COLLOQUIUM MATHEMATICUM

A Note on the integer Solutions of HYPERELLIPTIC EQUATIONS

BY

MAOHUA LE (ZHANJIANG)

1. Introduction. Let $\mathbb{Z}, \mathbb{N}, \mathbb{Q}$ denote the sets of integers, positive integers and rational numbers respectively. Let $m, n \in \mathbb{N}$ with $m \geq 2, n \geq 2$ and $m n \geq 6$. Let $f(x)=a_{0} x^{m}+\ldots+a_{m-1} x+a_{m} \in \mathbb{Z}[x]$ with $a_{0} \neq 0$, and let $H=\max \left(\left|a_{0}\right|, \ldots,\left|a_{m}\right|\right)$. There are many papers concerning the solutions (x, y) of the hyperelliptic equation

$$
\begin{equation*}
f(x)=y^{n}, \quad x, y \in \mathbb{Z} \tag{1}
\end{equation*}
$$

Let e_{1}, \ldots, e_{s} be the multiplicities of distinct zeros of $f(x)$ with $e_{1} \geq \ldots$ $\ldots \geq e_{s}$. In [5], LeVeque proved that if (1) has infinitely many solutions (x, y), then either $\left\{n / \operatorname{gcd}\left(e_{1}, n\right), \ldots, n / \operatorname{gcd}\left(e_{s}, n\right)\right\}=\{2,2,1, \ldots, 1\}$ or
$\{t, 1, \ldots, 1\}$ with $t \in \mathbb{N}$. In [1], Baker proved that if $n=2$ and $f(x)$ has at least three simple zeros, then all solutions (x, y) of (1) satisfy

$$
\begin{equation*}
\max (|x|,|y|)<\exp \exp \exp \left(m^{10 m^{3}} H^{m^{2}}\right) \tag{2}
\end{equation*}
$$

if $n>2$ and $f(x)$ has at least two simple zeros, then

$$
\max (|x|,|y|)<\exp \exp \left((5 n)^{10} m^{10 m^{3}} H^{m^{2}}\right)
$$

Afterwards, Sprindžuk [10] improved Baker's bound (2) showing that if $n=2, a_{0}=1$ and $f(x)$ has at least three simple zeros, then

$$
\max (|x|,|y|) \ll \exp \left(|D|^{(8+\varepsilon)\left(6 m^{3}+12 m^{2}\right)}(\log H)^{1+\varepsilon}\right), \quad \varepsilon>0
$$

where D is the discriminant of $f(x)$ and the positive constant implied by \ll only depends on ε and m and is effectively computable.

In this note, using some elementary methods, we prove the following result, related to the main theorem of [11].

THEOREM. If $m \equiv 0(\bmod n), a_{0}=1, a_{1}, \ldots, a_{m}$ are not all zeros and the first nonzero coefficient is coprime with n, then (1) has only finitely many

[^0]solutions (x, y). Moreover, all solutions of (1) satisfy $|x|<(4 m H)^{2 m / n+1}$ and $|y|<(4 m H)^{2 m^{2} / n^{2}+m / n+1}$.

Now we give two applications of the above theorem. Let $m_{1}, \ldots, m_{s} \in \mathbb{N}$ with $1 \leq m_{1}<\ldots<m_{s}$. In [9], Rotkiewicz and Złotkowski proved that the equation

$$
x^{m_{s}}+x^{m_{s-1}}+\ldots+x^{m_{1}}+1=y^{z}, \quad x, y, z \in \mathbb{N},
$$

under some conditions has only finitely many solutions (x, y, z). By the Theorem, we have:

Corollary 1. If $n \geq 2$ and $m_{s} \equiv 0(\bmod n)$, then all solutions (x, y) of the equation

$$
\begin{equation*}
x^{m_{s}} \pm x^{m_{s-1}} \pm \ldots \pm x^{m_{1}} \pm 1=y^{n}, \quad x, y \in \mathbb{N} \tag{3}
\end{equation*}
$$

satisfy $x<\left(4 m_{s}\right)^{2 m_{s} / n+1}$ and $y<\left(4 m_{s}\right)^{2 m_{s}^{2} / n^{2}+m_{s} / n+1}$.
Let $k \in \mathbb{N}$ with $k>2$, and let $\zeta_{k}=e^{2 \pi \sqrt{-1} / k}$. Then
(4) $\Phi_{k}(x)=x^{\varphi(k)}+a_{1} x^{\varphi(k)-1}+\ldots+a_{\varphi(k)}=\prod_{\substack{1 \leq l \leq k \\ \operatorname{gcd}(l, k)=1}}\left(x-\zeta_{k}^{l}\right) \in \mathbb{Z}[x]$
is called the k th cyclotomic polynomial, where $\varphi(k)$ is Euler's function of k. In [6], Ljunggren proved that if k is an odd prime, then

$$
\begin{equation*}
\Phi_{k}(x)=y^{2}, \quad x, y \in \mathbb{N}, x>1, y>1 \tag{5}
\end{equation*}
$$

has only one solution $(k, x, y)=(5,3,11)$. For a general k, we have:
Corollary 2. Let d be the greatest square-free factor of k, and let $m=$ $\varphi(d)$. Then all solutions (x, y) of (5) satisfy

$$
\begin{aligned}
& x<\exp \left(\frac{d}{k}(m+1)\left(m^{1 / 2}+\log 4 m\right)\right) \\
& y<\exp \left(\frac{d}{k}\left(m^{2}+m+1\right)\left(m^{1 / 2}+\log 4 m\right)\right)
\end{aligned}
$$

Moreover, if $k / d \geq(m+1)\left(m^{1 / 2}+\log 4 m\right) / \log 2$, then (5) has no solution (x, y).

2. Lemmas

Lemma 1. Let $F(z)=\sum_{k=0}^{\infty} \alpha_{k} z^{k}$ be a power series with real coefficients and $\alpha_{0}>0$. For any $n \in \mathbb{N}$ with $n>1$ and any $k \in \mathbb{Z}$ with $k \geq 0$, let
(6) $\quad \beta_{0}=1, \quad \beta_{k}=\sum\left(\prod_{i=0}^{r_{1}+\ldots+r_{k}-1}\left(\frac{1}{n}-i\right)\right)\left(\prod_{j=1}^{k} \frac{\left(\alpha_{j} / \alpha_{0}\right)^{r_{j}}}{r_{j}!}\right), \quad k>0$,
where the summation is over all solutions $\left(r_{1}, \ldots, r_{k}\right)$ of the equation

$$
\begin{equation*}
r_{1}+2 r_{2}+\ldots+k r_{k}=k, \quad r_{1}, \ldots, r_{k} \in \mathbb{Z}, r_{1}, \ldots, r_{k} \geq 0 \tag{7}
\end{equation*}
$$

If there exists a positive number M such that $\max _{k \in \mathbb{N}}\left|\alpha_{k} / \alpha_{0}\right| \leq M$, then

$$
\begin{equation*}
(F(z))^{1 / n}=\alpha_{0}^{1 / n} G(z)=\alpha_{0}^{1 / n} \sum_{k=0}^{\infty} \beta_{k} z^{k}, \quad|z|<\frac{1}{2 M} \tag{8}
\end{equation*}
$$

Proof. By [8], we have

$$
\begin{align*}
\sum \frac{\left(r_{1}+\ldots+r_{k}\right)!}{r_{1}!\ldots r_{k}!} & =\sum_{l=1}^{k} \sum_{\Omega: r_{1}+\ldots+r_{k}=l} \frac{\left(r_{1}+\ldots+r_{k}\right)!}{r_{1}!\ldots r_{k}!} \tag{9}\\
& =\sum_{l=1}^{k}\binom{k-1}{l-1}=2^{k-1}
\end{align*}
$$

where the summation \sum_{Ω} is over all solutions $\left(r_{1}, \ldots, r_{k}\right)$ of (7) which satisfy the condition Ω. Hence, by (6), if $\max _{k \in \mathbb{N}}\left|\alpha_{k} / \alpha_{0}\right| \leq M$, then the convergence radius R of $G(z)=\sum_{k=0}^{\infty} \beta_{k} z^{k}$ satisfies

$$
R=\lim _{k \rightarrow \infty} \frac{1}{\left|\beta_{k}\right|^{1 / k}} \geq \frac{1}{2 M}
$$

This implies that $G(z)$ is convergent for $|z|<1 /(2 M)$.
Let u, v be variables with $v=F(u)$, and let $G(u)=H(v)=H(F(u))$.
Let $D_{u}=d / d u, D_{v}=d / d v$, and let $D_{u}^{k} F(u)=f_{k}, D_{u}^{k} G(u)=g_{k}$ and $D_{v}^{k} H(v)=h_{k}$ for any $k \in \mathbb{N}$. By di Bruno's formula (cf. [8]), we have

$$
\begin{equation*}
g_{k}=\sum k!h_{r_{1}+\ldots+r_{k}}\left(\prod_{j=1}^{k} \frac{1}{r_{j}!}\left(\frac{f_{j}}{j!}\right)^{r_{j}}\right), \quad k \in \mathbb{N} . \tag{10}
\end{equation*}
$$

Put $u=z, v=F(z) / \alpha_{0}$ and $G(z)=H(v)=v^{1 / n}$. Since
$\left.f_{k}\right|_{z=0}=k!\alpha_{k},\left.\quad g_{k}\right|_{z=0}=k!\beta_{k},\left.\quad h_{k}\right|_{z=0}=\left.h_{k}\right|_{v=1}=\prod_{i=0}^{k-1}\left(\frac{1}{n}-i\right), \quad k \in \mathbb{N}$,
we get (6) by (10). Since $G(z)$ is convergent for $|z|<1 /(2 M)$, we obtain (7) immediately. The lemma is proved.

Lemma 2. If $n>1, m \equiv 0(\bmod n), a_{0}=1, a_{i}=0(1 \leq i \leq s-1)$, $a_{s} \neq 0$ and $\operatorname{gcd}\left(a_{s}, n\right)=1$, then

$$
\begin{equation*}
(f(x))^{1 / n}=\sum_{k=0}^{\infty} \beta_{k} x^{m / n-k}, \quad|x|>2 H \tag{11}
\end{equation*}
$$

where the coefficients $\beta_{k}(k=0,1, \ldots)$ satisfy
(i)

$$
\begin{equation*}
\beta_{0}=1, \quad \beta_{k}=\sum^{\prime}\left(\prod_{i=0}^{r_{s}+\ldots+r_{m}-1}\left(\frac{1}{n}-i\right)\right)\left(\prod_{j=s}^{m} \frac{a_{j}^{r_{j}}}{r_{j}!}\right), \quad k>0 \tag{12}
\end{equation*}
$$

where the summation \sum^{\prime} is over all solutions $\left(r_{s}, \ldots, r_{m}\right)$ of the equation

$$
\begin{equation*}
s r_{s}+\ldots+m r_{m}=k, \quad r_{s}, \ldots, r_{m} \in \mathbb{Z}, r_{s}, \ldots, r_{m} \geq 0 \tag{13}
\end{equation*}
$$

(ii) For any $k \in \mathbb{N},\left|\beta_{k}\right|<2^{k-1} H^{k}$.
(iii) If $\beta_{k} \neq 0$, then $\left|\beta_{k}\right| \geq 1 /\left(k!n^{k}\right)$.
(iv) For any $q \in \mathbb{N}, \beta_{q s} \neq 0$.

Proof. Put $\alpha_{i}=a_{i}(i=0,1, \ldots, m)$ and $\alpha_{j}=0(j>m)$. Since $a_{l}=0(1 \leq l \leq s-1)$, by Lemma 1, we get

$$
\begin{equation*}
(F(z))^{1 / n}=G(z)=\sum_{k=0}^{\infty} \beta_{k} z^{k}, \quad|z|<1 /(2 H) \tag{14}
\end{equation*}
$$

where $\beta_{k}(k=0,1, \ldots)$ satisfy (12). Put $z=1 / x$. Since $m \equiv 0(\bmod n)$, (14) yields (11) and (i). From (9) and (12), (ii) is clear. Since ($r_{s}+\ldots+$ $\left.r_{m}\right)!\equiv 0\left(\bmod r_{s}!\ldots r_{m}!\right)$, we get (iii) by (12).

For any $q \in \mathbb{N}$, from (12) we get

$$
\begin{equation*}
\beta_{q s}=\frac{a_{s}^{q}}{q!n^{q}} \prod_{i=0}^{q-1}(1-n i)+I \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
I=\sum_{\Omega:\left(r_{s}, r_{s+1}, \ldots, r_{m}\right) \neq(q, 0, \ldots, 0)}^{\prime}\left(\prod_{i=0}^{r_{s}+\ldots+r_{m}-1}\left(\frac{1}{n}-i\right)\right)\left(\prod_{j=s}^{m} \frac{a_{j}^{r_{j}}}{r_{j}!}\right) \tag{16}
\end{equation*}
$$

where the summation \sum_{Ω}^{\prime} is over all solutions $\left(r_{s}, \ldots, r_{m}\right)$ of (13) which satisfy the condition Ω. Let p be a prime factor of $n, \lambda=\operatorname{ord}_{p} n$, and let $\delta_{k}=\operatorname{ord}_{p} k!$ for any $k \in \mathbb{N}$. Since $\operatorname{gcd}\left(a_{s}, n\right)=1$, we have

$$
a_{s}^{q}(1-n) \ldots \frac{1-n(q-1)}{q!n^{q}}=\frac{a}{b} \in \mathbb{Q},
$$

where $a, b \in \mathbb{Z}$ satisfy $a \neq 0, b>0$ and $b \equiv 0\left(\bmod p^{\lambda q+\delta_{q}}\right)$. On the other hand, since every solution $\left(r_{s}, \ldots, r_{m}\right)$ of (13) with $\left(r_{s}, r_{s+1}, \ldots, r_{m}\right) \neq$ $(q, 0, \ldots, 0)$ satisfies $0<r_{s}+\ldots+r_{m}<q$, we see from (16) that $I=a^{\prime} / b^{\prime} \in$ \mathbb{Q}, where $a^{\prime}, b^{\prime} \in \mathbb{Z} \operatorname{satisfy} \operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=1, b^{\prime}>0$ and $b^{\prime} \not \equiv 0\left(\bmod p^{\lambda q+\delta_{q}}\right)$. Therefore, by (15), we get $\beta_{q s} \neq 0$. The lemma is proved.
3. Proof of Theorem. Let (x, y) be a solution of (1) with $|x| \geq$ $(4 m H)^{2 m / n+1}$. Since $a_{i}=0(1 \leq i \leq s-1)$ and $a_{s} \neq 0$, we have
(17)

$$
\begin{aligned}
0<\left||x|^{m-s}-H \frac{|x|^{m-s}-1}{|x|-1}\right| & \leq\left|y^{n}-x^{m}\right|=\left|\sum_{k=s}^{m} a_{k} x^{m-k}\right| \\
& \leq H \frac{|x|^{m-s+1}-1}{|x|-1}<2 H|x|^{m-s}
\end{aligned}
$$

Notice that $m \equiv 0(\bmod n)$. We see from (17) that $y \neq x^{m / n}$. Then

$$
\left|y^{n}-x^{m}\right|>|x|^{(n-1) m / n}
$$

and

$$
\begin{equation*}
1 \leq s \leq m / n \tag{18}
\end{equation*}
$$

by (17).
By Lemma 2, we see from (11) that

$$
\begin{equation*}
y=S_{1}+S_{2} \tag{19}
\end{equation*}
$$

where

$$
\begin{align*}
& S_{1}=\sum_{k=0}^{m / n} \beta_{k} x^{m / n-k} \tag{20}\\
& S_{2}=\sum_{k=m / n+1}^{\infty} \beta_{k} / x^{k-m / n}
\end{align*}
$$

From (12) and (20), $S_{1}=a^{\prime \prime} / b^{\prime \prime} \in \mathbb{Q}$, where $a^{\prime \prime}, b^{\prime \prime} \in \mathbb{Z}$ satisfy $\operatorname{gcd}\left(a^{\prime \prime}, b^{\prime \prime}\right)$ $=1, b^{\prime \prime}>0$ and $n^{m / n}(m / n)!\equiv 0\left(\bmod b^{\prime \prime}\right)$. Hence, by (19), we have either

$$
\begin{equation*}
\left|y-S_{1}\right|=\left|S_{2}\right| \geq \frac{1}{n^{m / n}(m / n)!} \tag{22}
\end{equation*}
$$

or
(23)

$$
\left|y-S_{1}\right|=\left|S_{2}\right|=0
$$

By Stirling's theorem,

$$
\begin{equation*}
t!<\sqrt{2 \pi t}(t / e)^{t} e^{1 /(12 t)}, \quad t \in \mathbb{N} \tag{24}
\end{equation*}
$$

By (21), (24) and Lemma 2(ii), if $|x| \geq(4 m H)^{2 m / n+1}$, then

$$
\begin{align*}
\left|S_{2}\right| & \leq \sum_{k=m / n+1}^{\infty}\left|\beta_{k} / x^{k-m / n}\right|<\sum_{k=1}^{\infty}\left(2^{m / n} H^{m / n+1} /|x|\right)^{k} \tag{25}\\
& =\frac{2^{m / n} H^{m / n+1}}{|x|-2^{m / n} H^{m / n+1}}<\frac{1}{n^{m / n}(m / n)!} .
\end{align*}
$$

This implies that (22) is impossible.
On the other hand, there exists a multiple of s among the integers $m / n+1, \ldots, m / n+s$. Hence, by Lemma 2(iv), there exists $t \in \mathbb{N}$ such that
$m / n+1 \leq t \leq m / n+s, \beta_{t} \neq 0$ and $\beta_{i}=0(m / n+1 \leq i \leq t-1)$. Then, by (18) and Lemma 2(iii), we have

$$
\begin{equation*}
\left|\frac{\beta_{t}}{x^{t-m / n}}\right| \geq \frac{1}{(2 m / n)!n^{2 m / n}|x|^{t-m / n}} \tag{26}
\end{equation*}
$$

and by (21) and Lemma 2(ii),

$$
\begin{align*}
\left|\sum_{k=t+1}^{\infty} \frac{\beta_{k}}{x^{k-m / n}}\right| & <\frac{1}{|x|^{t-m / n}} \sum_{k=1}^{\infty}\left(\frac{2^{2 m / n} H^{2 m / n+1}}{|x|}\right)^{k} \tag{27}\\
& =\frac{2^{2 m / n} H^{2 m / n+1}}{|x|^{t-m / n}\left(|x|-2^{2 m / n} H^{2 m / n+1}\right)}
\end{align*}
$$

The combination of (26) and (27) yields $\left|S_{2}\right| \neq 0$ for $|x| \geq(4 m H)^{2 m / n+1}$, which contradicts (23). Thus, $|x|<(4 m H)^{2 m / n+1}$, and by (19), (20) and (25), $|y|<(4 m H)^{2 m^{2} / n^{2}+m / n+1}$. This completes the proof.
4. Proof of Corollaries 1 and 2. Since $H=1$ for (3), Corollary 1 follows immediately from the Theorem.

Now we deal with the equation (5). It is a well known fact that if d is the greatest square-free factor of k, then $\Phi_{k}(x)=\Phi_{d}\left(x^{k / d}\right)$. Let $\Phi_{d}(X)=$ $X^{m}+b_{1} X^{m-1}+\ldots+b_{m} \in \mathbb{Z}[X]$, where $m=\varphi(d)$. Then (5) can be written as

$$
\begin{equation*}
\Phi_{d}\left(x^{k / d}\right)=y^{2}, \quad x, y \in \mathbb{N}, x>1, y>1 \tag{28}
\end{equation*}
$$

When $d=1$ or 2 , since $k / d>1$, from (28) we get

$$
\begin{equation*}
x^{k / d} \pm 1=y^{2}, \quad x, y \in \mathbb{N}, x>1, y>1 \tag{29}
\end{equation*}
$$

By [3] and [4], the equation (29) has only one solution $(x, y, k / d)=(2,3,3)$ with $k / d>1$.

When $d>2$, we have $2 \mid m$. Notice that $b_{1}=-\mu(d)= \pm 1$ by Theorem $7 \cdot 4 \cdot 4$ of $[2]$ and $\max \left(\left|b_{1}\right|, \ldots,\left|b_{m}\right|\right)<e^{m^{1 / 2}}$ by $[7]$. We see from the Theorem that all solutions of (28) satisfy

$$
\begin{align*}
x^{k / d} & <\exp \left((m+1)\left(m^{1 / 2}+\log 4 m\right)\right) \\
y & <\exp \left(\left(m^{2}+m+1\right)\left(m^{1 / 2}+\log 4 m\right)\right) . \tag{30}
\end{align*}
$$

On the other hand, since $x \geq 2$, (30) is impossible for $k / d \geq(m+1)\left(m^{1 / 2}+\right.$ $\log 4 m) / \log 2$. Corollary 2 is proved.

REFERENCES

[1] A. Baker, Bounds for the solutions of the hyperelliptic equation, Proc. Cambridge Philos. Soc. 65 (1969), 439-444.
[2] L.-K. Hua, Introduction to Number Theory, Springer, Berlin, 1982.
[3] C. Ko, On the diophantine equation $x^{2}=y^{n}+1, x y \neq 0$, Sci. Sinica 14 (1964), 457-460.
[4] V. A. Lebesgue, Sur l'impossibilité, en nombres entiers, de l'équation $x^{m}=y^{2}+1$, Nouv. Ann. Math. (1) 9 (1850), 178-181.
[5] W. J. LeVeque, On the equation $y^{m}=f(x)$, Acta Arith. 9 (1964), 209-219.
[6] W. Ljunggren, Noen setninger om ubestemte likninger av formen $\left(x^{n}-1\right) /(x-1)$ $=y^{q}$, Norsk. Mat. Tidsskr. 25 (1943), 17-20.
[7] H. L. Montgomery and R. C. Vaughan, The order of magnitude of mth coefficients of cyclotomic polynomials, Glasgow Math. J. 27 (1985), 143-159.
[8] J. Riordan, Introduction to Combinatorial Analysis, Wiley, 1958.
[9] A. Rotkiewicz and W. Złotkowski, On the diophantine equation $1+p^{\alpha_{1}}+\ldots$ $\ldots+p^{\alpha_{k}}=y^{2}$, in: Number Theory, Vol. II (Budapest 1987), North-Holland, Amsterdam, 1990, 917-937.
[10] V. G. Sprindžuk, Hyperelliptic diophantine equation and class numbers of ideals, Acta Arith. 30 (1976), 95-108 (in Russian).
[11] P. G. Walsh, A quantitative version of Runge's theorem on diophantine equations, Acta Arith. 62 (1992), 157-172.

DEPARTMENT OF MATHEMATICS
ZHANJIANG TEACHER'S COLLEGE
P.O. BOX 524048

ZHANJIANG, GUANGDONG
P.R. CHINA

[^0]: 1991 Mathematics Subject Classification: 11D41, 05A19.
 Supported by the National Natural Science Foundation of China.

