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1. Introduction. Let Z, N, Q denote the sets of integers, positive
integers and rational numbers respectively. Let m,n ∈ N with m ≥ 2, n ≥ 2
and mn ≥ 6. Let f(x) = a0x

m + . . . + am−1x + am ∈ Z[x] with a0 6= 0,
and let H = max(|a0|, . . . , |am|). There are many papers concerning the
solutions (x, y) of the hyperelliptic equation

(1) f(x) = yn, x, y ∈ Z.

Let e1, . . . , es be the multiplicities of distinct zeros of f(x) with e1 ≥ . . .
. . . ≥ es. In [5], LeVeque proved that if (1) has infinitely many solu-
tions (x, y), then either {n/ gcd(e1, n), . . . , n/ gcd(es, n)} = {2, 2, 1, . . . , 1}
or
{t, 1, . . . , 1} with t ∈ N. In [1], Baker proved that if n = 2 and f(x) has at
least three simple zeros, then all solutions (x, y) of (1) satisfy

(2) max(|x|, |y|) < exp exp exp(m10m3
Hm2

);

if n > 2 and f(x) has at least two simple zeros, then

max(|x|, |y|) < exp exp((5n)10m10m3
Hm2

).

Afterwards, Sprindžuk [10] improved Baker’s bound (2) showing that if
n = 2, a0 = 1 and f(x) has at least three simple zeros, then

max(|x|, |y|) � exp(|D|(8+ε)(6m3+12m2)(log H)1+ε), ε > 0,

where D is the discriminant of f(x) and the positive constant implied by �
only depends on ε and m and is effectively computable.

In this note, using some elementary methods, we prove the following
result, related to the main theorem of [11].

Theorem. If m ≡ 0 (mod n), a0 = 1, a1, . . . , am are not all zeros and
the first nonzero coefficient is coprime with n, then (1) has only finitely many
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solutions (x, y). Moreover , all solutions of (1) satisfy |x| < (4mH)2m/n+1

and |y| < (4mH)2m2/n2+m/n+1.

Now we give two applications of the above theorem. Let m1, . . . ,ms ∈ N
with 1 ≤ m1 < . . . < ms. In [9], Rotkiewicz and Z lotkowski proved that the
equation

xms + xms−1 + . . . + xm1 + 1 = yz, x, y, z ∈ N,

under some conditions has only finitely many solutions (x, y, z). By the
Theorem, we have:

Corollary 1. If n ≥ 2 and ms ≡ 0 (mod n), then all solutions (x, y)
of the equation

(3) xms ± xms−1 ± . . .± xm1 ± 1 = yn, x, y ∈ N,

satisfy x < (4ms)2ms/n+1 and y < (4ms)2m2
s/n2+ms/n+1.

Let k ∈ N with k > 2, and let ζk = e2π
√
−1/k. Then

(4) Φk(x) = xϕ(k) + a1x
ϕ(k)−1 + . . . + aϕ(k) =

∏
1≤l≤k

gcd(l,k)=1

(x− ζl
k) ∈ Z[x]

is called the kth cyclotomic polynomial , where ϕ(k) is Euler’s function of k.
In [6], Ljunggren proved that if k is an odd prime, then

(5) Φk(x) = y2, x, y ∈ N, x > 1, y > 1,

has only one solution (k, x, y) = (5, 3, 11). For a general k, we have:

Corollary 2. Let d be the greatest square-free factor of k, and let m =
ϕ(d). Then all solutions (x, y) of (5) satisfy

x < exp
(

d

k
(m + 1)(m1/2 + log 4m)

)
,

y < exp
(

d

k
(m2 + m + 1)(m1/2 + log 4m)

)
.

Moreover , if k/d ≥ (m + 1)(m1/2 + log 4m)/ log 2, then (5) has no solu-
tion (x, y).

2. Lemmas

Lemma 1. Let F (z) =
∑∞

k=0 αkzk be a power series with real coefficients
and α0 > 0. For any n ∈ N with n > 1 and any k ∈ Z with k ≥ 0, let

(6) β0 = 1, βk =
∑ ( r1+...+rk−1∏

i=0

(
1
n
− i

))( k∏
j=1

(αj/α0)rj

rj !

)
, k > 0,
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where the summation is over all solutions (r1, . . . , rk) of the equation

(7) r1 + 2r2 + . . . + krk = k, r1, . . . , rk ∈ Z, r1, . . . , rk ≥ 0.

If there exists a positive number M such that maxk∈N |αk/α0| ≤ M , then

(8) (F (z))1/n = α
1/n
0 G(z) = α

1/n
0

∞∑
k=0

βkzk, |z| < 1
2M

.

P r o o f. By [8], we have∑ (r1 + . . . + rk)!
r1! . . . rk!

=
k∑

l=1

∑
Ω: r1+...+rk=l

(r1 + . . . + rk)!
r1! . . . rk!

(9)

=
k∑

l=1

(
k − 1
l − 1

)
= 2k−1,

where the summation
∑

Ω is over all solutions (r1, . . . , rk) of (7) which
satisfy the condition Ω. Hence, by (6), if maxk∈N |αk/α0| ≤ M , then the
convergence radius R of G(z) =

∑∞
k=0 βkzk satisfies

R = lim
k→∞

1
|βk|1/k

≥ 1
2M

.

This implies that G(z) is convergent for |z| < 1/(2M).
Let u, v be variables with v = F (u), and let G(u) = H(v) = H(F (u)).

Let Du = d/du, Dv = d/dv, and let Dk
uF (u) = fk, Dk

uG(u) = gk and
Dk

vH(v) = hk for any k ∈ N. By di Bruno’s formula (cf. [8]), we have

(10) gk =
∑

k!hr1+...+rk

( k∏
j=1

1
rj !

(
fj

j!

)rj
)

, k ∈ N.

Put u = z, v = F (z)/α0 and G(z) = H(v) = v1/n. Since

fk|z=0 = k!αk, gk|z=0 = k!βk, hk|z=0 = hk|v=1 =
k−1∏
i=0

(
1
n
− i

)
, k ∈ N,

we get (6) by (10). Since G(z) is convergent for |z| < 1/(2M), we obtain
(7) immediately. The lemma is proved.

Lemma 2. If n > 1, m ≡ 0 (mod n), a0 = 1, ai = 0 (1 ≤ i ≤ s − 1),
as 6= 0 and gcd(as, n) = 1, then

(11) (f(x))1/n =
∞∑

k=0

βkxm/n−k, |x| > 2H,

where the coefficients βk (k = 0, 1, . . .) satisfy
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(i)

(12) β0 = 1, βk =
∑′

( rs+...+rm−1∏
i=0

(
1
n
− i

))( m∏
j=s

a
rj

j

rj !

)
, k > 0,

where the summation
∑′ is over all solutions (rs, . . . , rm) of the equation

(13) srs + . . . + mrm = k, rs, . . . , rm ∈ Z, rs, . . . , rm ≥ 0.

(ii) For any k ∈ N, |βk| < 2k−1Hk.
(iii) If βk 6= 0, then |βk| ≥ 1/(k!nk).
(iv) For any q ∈ N, βqs 6= 0.

P r o o f. Put αi = ai (i = 0, 1, . . . ,m) and αj = 0 (j > m). Since
al = 0 (1 ≤ l ≤ s− 1), by Lemma 1, we get

(14) (F (z))1/n = G(z) =
∞∑

k=0

βkzk, |z| < 1/(2H),

where βk (k = 0, 1, . . .) satisfy (12). Put z = 1/x. Since m ≡ 0 (mod n),
(14) yields (11) and (i). From (9) and (12), (ii) is clear. Since (rs + . . . +
rm)! ≡ 0 (mod rs! . . . rm!), we get (iii) by (12).

For any q ∈ N, from (12) we get

(15) βqs =
aq

s

q!nq

q−1∏
i=0

(1− ni) + I,

where

(16) I =
∑′

Ω: (rs,rs+1,...,rm) 6=(q,0,...,0)

( rs+...+rm−1∏
i=0

(
1
n
− i

))( m∏
j=s

a
rj

j

rj !

)
,

where the summation
∑′

Ω is over all solutions (rs, . . . , rm) of (13) which
satisfy the condition Ω. Let p be a prime factor of n, λ = ordp n, and let
δk = ordp k! for any k ∈ N. Since gcd(as, n) = 1, we have

aq
s(1− n) . . .

1− n(q − 1)
q!nq

=
a

b
∈ Q,

where a, b ∈ Z satisfy a 6= 0, b > 0 and b ≡ 0 (mod pλq+δq ). On the
other hand, since every solution (rs, . . . , rm) of (13) with (rs, rs+1, . . . , rm) 6=
(q, 0, . . . , 0) satisfies 0 < rs + . . .+ rm < q, we see from (16) that I = a′/b′ ∈
Q, where a′, b′ ∈ Z satisfy gcd(a′, b′) = 1, b′ > 0 and b′ 6≡ 0 (mod pλq+δq ).
Therefore, by (15), we get βqs 6= 0. The lemma is proved.

3. Proof of Theorem. Let (x, y) be a solution of (1) with |x| ≥
(4mH)2m/n+1. Since ai = 0 (1 ≤ i ≤ s− 1) and as 6= 0, we have
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0 <

∣∣∣∣|x|m−s −H
|x|m−s − 1
|x| − 1

∣∣∣∣ ≤ |yn − xm| =
∣∣∣ m∑

k=s

akxm−k
∣∣∣(17)

≤ H
|x|m−s+1 − 1

|x| − 1
< 2H|x|m−s.

Notice that m ≡ 0 (mod n). We see from (17) that y 6= xm/n. Then

|yn − xm| > |x|(n−1)m/n

and

(18) 1 ≤ s ≤ m/n

by (17).
By Lemma 2, we see from (11) that

(19) y = S1 + S2,

where

S1 =
m/n∑
k=0

βkxm/n−k,(20)

S2 =
∞∑

k=m/n+1

βk/xk−m/n.(21)

From (12) and (20), S1 = a′′/b′′ ∈ Q, where a′′, b′′ ∈ Z satisfy gcd(a′′, b′′)
= 1, b′′ > 0 and nm/n(m/n)! ≡ 0 (mod b′′). Hence, by (19), we have either

(22) |y − S1| = |S2| ≥
1

nm/n(m/n)!
or

(23) |y − S1| = |S2| = 0.

By Stirling’s theorem,

(24) t! <
√

2πt (t/e)te1/(12t), t ∈ N.

By (21), (24) and Lemma 2(ii), if |x| ≥ (4mH)2m/n+1, then

|S2| ≤
∞∑

k=m/n+1

|βk/xk−m/n| <
∞∑

k=1

(2m/nHm/n+1/|x|)k(25)

=
2m/nHm/n+1

|x| − 2m/nHm/n+1
<

1
nm/n(m/n)!

.

This implies that (22) is impossible.
On the other hand, there exists a multiple of s among the integers

m/n + 1, . . . ,m/n + s. Hence, by Lemma 2(iv), there exists t ∈ N such that
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m/n + 1 ≤ t ≤ m/n + s, βt 6= 0 and βi = 0 (m/n + 1 ≤ i ≤ t − 1). Then,
by (18) and Lemma 2(iii), we have

(26)
∣∣∣∣ βt

xt−m/n

∣∣∣∣ ≥ 1
(2m/n)!n2m/n|x|t−m/n

,

and by (21) and Lemma 2(ii),∣∣∣∣ ∞∑
k=t+1

βk

xk−m/n

∣∣∣∣ <
1

|x|t−m/n

∞∑
k=1

(
22m/nH2m/n+1

|x|

)k

(27)

=
22m/nH2m/n+1

|x|t−m/n(|x| − 22m/nH2m/n+1)
.

The combination of (26) and (27) yields |S2| 6= 0 for |x| ≥ (4mH)2m/n+1,
which contradicts (23). Thus, |x| < (4mH)2m/n+1, and by (19), (20)
and (25), |y| < (4mH)2m2/n2+m/n+1. This completes the proof.

4. Proof of Corollaries 1 and 2. Since H = 1 for (3), Corollary 1
follows immediately from the Theorem.

Now we deal with the equation (5). It is a well known fact that if d is
the greatest square-free factor of k, then Φk(x) = Φd(xk/d). Let Φd(X) =
Xm + b1X

m−1 + . . .+ bm ∈ Z[X], where m = ϕ(d). Then (5) can be written
as

(28) Φd(xk/d) = y2, x, y ∈ N, x > 1, y > 1.

When d = 1 or 2, since k/d > 1, from (28) we get

(29) xk/d ± 1 = y2, x, y ∈ N, x > 1, y > 1.

By [3] and [4], the equation (29) has only one solution (x, y, k/d) = (2, 3, 3)
with k/d > 1.

When d > 2, we have 2 |m. Notice that b1 = −µ(d) = ±1 by Theorem
7·4·4 of [2] and max(|b1|, . . . , |bm|) < em1/2

by [7]. We see from the Theorem
that all solutions of (28) satisfy

(30)
xk/d < exp((m + 1)(m1/2 + log 4m)),

y < exp((m2 + m + 1)(m1/2 + log 4m)).

On the other hand, since x ≥ 2, (30) is impossible for k/d ≥ (m+1)(m1/2 +
log 4m)/ log 2. Corollary 2 is proved.
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