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1. Introduction. Let Z, N, Q denote the sets of integers, positive
integers and rational numbers respectively. Let m,n € N withm > 2, n > 2
and mn > 6. Let f(x) = apz™ + ... + am-12 + a, € Z[z] with ag # 0,
and let H = max(Jag|,...,|am|). There are many papers concerning the
solutions (x,y) of the hyperelliptic equation

(1) f@)=y", xyecl

Let eq,...,es be the multiplicities of distinct zeros of f(x) with e; > ...
. > es. In [5], LeVeque proved that if (1) has infinitely many solu-

tions (x,y), then either {n/gcd(e1,n),...,n/ged(es,n)} = {2,2,1,...,1}

or

{t,1,...,1} with ¢t € N. In [1], Baker proved that if n = 2 and f(z) has at

least three simple zeros, then all solutions (x,y) of (1) satisfy

max(|z], < exp exp exp(m1o™° g™
2 y p exp exp(m'’

if n > 2 and f(z) has at least two simple zeros, then
max(|z|, |y|) < exp exp((5n)10m10m3Hm2).
Afterwards, Sprindzuk [10] improved Baker’s bound (2) showing that if
n =2, a9 =1 and f(x) has at least three simple zeros, then
max(|a, |y]) < exp(|D| ST (og 1)), e >0,

where D is the discriminant of f(x) and the positive constant implied by <
only depends on € and m and is effectively computable.

In this note, using some elementary methods, we prove the following
result, related to the main theorem of [11].

THEOREM. If m =0 (mod n), ag =1, ai,...,an are not all zeros and
the first nonzero coefficient is coprime with n, then (1) has only finitely many
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solutions (x,7). Moreover, all solutions of (1) satisfy |x| < (4mH)>™/n+1
and |y| < (4mH)2m*/n*+m/n+1,

Now we give two applications of the above theorem. Let mq,...,ms; € N
with 1 <my < ... <ms. In [9], Rotkiewicz and Zotkowski proved that the
equation

™Mt a™ + 1=y, x,y,z €N,

under some conditions has only finitely many solutions (z,y,z). By the
Theorem, we have:

COROLLARY 1. If n > 2 and ms = 0 (mod n), then all solutions (z,y)
of the equation

(3) ™t L ™ 1=y, xz,y €N,
satisfy & < (4mg)2ms/mHL and y < (4mg)2me/ntma/ntl
Let k € N with k > 2, and let ¢, = €2™V~1/k_ Then

@) () =2*P a2 ey = [ (2—3h) €Zla]
1<I<k
ged(l,k)=1

is called the kth cyclotomic polynomial, where (k) is Euler’s function of k.
In [6], Ljunggren proved that if k is an odd prime, then

(5) @k(ﬂf):yQ, x?@/GNa .%'>1, y>1a

has only one solution (k,x,y) = (5,3,11). For a general k, we have:
COROLLARY 2. Let d be the greatest square-free factor of k, and let m =

o(d). Then all solutions (x,y) of (5) satisfy

r < exp <Z(m +1)(m*? + log4m)>,
y < exp <Z(m2 +m+1)(m'/? + log4m)>.
Moreover, if k/d > (m + 1)(m'/? + log4m)/log?2, then (5) has no solu-
tion (z,y).
2. Lemmas

LEMMA 1. Let F(z) = 3", iz be a power series with real coefficients
and ag > 0. For anyn € N withn > 1 and any k € Z with k > 0, let

(6) Bo=1, ﬂk:2<+ﬁ_l<i—z>)<ﬁ(‘1ﬂ{jﬁ)> k>0,

i=0 Jj=1
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where the summation is over all solutions (r1,...,7x) of the equation
(7) ri+2ro+...+kry=%k ri,...,1b €%Z, r1,...,15 > 0.

If there exists a positive number M such that maxyen |og /oo < M, then

(8) (F@)V" = a"G(z ””Zﬁkz 1< 57

Proof. By [8], we have

k
(ri+...+7)! (ri+...47)!
9 LT TR LT TR
(9) Z ril.oorg! ;Q:n;+rk:l ril.oorg!
k
-1 ’
=1
where the summation ), is over all solutions (ry,...,7;) of (7) which

satisfy the condition (2. Hence, by (6), if maxgen |ar/ao| < M, then the
convergence radius R of G(z) = Y -, Bxz" satisfies

1 1
= 1 >
R= I 5k = oar

This implies that G(z) is convergent for |z| < 1/(2M).

Let u, v be variables with v = F'(u), and let G(u) = H(v) = H(F(u)).
Let D, = d/du, D, = d/dv, and let D¥F(u) = fi, D*G(u) = g, and
DFH(v) = hy, for any k € N. By di Bruno’s formula (cf. [8]), we have

k r;
IR A
j:
Put u = 2, v = F(2)/ag and G(z) = H(v) = v*/™. Since

k—1
.
felemo = Ko, gl=0 = K!8k, hla=o = hilo—r = [ [ ( —z), k€N,
1=0

we get (6) by (10). Since G(z) is convergent for |z| < 1/(2M), we obtain
(7) immediately. The lemma is proved.

LEMMA 2. Ifn>1, m=0 (modn),ay=1,a;,=0(1<i<s—1),
as # 0 and ged(as,n) =1, then

(11) N = Zﬂkmm/n’f x| > 2H,

where the coefficients By, (k= 0,1,...) satisfy
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(i)
W et o Z' <rs+..ﬁ“ml <:L _ @>> <ﬁsg>, k>0,

i=0
where the summation Y. is over all solutions (v, ... ,Tm) of the equation
(13) STs+...+mrp =k, Te ...t €L, Tsy..., T > 0.

(ii) For any k € N, |8y < 2F"1H*.
(i) If By # 0, then 4] > 1/(kln").
(iv) For any g € N, 345 # 0.

Proof. Put a; = a; (i = 0,1,...,m) and o; = 0 (j > m). Since
a;=0(1<1<s—1), by Lemma 1, we get

(14) (F)Y"=G(z) =) Bt |2 < 1/(2H),
k=0

where (B (k= 0,1,...) satisfy (12). Put z = 1/z. Since m = 0 (mod n),
(14) yields (11) and (i). From (9) and (12), (ii) is clear. Since (rs + ...+
Tm)! =0 (mod rg!...7ry!0), we get (iii) by (12).

For any g € N, from (12) we get

al ol

(15) Bys = == [[(1 = ni) + 1,

Ing
qn i—0

where
, rstotrm—1 1 m afj
1 I = o _J_
a0 ¥ O G (I
2:(rs,rs41,--,7m ) #(q,0,...,0) 1=0 j=s

where the summation 3}, is over all solutions (rs,...,7,,) of (13) which
satisfy the condition {2. Let p be a prime factor of n, A\ = ord,n, and let
0, = ord, k! for any k£ € N. Since ged(as,n) =1, we have

1-n(g=1) _a

a1 —
al(l—mn).. R =5 € Q,
where a,b € Z satisfy a # 0, b > 0 and b = 0 (mod p*?*%). On the
other hand, since every solution (7, ..., 7y) of (13) with (rs, 7s41,...,7Tm) #

(¢,0,...,0) satisfies 0 < rg+... 41, < ¢, we see from (16) that [ =a'/V’ €
Q, where a’, b’ € Z satisfy ged(a’,b’) =1, b > 0 and b’ # 0 (mod pr9+d4).
Therefore, by (15), we get B4s # 0. The lemma is proved.

3. Proof of Theorem. Let (z,y) be a solution of (1) with || >
(4mH)>™/"*+1 . Since a; = 0 (1 <i < s — 1) and a, # 0, we have
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‘x|m s

(17) o< |jz™ ™ —H-—= e — ’<|y —xm]_‘Zakx )
|x|mfs+1_
SH—| = < 2H|z|™*.
x [e—

Notice that m =0 (mod n). We see from (17) that y # 2™/™. Then
|yn - :L,m| > |x|(n—1)m/n

and

(18) 1<s<m/n

by (17).

By Lemma 2, we see from (11) that

(19) y =951+ 95,

where
m/n

(20) Si= > Bra™"h,
k=0

(21) So= > B/
k=m/n+1

From (12) and (20), S; = a”/b" € Q, where a”,b" € Z satisty ged(a”, ")
=1, >0 and n™/"(m/n)! =0 (mod b”). Hence, by (19), we have either

1
22 -5 =8> —
(22) ly — S| =| 2’_nm/”(m/n)!
or
(23) ly = 51 = [S2] = 0.
By Stirling’s theorem,
(24) t! < V2rt (t/e)tet/12 e N.
By (21), (24) and Lemma 2(ii), if || > (4mH)*™/?*1 then
(25)  ISl< D |B/etmi] < S @ )
k=m/n+1 k=1
2m/nHm/n+1 1

= ‘x’ — om/n fFm/n+1 < nm/n(m/n)l

This implies that (22) is impossible.
On the other hand, there exists a multiple of s among the integers
m/n+1,...,m/n+s. Hence, by Lemma 2(iv), there exists ¢ € N such that



176 M.-H. LE

m/n+1<t<m/n+s, i #0and 5, =0 (m/n+1<i<t—1). Then,
by (18) and Lemma 2(iii), we have

B

rt—-m/n

1
— (Qm/n)!n2m/n|l“t—m/n ’

and by (21) and Lemma 2(ii),
1 0 22m/nH2m/n+1 k
< B
j[t=m/m 2 ( |z )

k=1
22m/nH2m/n+1

(26)

o0

B
Z xk—vljl/n

k=t+1

(27)

= ‘x|tfm/n(|x’ _ 22m/nH2m/n+1) :

The combination of (26) and (27) yields |Ss| # 0 for |z| > (4mH)>™/n+1
which contradicts (23). Thus, |z| < (4mH)?>"/"*1 and by (19), (20)
and (25), |y| < (4mH)?m*/n*+m/n+1 This completes the proof.

4. Proof of Corollaries 1 and 2. Since H = 1 for (3), Corollary 1
follows immediately from the Theorem.

Now we deal with the equation (5). It is a well known fact that if d is
the greatest square-free factor of k, then @ (x) = ®q(z*/?). Let dq(X) =
X™ 4 b X 4.+ by, € Z[X], where m = ¢(d). Then (5) can be written
as

(28) Bg(xkd)y =y? zyeN, z>1, y>1.
When d =1 or 2, since k/d > 1, from (28) we get
(29) M +1 =92 zyeN, z>1, y>1.

By [3] and [4], the equation (29) has only one solution (z,y, k/d) = (2,3, 3)
with k/d > 1.

When d > 2, we have 2| m. Notice that by = —u(d) = £1 by Theorem
7-4-4 of [2] and max(|b1], ..., |bm|) < em'” by [7]. We see from the Theorem
that all solutions of (28) satisfy
(30) 2%/ < exp((m + 1)(m'/? 4+ log 4m)),

y < exp((m? +m + 1)(m'/? 4 log 4m)).
On the other hand, since z > 2, (30) is impossible for k/d > (m+1)(m'/2 +
log4m)/log2. Corollary 2 is proved.
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