COLLOQUIUM MATHEMATICUM

THE SOLVABILITY OF
 THE DIOPHANTINE EQUATION $D_{1} x^{2}-D_{2} y^{4}=1$

BY

MAOHUA LE (ZHANJIANG)

1. Introduction. Let \mathbb{Z}, \mathbb{N} denote the sets of integers and positive integers respectively. Let $D_{1}, D_{2} \in \mathbb{N}$ such that $\operatorname{gcd}\left(D_{1}, D_{2}\right)=1$ and $D_{1} D_{2}$ is not a square. Many papers concerning the equation

$$
\begin{equation*}
D_{1} x^{2}-D_{2} y^{4}=1, \quad x, y \in \mathbb{N} \tag{1}
\end{equation*}
$$

were written by Cohn, Ljunggren, Mărullin, Mordell and Obláth. In this paper we deal with the solvability of (1). Clearly, if (x, y) is a solution of (1), then $\left(x, y^{2}\right)$ is a solution of the equation

$$
\begin{equation*}
D_{1} u^{2}-D_{2} v^{2}=1, \quad u, v \in \mathbb{Z} \tag{2}
\end{equation*}
$$

with $x>0$ and $y^{2}>0$. Since $D_{1} D_{2}$ is not a square, (2) has a unique solution $\left(u_{1}, v_{1}\right)$ such that $u_{1}>0, v_{1}>0$ and $u_{1} \sqrt{D_{1}}+v_{1} \sqrt{D_{2}} \leq u \sqrt{D_{1}}+v \sqrt{D_{2}}$, where (u, v) runs over all solutions of (2) with $u>0$ and $v>0$. The solution $\left(u_{1}, v_{1}\right)$ is called the least solution of (2). In this paper, using the Ko-Terjanian-Rotkiewicz method (cf. [3]), we prove the following result:

Theorem. If $\min \left(D_{1}, D_{2}\right)>1$, then (1) has solutions (x, y) if and only if the least solution $\left(u_{1}, v_{1}\right)$ of (2) satisfies

$$
\begin{equation*}
v_{1}=d k^{2}, \quad d, k \in \mathbb{N}, d \text { is square free, } \tag{3}
\end{equation*}
$$

and $\left(\varepsilon_{1}^{d}-\bar{\varepsilon}_{1}^{d}\right) /\left(2 \sqrt{D_{2}}\right)$ is a square, where

$$
\begin{equation*}
\varepsilon_{1}=u_{1} \sqrt{D_{1}}+v_{1} \sqrt{D_{2}}, \quad \bar{\varepsilon}_{1}=u_{1} \sqrt{D_{1}}-v_{1} \sqrt{D_{2}} \tag{4}
\end{equation*}
$$

2. Lemmas

Lemma 1 ([2]). For $\min \left(D_{1}, D_{2}\right)>1$, if (2) has solutions (u, v), then all solutions (u, v) of (2) with $u>0$ and $v>0$ are given by

$$
u \sqrt{D_{1}}+v \sqrt{D_{2}}=\left(u_{1} \sqrt{D_{1}}+v_{1} \sqrt{D_{2}}\right)^{t}
$$

where $t \in \mathbb{N}$ with $2 \nmid t$, and $\left(u_{1}, v_{1}\right)$ is the least solution of (2).

[^0]Lemma $2([1$, p. 117] $)$. For any $n \in \mathbb{N}$ and any complex numbers α, β,

$$
\alpha^{n}+\beta^{n}=\sum_{i=0}^{[n / 2]}(-1)^{i} \frac{n}{i}\binom{n-i-1}{i-1}(\alpha+\beta)^{n-2 i}(\alpha \beta)^{i} .
$$

Lemma 3. For $\min \left(D_{1}, D_{2}\right)>1$, let (u, v) be a solution of (2) with $u>0$, $v>0$, and let

$$
\varepsilon=u \sqrt{D_{1}}+v \sqrt{D_{2}}, \quad \bar{\varepsilon}=u \sqrt{D_{1}}-v \sqrt{D_{2}} .
$$

Further, for any $m \in \mathbb{Z}$ with $2 \nmid m$, let

$$
\begin{equation*}
F(m)=\frac{\varepsilon^{m}-\bar{\varepsilon}^{m}}{\varepsilon-\bar{\varepsilon}} . \tag{5}
\end{equation*}
$$

Then the $F(m) \in \mathbb{Z}$ satisfy:
(i) $F(m)=-F(-m)$.
(ii) If $m>0$, then $F(m) \in \mathbb{N}$ satisfies $F(m) \equiv m\left(\bmod 4 D_{2} v^{2}\right)$.
(iii) For any $m^{\prime} \in \mathbb{Z}$ with $2 \nmid m^{\prime}, F(m) \equiv F\left(m-2 m^{\prime}\right)\left(\bmod F\left(m^{\prime}\right)\right)$.

Proof. Since $\varepsilon \bar{\varepsilon}=1$, we have $F(m)=-F(-m)$. For $m>0$, by Lemma 2, we get
(6) $F(m)=\frac{\varepsilon^{m}+(-\bar{\varepsilon})^{m}}{\varepsilon+(-\bar{\varepsilon})}=\sum_{i=0}^{(m-1) / 2} \frac{m}{i}\binom{m-i-1}{i-1}(\varepsilon-\bar{\varepsilon})^{m-2 i-1}(\varepsilon \bar{\varepsilon})^{i}$

$$
\begin{aligned}
& =\sum_{i=0}^{(m-1) / 2} \frac{m}{i}\binom{m-i-1}{i-1}\left(4 D_{2} v^{2}\right)^{(m-1) / 2-i} \\
& \equiv m\left(\bmod 4 D_{2} v^{2}\right)
\end{aligned}
$$

This implies (ii).
For any $m, m^{\prime} \in \mathbb{Z}$ with $2 \nmid m m^{\prime}$, by Lemma 2, we have

$$
\begin{aligned}
\varepsilon^{m-m^{\prime}}+\bar{\varepsilon}^{m-m^{\prime}}= & \varepsilon^{\left|m-m^{\prime}\right|}+\bar{\varepsilon}^{\left|m-m^{\prime}\right|} \\
= & \sum_{j=0}^{\left|m-m^{\prime}\right| / 2}(-1)^{j} \frac{\left|m-m^{\prime}\right|}{j}\binom{\left|m-m^{\prime}\right|-j-1}{j-1} \\
& \times\left(4 D_{1} u^{2}\right)^{\left|m-m^{\prime}\right| / 2-j} \in \mathbb{Z}
\end{aligned}
$$

Hence, from

$$
\frac{\varepsilon^{m}-\bar{\varepsilon}^{m}}{\varepsilon-\bar{\varepsilon}}=(\varepsilon \bar{\varepsilon})^{m^{\prime}}\left(\frac{\varepsilon^{m-2 m^{\prime}}-\bar{\varepsilon}^{m-2 m^{\prime}}}{\varepsilon-\bar{\varepsilon}}\right)+\left(\varepsilon^{m-m^{\prime}}+\bar{\varepsilon}^{m-m^{\prime}}\right)\left(\frac{\varepsilon^{m^{\prime}}-\bar{\varepsilon}^{m^{\prime}}}{\varepsilon-\bar{\varepsilon}}\right)
$$

we see that (iii) is true. The lemma is proved.

Lemma 4. Let $m, m_{1} \in \mathbb{N}$ with $m>m_{1}>1$ and $\operatorname{gcd}\left(m, m_{1}\right)=1$. Then there exist $m_{2}, \ldots, m_{s}, a_{1}, \ldots, a_{s-1} \in \mathbb{N}$ such that

$$
\begin{gather*}
m_{1}>m_{2}>\ldots>m_{s}=1, \quad 2 \nmid m_{2} \ldots m_{s}, \tag{7}\\
m=2 a_{1} m_{1}+\delta_{1} m_{2}, \quad m_{j-1}=2 a_{j} m_{j}+\delta_{j} m_{j+1}, \quad j=2, \ldots, s-1,
\end{gather*}
$$

where $\delta_{i} \in\{-1,1\}$ for $i=1, \ldots, s-1$.
Proof. Use the Euclidean algorithm.
Lemma 5. Let $m, m_{1} \in \mathbb{N}$ satisfy $m>m_{1}>1$ and $\operatorname{gcd}\left(m, m_{1}\right)=1$, and let $m_{2}, \ldots, m_{s}, \delta_{1}, \ldots, \delta_{s-1}$ be defined as in Lemma 4. Then

$$
\left(\frac{m}{m_{1}}\right)=(-1)^{\Sigma_{i=1}^{s-1} \frac{\delta_{i}-1}{2} \cdot \frac{m_{i}-1}{2}+\Sigma_{j=1}^{s-2} \frac{m_{j}-1}{2} \cdot \frac{m_{j+1}-1}{2}},
$$

where $\left(m / m_{1}\right)$ is the Jacobi symbol.
Proof. This is clear from the basic properties of the Jacobi symbol.
Lemma 6. Let $m \in \mathbb{N}$ satisfy $m>1, m \equiv 1(\bmod 4)$ and suppose m is not a square. Then there exists $m_{1} \in \mathbb{N}$ such that $m>m_{1}>1,2 \nmid m_{1}$ and $\left(m / m_{1}\right)=-1$.

Proof. By assumption, $m=p_{1} \ldots p_{r} m^{\prime 2}$, where p_{1}, \ldots, p_{r} are distinct odd primes and $m^{\prime} \in \mathbb{N}$ with $2 \nmid m^{\prime}$. Then there exists a non-residue a modulo p_{1}. Further, by the Chinese remainder theorem, there exists a $b \in \mathbb{N}$ such that

$$
\begin{equation*}
b \equiv a\left(\bmod p_{1}\right), \quad b \equiv 1\left(\bmod p_{j}\right), \quad j=2, \ldots, r \tag{9}
\end{equation*}
$$

Let

$$
c= \begin{cases}b & \text { if } \operatorname{gcd}\left(b, m^{\prime}\right)=1 \tag{10}\\ b+p_{1} \ldots p_{r} & \text { if } \operatorname{gcd}\left(b, m^{\prime}\right)>1\end{cases}
$$

Since $\operatorname{gcd}\left(b, p_{1} \ldots p_{r}\right)=1$ by (9), we see from (10) that $c \in \mathbb{Z}$ with $\operatorname{gcd}(c, m)$ $=1$. Hence, by (9) and (10), we get

$$
\begin{align*}
\left(\frac{c}{m}\right) & =\left(\frac{c}{p_{1}}\right) \ldots\left(\frac{c}{p_{r}}\right)\left(\frac{c}{m^{\prime 2}}\right)=\left(\frac{c}{p_{1}}\right) \ldots\left(\frac{c}{p_{r}}\right) \tag{11}\\
& =\left(\frac{b}{p_{1}}\right) \ldots\left(\frac{b}{p_{r}}\right)=\left(\frac{a}{p_{1}}\right)=-1 .
\end{align*}
$$

Let $c_{0}, m_{1} \in \mathbb{Z}$ satisfy $c_{0} \equiv c(\bmod m), 0 \leq c_{0}<m$ and

$$
m_{1}= \begin{cases}c_{0} & \text { if } 2 \nmid c_{0}, \\ m-c_{0} & \text { if } 2 \mid c_{0} .\end{cases}
$$

Notice that $m \equiv 1(\bmod 4)$ and $2 \nmid m_{1}$. We see from (11) that $\left(m / m_{1}\right)=-1$. The lemma is proved.

Lemma 7. The equation
(12) $\quad F(m)=z^{2}, \quad m, z \in \mathbb{N}, m>1,2 \nmid m$ and m is not a square, has no solution (m, z).

This is a special case $\left(M=1, L=4 u^{2} D_{1}\right)$ of Theorem 3 of [3].
3. Proof of Theorem. The sufficiency being clear, it suffices to prove the necessity. Assume that (1) has solutions (x, y). Then (1) has a unique solution $\left(x_{1}, y_{1}\right)$ such that

$$
\begin{equation*}
x_{1} \sqrt{D_{1}}+y_{1}^{2} \sqrt{D_{2}} \leq x \sqrt{D_{1}}+y^{2} \sqrt{D_{2}} \tag{13}
\end{equation*}
$$

where (x, y) runs over all solutions of (1). Notice that $\left(x_{1}, y_{1}^{2}\right)$ is a solution of (2) with $x_{1}, y_{1}^{2} \in \mathbb{N}$. Let $\left(u_{1}, v_{1}\right)$ be the least solution of (2). By Lemma 1, we have

$$
\begin{equation*}
x_{1} \sqrt{D_{1}}+y_{1}^{2} \sqrt{D_{2}}=\left(u_{1} \sqrt{D_{1}}+v_{1} \sqrt{D_{2}}\right)^{t} \tag{14}
\end{equation*}
$$

where $t \in \mathbb{N}$ with $2 \nmid t$.
If $t=1$, then (14) shows that $v_{1}=y_{1}^{2}$ and the theorem holds. Let $\varepsilon_{1}, \bar{\varepsilon}_{1}$ be defined as in (4), and let

$$
F_{1}(m)=\frac{\varepsilon_{1}^{m}-\bar{\varepsilon}_{1}^{m}}{\varepsilon_{1}-\bar{\varepsilon}_{1}}
$$

for any $m \in \mathbb{Z}$ with $2 \nmid m$. If $t>1$, then

$$
\begin{equation*}
y_{1}^{2}=\frac{\varepsilon_{1}^{t}-\bar{\varepsilon}_{1}^{t}}{2 \sqrt{D_{2}}}=v_{1} F_{1}(t) \tag{15}
\end{equation*}
$$

by (14). We deduce from (15) that

$$
\begin{equation*}
v_{1}=c_{1} y_{11}^{2} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{1}(t)=c_{1} y_{12}^{2} \tag{17}
\end{equation*}
$$

where $c_{1}, y_{11}, y_{12} \in \mathbb{N}$ satisfy $c_{1} y_{11} y_{12}=y_{1}$. By Lemma 3(ii), we have $F(t) \equiv t\left(\bmod v_{1}\right)$, hence, by (16) and (17),

$$
\begin{equation*}
t \equiv 0\left(\bmod c_{1}\right) . \tag{18}
\end{equation*}
$$

We now suppose that t has a divisor p^{2}, where p is an odd prime. Let

$$
\begin{align*}
& u_{2} \sqrt{D_{1}}+v_{2} \sqrt{D_{2}}=\left(u_{1} \sqrt{D_{1}}+v_{1} \sqrt{D_{2}}\right)^{t / p} \tag{19}\\
& u_{3} \sqrt{D_{1}}+v_{3} \sqrt{D_{2}}=\left(u_{1} \sqrt{D_{1}}+v_{1} \sqrt{D_{2}}\right)^{t / p^{2}}
\end{align*}
$$

By Lemma $1,\left(u_{2}, v_{2}\right)$ and $\left(u_{3}, v_{3}\right)$ are solutions of (2) with $u_{2}, v_{2}, u_{3}, v_{3} \in \mathbb{N}$.
Further, let

$$
\begin{array}{ll}
\varepsilon_{2}=u_{2} \sqrt{D_{1}}+v_{2} \sqrt{D_{2}}, & \bar{\varepsilon}_{2}=u_{2} \sqrt{D_{1}}-v_{2} \sqrt{D_{2}}, \\
\varepsilon_{3}=u_{3} \sqrt{D_{1}}+v_{3} \sqrt{D_{2}}, & \bar{\varepsilon}_{3}=u_{3} \sqrt{D_{1}}-v_{3} \sqrt{D_{2}} \tag{20}
\end{array}
$$

and let

$$
\begin{equation*}
F_{2}(m)=\frac{\varepsilon_{2}^{m}-\bar{\varepsilon}_{2}^{m}}{\varepsilon_{2}-\bar{\varepsilon}_{2}}, \quad F_{3}(m)=\frac{\varepsilon_{3}^{m}-\bar{\varepsilon}_{3}^{m}}{\varepsilon_{3}-\bar{\varepsilon}_{3}} \tag{21}
\end{equation*}
$$

for any $m \in \mathbb{Z}$ with $2 \nmid m$. Then, by (14), we have

$$
y_{1}^{2}=\frac{\varepsilon_{2}^{p}-\bar{\varepsilon}_{2}^{p}}{2 \sqrt{D_{2}}}=v_{2} F_{2}(p)
$$

This implies that

$$
\begin{equation*}
v_{2}=c_{2} y_{11}^{\prime 2}, \quad F_{2}(p)=c_{2} y_{12}^{\prime 2} \tag{22}
\end{equation*}
$$

where $c_{2}, y_{11}^{\prime}, y_{12}^{\prime} \in \mathbb{N}$ satisfy $c_{2} y_{11}^{\prime} y_{12}^{\prime}=y_{1}$. By Lemma 3 (ii), $F_{2}(p) \equiv p$ $\left(\bmod v_{2}\right)$, hence, by $(22), p \equiv 0\left(\bmod c_{2}\right)$. This implies that either $c_{2}=1$ or $c_{2}=p$. From (22), if $c_{2}=1$, then $F_{2}(p)$ is a square, which is impossible by Lemma 7. Therefore, $c_{2}=p$ and

$$
\begin{equation*}
v_{2}=p y_{11}^{\prime 2}, \quad F_{2}(p)=p y_{12}^{\prime 2} \tag{23}
\end{equation*}
$$

by (22). On the other hand, we see from (19)-(21) that

$$
\begin{equation*}
v_{2}=v_{3} F_{3}(p) \tag{24}
\end{equation*}
$$

The combination of (23) and (24) yields

$$
v_{3}=\left\{\begin{array}{l}
c_{3} y_{111}^{2}, \tag{25}\\
c_{3} p y_{112}^{2},
\end{array} \quad F_{3}(p)=\left\{\begin{array}{l}
c_{3} p y_{112}^{2} \\
c_{3} y_{111}^{2}
\end{array}\right.\right.
$$

where $c_{3}, y_{111}, y_{112} \in \mathbb{N}$ satisfy $c_{3} y_{111} y_{112}=y_{11}^{\prime}$. Notice that $F_{3}(p)$ is never a square by Lemma 7 . By much the same argument as above, we can find from (25) that $c_{3}=1$ or p, and v_{3} is a square. Since $\left(u_{3}, v_{3}\right)$ is a solution of (2), it follows that $\left(u_{3}, \sqrt{v_{3}}\right)$ is a solution of (1) satisfying $u_{3} \sqrt{D_{1}}+v_{3} \sqrt{D_{2}}<$ $x_{1} \sqrt{D_{1}}+y_{1}^{2} \sqrt{D_{2}}$ by (19), which contradicts our assumption (13). Thus, t is square free and so is c_{1} by (18).

If $t \neq c_{1}$, then t has an odd prime divisor q with $q \nmid c_{1}$ by (18). Let

$$
\begin{gather*}
u_{4} \sqrt{D_{1}}+v_{4} \sqrt{D_{2}}=\left(u_{1} \sqrt{D_{1}}+v_{1} \sqrt{D_{2}}\right)^{t / q} \tag{26}\\
\varepsilon_{4}=u_{4} \sqrt{D_{1}}+v_{4} \sqrt{D_{2}}, \quad \bar{\varepsilon}_{4}=u_{4} \sqrt{D_{1}}-v_{4} \sqrt{D_{2}} \tag{27}
\end{gather*}
$$

and let

$$
\begin{equation*}
F_{4}(m)=\frac{\varepsilon_{4}^{m}-\bar{\varepsilon}_{4}^{m}}{\varepsilon_{4}-\bar{\varepsilon}_{4}} \tag{28}
\end{equation*}
$$

for any $m \in \mathbb{Z}$ with $2 \nmid m$. Then, by (14) and (26)-(28), we have $y_{1}^{2}=$ $v_{4} F_{4}(q)$, whence

$$
\begin{equation*}
v_{4}=c_{4} y_{13}^{2}, \quad F_{4}(q)=c_{4} y_{14}^{2} \tag{29}
\end{equation*}
$$

where $c_{4}, y_{13}, y_{14} \in \mathbb{N}$ satisfy $c_{4} y_{13} y_{14}=y_{1}$. Using the same method, by (26) and (29), we can prove that $c_{4}=q$ and

$$
\begin{equation*}
v_{4}=q y_{13}^{2}=\frac{\varepsilon_{1}^{t / q}-\bar{\varepsilon}_{1}^{t / q}}{2 \sqrt{D_{2}}}=v_{1} F_{1}(t / q) \tag{30}
\end{equation*}
$$

Substituting (16) into (30) gives

$$
\begin{equation*}
F_{1}\left(\frac{t}{q}\right)=\frac{q y_{13}^{2}}{c_{1} y_{11}^{2}} . \tag{31}
\end{equation*}
$$

Notice that $F_{1}(t / q) \in \mathbb{N}$ and $q \nmid c_{1}$. We see from (31) that $q\left|y_{11}, q\right| y_{13}$, $q \mid F_{1}(t / q)$ and $q \mid v_{1}$ by (16), a contradiction. Thus, we deduce that $t=c_{1}$ and the necessity is proved by (14) and (16), since t is square free. The proof is complete.

Remark. By much the same argument as in the proof of the Theorem, we can prove a similar result for the case $\min \left(D_{1}, D_{2}\right)=1$.

REFERENCES

[1] R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, Reading, Mass., 1983.
[2] K. Petr, Sur l'équation de Pell, Časopis Pěst. Mat. Fys. 56 (1927), 57-66.
[3] A. Rotkiewicz, Applications of Jacobi's symbol to Lehmer's numbers, Acta Arith. 42 (1983), 163-187.

DEPARTMENT OF MATHEMATICS
ZHANJIANG TEACHER'S COLLEGE
P.O. BOX 524048

ZHANJIANG, GUANGDONG
P.R. CHINA

[^0]: 1991 Mathematics Subject Classification: 11D25, 11A15.
 Supported by the National Natural Science Foundation of China.

