∈ J〉 a refinement of 〈λi : i ∈ I〉 if there exist Ji (i ∈ I)
such that

(1) J =
⋃

i∈I Ji, Ji ∩ Jj = ∅ (i 6= j);
(2) λi =

∑
j∈Ji

µj ;
(3) λi > 0 implies µj > 0 for all j ∈ Ji, and λi < 0 implies µj < 0 for all

j ∈ Ji.

Let
∑

i∈I λi = 0. A refinement 〈µj : j ∈ J〉 of 〈λi : i ∈ I〉 is called a good
refinement if there exists a set P of ordered pairs of members of J such that
2|P | = |J |, µp0 + µp1 = 0 for p = 〈p0, p1〉, and J = {p0, p1 : p ∈ P}.

The following are straightforward:

(1) For a refinement 〈µj : j ∈ J〉 of 〈λi : i ∈ I〉,
∑

i∈I λi =
∑

j∈J µj .
(2) If

∑
i∈I λi = 0, then 〈λi : i ∈ I〉 has a good refinement.

(3) Let 〈µj : j ∈ J〉 be a refinement of 〈λi : i ∈ I〉 and uj = xi, vj = yi

for j ∈ Ji. Then
∑

i∈I |λi|%(xi, yi) =
∑

j∈J |µj |%(uj , vj).

P r o o f o f P r o p o s i t i o n 2.1. We can write u =
∑m

i=0 λixi and v =∑m
i=0 λiyi with λi 6= 0 and xi, yi ∈ X ∪ {0}. Suppose that x ∈ X appears

in the reduced form of neither u nor v, but x is one of xi’s. Put F = {0 ≤
i ≤ m : xi = x}; then

∑
i∈F λi = 0. Take a good refinement of 〈λi : i ∈ F 〉,

say 〈µj : j ∈ J〉. Using the above notation, let vj = yi for j ∈ Ji and
P ′ = {p ∈ P : vp0 6= x or vp1 6= x}. In addition, for each p ∈ P ′, let
up0 = up1 = vp0 if vp0 6= x, and let up0 = up1 = vp1 otherwise. Then

u =
∑
i 6∈F

λixi =
∑
i 6∈F

λixi +
∑
p∈P ′

(µp0up0 + µp1up1),

v =
∑
i 6∈F

λiyi +
∑
i∈F

∑
j∈Ji

µjyi =
∑
i 6∈F

λiyi +
∑
p∈P ′

(µp0vp0 + µp1vp1).
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Since∑
p∈P ′

(|µp0 |%(up0 , vp0) + |µp1 |%(up1 , vp1))

=
∑
p∈P ′

|µp0 |%(vp0 , vp1) ≤
∑
p∈P ′

|µp0 |(%(x, vp0) + %(x, vp1))

=
∑
p∈P ′

(|µp0 |%(x, vp0) + |µp1 |%(x, vp1))

=
∑
i∈F

∑
j∈Ji

|µj |%(x, yi) =
m∑

i=0

|λi|%(xi, yi),

it follows that∑
i 6∈F

|λi|%(xi, yi) +
∑
p∈P ′

(|µp0 |%(up0 , vp0) + |µp1 |%(up1 , vp1)) ≤
m∑

i=0

|λi|%(xi, yi).

Thus we can remove x from a representation of u without adding new x’s
in a representation of v nor increasing the distance. By repeating the same
argument for v, we can remove x from both representations of u and v. By
this transformation, we may restrict the range of xi, yi ∈ X to the ones
appearing in the reduced form of u or v for the calculation of %(u, v).

Next, we show that we may also restrict the range of coefficients. Since
%(u, v) = %(u − v, 0), we may assume v = 0 to get the conclusion. Let
u =

∑m
i=0 λixi be the reduced form, S = {xi : 0 ≤ i ≤ m} ∪ {0} and

u =
∑n

j=0 µjyj , 0 =
∑n

j=0 µjzj , where µj 6= 0 and yj , zj ∈ S. Fix i, and let
F = {0 ≤ j ≤ n : yj = xi}. Suppose λi > 0 but µj0 < 0 for some j0 ∈ F .
By taking a refinement, we may assume there exists a subset G of F such
that µj > 0 for j ∈ G and µj0 +

∑
j∈G µj = 0.

In case zj0 = 0, let uj = yj for j 6∈ G and uj = 0 for j ∈ G. Then
u =

∑
j 6=j0

µjuj , 0 =
∑

j 6=j0
µjzj and∑

j 6=j0

|µj |%(uj , zj) ≤
n∑

j=0

|µi|%(yj , zj),

since ∑
j∈G

|µj |%(0, zj) ≤
∑
j∈G

|µj |(%(xi, 0) + %(xi, zj))

= |µj0 |%(xi, 0) +
∑
j∈G

|µi|%(xi, zj).

In case zj0 6= 0, by the same argument, we can take H ⊂ {0, . . . , n} such
that zj = zj0 and µj > 0 for j ∈ H and µj0 +

∑
j∈H µj = 0. By taking a

refinement, we may assume the existence of a bijection e : G→ H such that
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µj = µe(j) for j ∈ G and e(j) = j for j ∈ G ∩H. Then

u =
∑

j 6∈G∪H∪{j0}

µjyj +
∑

j∈G\H

µe(j)ye(j),

0 =
∑

j 6∈G∪H∪{j0}

µjzj +
∑

j∈G\H

µjzj ,

and ∑
j 6∈G∪H∪{j0}

|µj |%(yj , zj) +
∑

j∈G\H

|µj |%(ye(j), zj) ≤
n∑

j=0

|µj |%(yj , zj)

by the inequality

|µj |%(ye(j), zj) ≤ |µj |(%(ye(j), zj0) + %(yj0 , zj0) + %(yj0 , zj))

≤ |µe(j)|%(ye(j), ze(j)) + |µj0 |%(yj0 , zj0) + |µj |%(yj , zj).

Thus we may assume that if λi > 0 then 0 < µj ≤ λi for all j ∈ F and simi-
larly if λi < 0 then λi ≤ µj < 0 for all j ∈ F . Applying this transformation
for every 0 ≤ i ≤ m, we may assume |µj | ≤M = max{|λi| : 0 ≤ i ≤ m} for
all j. Let n = (m+ 2)2. We conclude %(u, 0) = inf{

∑n
j=0 |µj |%(yj , zj) : u =∑n

j=0 µjyj , 0 =
∑n

j=0 µjzj , |µj | ≤ M, yj , zj ∈ S}. If we regard
∑n

j=0 |µj | ×
%(yj , zj) as a function with variables yj , zj , µj (0 ≤ j ≤ n), its domain can
be taken as a compact set as above. Therefore, we get the first statement
of Proposition 2.1.

In case v = 0, let u =
∑m

i=0 λixi and v =
∑m

i=0 λiyi with λi 6= 0 and
xi, yi ∈ X ∪ {0}. Since

∑m
i=0 λi = 0, we can take a good refinement for

{λi : 0 ≤ i ≤ m}. Using this, we can remove xi = 0 without increasing the
distance. Hence, we get the second statement. By the first statement, it
is easy to see that % extends %. If % is a metric, % also becomes a metric,
because the infimum is realized.

There are many ways of embedding a metric space in a normed linear
space isometrically. The next proposition shows that the embedding of
Proposition 2.1, i.e. the one using the Graev extension, is canonical among
them.

Proposition A.1. Let (X, %) be a metric space and regard L(X) as a
normed space with norm ‖u‖ = %(u, 0). Suppose that e : X → L is an
isometric embedding of X in a normed linear space L. Then the canonical
linear map ϕ : L(X) → L, i.e. ϕ(x) = e(x) for each x ∈ X, becomes
continuous.

P r o o f. Take M ≥ 1 so that ‖e(p∗)‖ ≤ M . By Proposition 2.1, we
can set, for u ∈ L(X), %(u, 0) =

∑n
i=0 |λi|%(xi, yi) where u =

∑n
i=0 λixi,

0 =
∑n

i=0 λiyi, xi ∈ X, yi ∈ X ∪ {0}. If yi 6= 0, then ‖e(xi) − e(yi)‖ =
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%(xi, yi) ≤M%(xi, yi). Otherwise,

‖e(xi)− e(yi)‖ = ‖e(xi)‖ ≤ ‖e(xi)− e(p∗)‖+ ‖e(p∗)‖ ≤ %(xi, p
∗) +M

≤M(%(xi, p
∗) + 1) = M%(xi, 0) = M%(xi, yi).

Therefore, ‖ϕ(u)‖ ≤
∑n

i=0 |λi|M%(xi, yi) = M%(u, 0) = M‖u‖, which im-
plies the continuity of ϕ.
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