COLLOQUIUM MATHEMATICUM

ALMOST EVERYWHERE CONVERGENCE OF RIESZ-RAIKOV SERIES

BY
AI HUA FAN (CERGY-PONTOISE)
Let T be a $d \times d$ matrix with integer entries and with eigenvalues >1 in modulus. Let f be a lipschitzian function of positive order. We prove that the series $\sum_{n=1}^{\infty} c_{n} f\left(T^{n} x\right)$ converges almost everywhere with respect to Lebesgue measure provided that $\sum_{n=1}^{\infty}\left|c_{n}\right|^{2} \log ^{2} n<\infty$.

1. Introduction. Given an arbitrary nonatomic dynamical system (X, T, μ). Suppose

$$
0 \leq c_{n} \downarrow, \quad c_{n}=O\left(n^{-1}\right), \quad \sum_{n=1}^{\infty} c_{n}=\infty
$$

Then there exists a function $f \in L^{\infty}(X)$ with $\int f d \mu=0$ such that

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{n} f\left(T^{n} x\right) \tag{1}
\end{equation*}
$$

diverges μ-a.e. ([3], [4], [8]). On the other hand, it is easy to exhibit some specific functions like $f=g-T g$ with $g \in L^{\infty}(X)$ for which the series (1) converges μ-a.e. It is then natural to ask whether there are other classes of functions such that the series (1) converges μ-a.e.

In this paper, we consider a special system $\left(\mathbb{T}^{d}, T, d x\right)$ where T is an endomorphism of \mathbb{T}^{d} and $d x$ is Haar measure on \mathbb{T}^{d}. We prove that (1) converges a.e. for any lipschitzian continuous function.

In reality, more can be proved. For $f \in \mathcal{C}\left(\mathbb{T}^{d}\right)$, we denote by $\omega_{f}(\cdot)$ the modulus of continuity of f. For $T \in M_{d}(\mathbb{Z})$, we denote by $\|T\|$ the operator norm of T corresponding to a given norm on \mathbb{R}^{d}. Our main result is

Theorem 1. Let $T_{n} \in M_{d}(\mathbb{Z})$ with $\operatorname{det} T_{n} \neq 0$ and $f_{n} \in \mathcal{C}\left(\mathbb{T}^{d}\right)$ with zero

1991 Mathematics Subject Classification: 28A35, 28D05, 43A05.
Key words and phrases: Riesz-Raikov series, Bernoulli measures, quasi-orthogonality.
mean value and $\int\left|f_{n}\right| d x=O(1)(n \geq 1)$. Suppose

$$
\begin{equation*}
\sup _{n} \omega_{f_{n}}\left(\tau_{n, p}\right)=O\left(p^{-\sigma}\right) \quad(\sigma>0) \tag{2}
\end{equation*}
$$

where

$$
\tau_{n, p}=\sum_{k=0}^{\infty}\left\|T_{n+1}^{-1} \ldots T_{n+p+k}^{-1}\right\| \quad(n \geq 1, p \geq 1)
$$

Then the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{n} f_{n}\left(T_{n} T_{n-1} \ldots T_{1} x\right) \tag{3}
\end{equation*}
$$

converges a.e. if one of the following conditions is satisfied:

$$
\begin{array}{ll}
\sigma>1, & \sum_{n=1}^{\infty}\left|c_{n}\right|^{2} \log ^{2} n<\infty \tag{4}\\
\sigma=1, & \sum_{n=1}^{\infty}\left|c_{n}\right|^{2} n^{\varepsilon} \log ^{2} n<\infty \quad(\text { for some } \varepsilon>0)
\end{array}
$$

$$
\sigma<1, \quad \sum_{n=1}^{\infty}\left|c_{n}\right|^{2} n^{1-\sigma} \log ^{2} n<\infty
$$

Corollary 1. Let $T \in M_{d}(\mathbb{Z})$ with all eigenvalues >1 in modulus. For any contiuous function f such that $\omega_{f}(r)=O(\log (1 / r))^{-\sigma}$ (for some $\sigma>0)$, the series (1) converges a.e. provided one of the conditions (4)-(6) is satisfied.

The proof of Theorem 1 is based on the following Theorem 2 . For $n \geq 1$, let X_{n} be a finite group equipped with the discrete topology and let μ_{n} be a probability measure on X_{n}. Consider then the infinite space $X=\prod X_{n}$ and the infinite product measure $\mu=\bigotimes \mu_{n}$. The topology of X can be defined by the usual ultrametric. We denote by $I_{n}(x)$ the n-cylinder containing x. For $f \in \mathcal{C}(X)$, define

$$
\omega_{n}(f)=\sup _{I_{n}(x)=I_{n}(y)}|f(x)-f(y)| .
$$

ThEOREM 2. Let $\left\{f_{n}\right\}_{n \geq 1}$ be a sequence of continuous functions. Suppose that f_{n} does not depend upon the $n-1$ first coordinates and $\mathbb{E}_{\mu} f_{n}=0$. Then

$$
\left|\mathbb{E}_{\mu} f_{n} f_{n+p}\right| \leq \omega_{n+p-1}\left(f_{n}\right) \mathbb{E}_{\mu}\left|f_{n+p}\right|
$$

for $n \geq 1$ and $p \geq 1$.
We shall follow the idea of [2], showing quasi-orthogonality. But our techniques are different from those of [2]. In our case, we observe that the general term of (3) is invariant under the action of some finite group which becomes more and more dense when n increases and the group \mathbb{T}^{d} can be
represented by a suitable infinite product of finite groups (see §3). The problem then becomes one on an infinite product space which is treated in §2. The deduction of Theorem 1 from Theorem 2 is given in $\S 4$.

We call (1) and (3) Riesz-Raikov series because of the first works of D. A. Raikov ([5]) and of F. Riesz ([6]) in the case of one dimension. A similar one-dimensional result is contained in [7].
2. Proof of Theorem 2. We will consider the infinite product measure μ as a G-measure in the sense of [1]. Here is the description.

Let $n \geq 1$. Define, for $x=\left(x_{1}, x_{2}, \ldots\right) \in X$,

$$
F_{n}(x)=\prod_{j=1}^{n} \mu_{j}\left(x_{j}\right)
$$

We then have

$$
\sum_{\gamma \in \Gamma_{n}} F_{n}(\gamma)=1 \quad(\forall x \in X)
$$

where $\Gamma_{n}=\prod_{j=1}^{n} X_{n} . \Gamma_{n}$ will be viewed as a subgroup of X. So, for $x \in X$ and $\gamma \in \Gamma_{n}$, the group product γx will mean $\left(x_{1}+\gamma_{1}, \ldots, x_{n}+\gamma_{n}, x_{n+1}, \ldots\right)$. Denote by \mathcal{F}^{n} the σ-field generated by all but the first n coordinates of X. We have the following three facts:

Fact 1. The measure μ is actually the unique measure such that for any $n \geq 1$,

$$
\frac{d \mu}{d \mu_{n}}=F_{n} \quad \mu \text {-a.e. } \quad \text { where } \quad \mu_{n}=\sum_{\gamma \in \Gamma_{n}} \mu \circ \gamma,
$$

$\mu \circ \gamma$ being the image of μ under the action of γ.
FACT 2. For $f \in L^{1}(\mu)$ we have

$$
\mathbb{E}_{\mu}\left(f \mid \mathcal{F}^{n}\right)=\sum_{\gamma \in \Gamma_{n}} f(\gamma x) F_{n}(\gamma x)
$$

FACT 3. For $f \in \mathcal{C}(X)$, the reverse martingale $\mathbb{E}_{\mu}\left(f \mid \mathcal{F}^{n}\right)$ converges everywhere (even uniformly) to $\mathbb{E}_{\mu} f$.

Facts 1 and 2 are easily verified and Fact 3 is a consequence of Fact 1 ([1]).
Let us now prove the estimate in Theorem 2. By Facts 3 and 2, we have

$$
\mathbb{E}_{\mu} f_{n} f_{n+p}=\lim _{N \rightarrow \infty} \mathbb{E}_{\mu}\left(f_{n} f_{n+p} \mid \mathcal{F}^{N}\right)=\lim _{N \rightarrow \infty} \sum_{\gamma \in \Gamma_{N}} f_{n}(\gamma x) f_{n+p}(\gamma x) F_{N}(\gamma x)
$$

Let $\widetilde{f}_{n}(x)=f_{n}\left(x_{1}, \ldots, x_{n+p-1}, 0, \ldots\right)$. As $f_{n}=f_{n}-\widetilde{f}_{n}+\widetilde{f}_{n}$, the sum under the limit is bounded by

$$
\omega_{n+p-1}\left(f_{n}\right) \sum_{\gamma \in \Gamma_{N}}\left|f_{n+p}(\gamma x)\right| F_{N}(\gamma x)+\left|\sum_{\gamma \in \Gamma_{N}} \widetilde{f}_{n}(\gamma x) f_{n+p}(\gamma x) F_{N}(\gamma x)\right| .
$$

Again by Facts 2 and 3, the first sum in the preceding expression has the limit

$$
\lim _{N \rightarrow \infty} \sum_{\gamma \in \Gamma_{N}}\left|f_{n+p}(\gamma x)\right| F_{N}(\gamma x)=\mathbb{E}_{\mu}\left|f_{n+p}\right|
$$

Since the function $\widetilde{f}_{n}(x)$ depends only upon the first $n+p-1$ coordinates and the function f_{n+p} does not depend upon the first $n+p-1$ coordinates, the second sum can be written as

$$
\left(\sum_{\gamma^{\prime} \in \Gamma_{n+p-1}} \widetilde{f}_{n}\left(\gamma^{\prime} x\right) F_{n+p-1}\left(\gamma^{\prime} x\right)\right)\left(\sum_{\gamma^{\prime \prime} \in X_{n+p} \times \ldots \times X_{N}} f_{n+p}\left(\gamma^{\prime \prime} x\right) \prod_{j=n+p}^{N} \mu_{j}\left(\gamma^{\prime \prime} x\right)\right) .
$$

The first factor in the preceding product is independent of N and the second one equals $\mathbb{E}_{\mu}\left(f_{n+p} \mid \mathcal{F}^{N}\right)$ and thus tends to $\mathbb{E}_{\mu} f_{n+p}=0$ as $N \rightarrow \infty$. This completes the proof of Theorem 2.
3. Some lemmas. Suppose the conditions of Theorem 1 are satisfied. Before giving the proof of Theorem 1 in the next section, we give here some lemmas.

Recall that $\mathbb{T}^{d}=\mathbb{R}^{d} / \mathbb{Z}^{d}$ is a quotient space. For simplicity, we introduce the following notation. Let π be the natural projection from \mathbb{R}^{d} onto $\mathbb{R}^{d} / \mathbb{Z}^{d}$. For $x \in \mathbb{R}^{d}$, we write $\dot{x}=\pi(x)$. By extension, if F is a map with values in \mathbb{R}^{d}, we write $\dot{F}=\pi \circ F$. Similarly, if t is a point of \mathbb{T}^{d} and G is a subgroup of \mathbb{T}^{d}, we define $[t]_{G}=t+G$ which is the natural projection from \mathbb{T}^{d} into \mathbb{T}^{d} / G.

Let Φ be an endomorphism of \mathbb{R}^{d} defined by a nonsingular matrix with integer entries and Ψ be its inverse. We denote by φ the induced homomorphism of Φ on \mathbb{T}^{d}. Then the relation between φ and Φ is $\pi \circ \Phi=\varphi \circ \pi$, i.e.

$$
\begin{equation*}
\dot{\Phi}(x)=\varphi(\dot{x}) \tag{7}
\end{equation*}
$$

The first lemma gives a correspondence between $\mathbb{T}^{d} / \operatorname{Ker} \varphi$ and $\dot{\Psi}(D)$ where D is the hypercube $[0,1)^{d}$.

LEmma 1. The map $\pi_{\varphi}: \dot{\Psi}(D) \rightarrow \mathbb{T}^{d} / \operatorname{Ker} \varphi$ defined by $\pi_{\varphi}(t)=[t]_{\operatorname{Ker} \varphi}$ is one-to-one.

Proof. As $D+\mathbb{Z}^{d}=\mathbb{R}^{d}$ and Ψ is nonsingular, we have the equality

$$
\Psi(D)+\Psi\left(\mathbb{Z}^{d}\right)=\mathbb{R}^{d} .
$$

Notice that $\operatorname{Ker} \varphi=\Psi\left(\mathbb{Z}^{d}\right) / \mathbb{Z}^{d}$. Thus the preceding equality implies that

$$
\dot{\Psi}(D)+\operatorname{Ker} \varphi=\mathbb{T}^{d} .
$$

This equality implies the surjectivity of π_{φ}. Suppose now we are given two
points s and t in $\dot{\Psi}(D)$. Suppose that $[s]_{\operatorname{Ker} \varphi}=[t]_{\operatorname{Ker} \varphi}$. We then have

$$
\varphi(s)=\varphi(t)
$$

But $s=\dot{\Psi}(x)$ for some $x \in D$ and $t=\dot{\Psi}(y)$ for some $y \in D$. These facts, together with (7) and the last equality, imply $\dot{\Phi} \Psi(x)=\dot{\Phi} \Psi(y)$, which means $x=y\left(\bmod \mathbb{Z}^{d}\right)$. Thus $s=t$, so we have proved the injectivity.

For $n \geq 1$, we denote by Φ_{n} the endomorphism $T_{n} T_{n-1} \ldots T_{1}$ and by φ_{n} the induced homomorphism on \mathbb{T}^{d}. Let

$$
G_{n}=\operatorname{Ker} \varphi_{n}, \quad G^{n}=\mathbb{T}^{d} / G_{n}
$$

Obviously, $\left\{G_{n}\right\}_{n \geq 1}$ is an increasing sequence of finite subgroups of \mathbb{T}^{d}. By Lemma $1, G^{n}$ is identified with $\dot{\Psi}_{n}(D)$. Now we introduce

$$
H_{n}=G_{n} / G_{n-1} \quad(N \geq 1)
$$

$\left(G_{0}=\{0\}\right)$.
Lemma 2. Given a point $h \in H_{n}$, there is one and only one point $t \in$ $G_{n} \cap \dot{\Psi}_{n-1}(D)$ such that $h=[t]_{G_{n-1}}$.

Proof. Let $t_{0} \in G_{n}$ be a representative of h. As $\dot{\Psi}_{n-1}(D)+G_{n-1}=\mathbb{T}^{d}$, there exist a $g \in G_{n-1}$ and a $t \in \dot{\Psi}_{n-1}(D)$ such that $t_{0}=t+g$. So $h=[t]_{G_{n-1}}$ and $t \in G_{n} \cap \dot{\Psi}_{n-1}(D)$ since $g \in G_{n-1} \subset G_{n}$. Such a t is unique since each point of $\dot{\Psi}_{n-1}(D)$ corresponds to a unique coset of G_{n}.

Let $\|\cdot\|$ be a norm of \mathbb{R}^{d}. We introduce the associated quotient metric on \mathbb{T}^{d} defined by

$$
d(x, y)=\inf _{z \in \mathbb{Z}^{d}}\|(x-y)-z\| .
$$

This metric on \mathbb{T}^{d} is invariant under translations. We sometimes write $d(x, y)=\|x-y\|_{\mathbb{T}^{d}}$. For two subsets A and B of \mathbb{T}^{d}, we denote by $d(A, B)$ the distance from A to B. By the two preceding lemmas, G^{n} and H_{n} can be identified with subsets of \mathbb{T}^{d}. From now on G^{n} and H_{n} will denote their corresponding subsets on \mathbb{T}^{d}. The following fact is evident.

Lemma 3. $d\left(0, G^{n}\right) \leq\left\|\Psi_{n}\right\|$ and $d\left(0, H_{n}\right) \leq\left\|\Psi_{n-1}\right\|$.
We therefore construct the infinite product $X=\prod_{n=1}^{\infty} H_{n}$ equipped with the usual ultrametric, and the map $q: X \rightarrow \mathbb{T}^{d}$ defined by

$$
q\left(h_{1}, h_{2}, \ldots\right)=\sum_{n=1}^{\infty} h_{n}
$$

Lemma 4. The map $q: X \rightarrow \mathbb{T}^{d}$ is continuous and surjective.
Proof. We have the continuity because of (2) which implies

$$
\sum_{n}\left\|T_{1}^{-1} \ldots T_{n}^{-1}\right\|<\infty
$$

Let $\Gamma_{n}=\prod_{j=1}^{n} H_{j}$. Then Γ_{n} can be regarded as a subset of X. Consider the restriction of q to Γ_{n}. We claim that $q\left(\Gamma_{n}\right)=G_{n}$. In fact, first we observe that $q\left(\Gamma_{n}\right) \subset G_{n}$. Suppose $h_{j}^{\prime}, h_{j}^{\prime \prime} \in H_{j}(1 \leq j \leq n)$ and

$$
h_{1}^{\prime}+\ldots+h_{n}^{\prime}=h_{1}^{\prime \prime}+\ldots+h_{n}^{\prime \prime}
$$

Then $h_{n}^{\prime}-h_{n}^{\prime \prime} \in G_{n-1}$. According to Lemma 1 , this is impossible unless $h_{n}^{\prime}=h_{n}^{\prime \prime}$. By induction, it follows that $h_{j}^{\prime}=h_{j}^{\prime \prime}(1 \leq j \leq n)$. This proves the injectivity of the restriction of q to Γ_{n}. However, the cardinality of Γ_{n} is the same as that of G_{n}, so $q\left(\Gamma_{n}\right)=G_{n}$. By condition (2), the union of $G_{n}(n \geq 1)$ is dense in G. Thus the closure of the image of q is G. But X is compact and hence q is surjective.

Let $\left\{\mu_{n}\right\}$ be the sequence of probability mesures defined by

$$
\mu_{n}(h)=\left|H_{n}\right|^{-1} \quad\left(h \in H_{n}\right) .
$$

Let $\mu=\bigotimes_{n=1}^{\infty} \mu_{n}$ and let $q \mu$ be the image by q of μ. That is to say, $q \mu$ is the measure on \mathbb{T}^{d} characterized by

$$
\begin{equation*}
\int_{\mathbb{T}^{d}} f d q \mu=\int_{X} f \circ q d \mu \quad\left(f \in \mathcal{C}\left(\mathbb{T}^{d}\right)\right) \tag{8}
\end{equation*}
$$

Lemma 5. If μ is defined as above, then $q \mu$ is Haar measure λ on \mathbb{T}^{d}.
Proof. $\left\{\gamma+G^{n}\right\}_{\gamma \in G_{n}}$ being a partition of \mathbb{T}^{d}, we have

$$
\lambda\left(\gamma+G^{n}\right)=\frac{1}{\left|G_{n}\right|} \quad\left(\gamma \in G_{n}\right)
$$

because

$$
\sum_{\gamma \in G_{n}} \lambda\left(\gamma+G^{n}\right)=1 \quad \text { and } \quad \lambda\left(\gamma+G^{n}\right)=\lambda\left(G^{n}\right)
$$

Now given $f \in \mathcal{C}\left(\mathbb{T}^{d}\right)$, we have by Fact 2 ,

$$
\int_{X} f \circ q d \mu=\lim _{n \rightarrow \infty} \mathbb{E}_{\mu}\left(f \circ q \mid \mathcal{F}^{n}\right)=\lim _{n \rightarrow \infty} \sum_{h_{1}, \ldots, h_{n}} f \circ q\left(h_{1}, \ldots, h_{n}, x_{n+1}, \ldots\right) .
$$

Given $\varepsilon>0, f$ being uniformly continuous, there is a $\delta>0$ such that $\mid f(x)-$ $f(y) \mid \leq \varepsilon$ if $\|x-y\|_{\mathbb{T}^{d}}<\delta$. Choose an $N>0$ such that $\sum_{n \geq N} d\left(0, G^{n}\right)<\delta$.
Then for $n \geq N$ we have

$$
\frac{1}{\left|G_{n}\right|} \sum_{h_{1}, \ldots, h_{n}} f \circ q\left(h_{1}, \ldots, h_{n}, x_{n+1}, \ldots\right)=\sum_{\gamma \in G_{n}} f(\gamma) \lambda\left(\gamma+G^{n}\right)+O(\varepsilon) .
$$

The last sum tends to $\int f d \lambda$ as $N \rightarrow \infty$.
4. Proof of Theorem 1. Recall that a sequence $\left\{h_{n}\right\}_{n \geq 1}$ of elements in a Hilbert space is said to be quasi-orthogonal if the bilinear form

$$
\sum_{n, m}\left\langle h_{n}, h_{m}\right\rangle a_{n} b_{m}
$$

on $\ell^{2}\left(\mathbb{N}^{*}\right) \times \ell^{2}\left(\mathbb{N}^{*}\right)$ is bounded. Suppose that the Hilbert space is $L^{2}(X, \mu)$ for some measure space (X, μ). For a quasi-orthonormal sequence $\left\{h_{n}\right\} \subset$ $L^{2}(\mu)$, we may apply Men'shov's theorem ([9]), which says that the series $\sum c_{n} h_{n}(x)$ converges μ-a.e. provided the numerical series $\sum\left|c_{n}\right|^{2} \log ^{2} n$ converges. So, in order to prove Theorem 1, it suffices ([2], p. 237) to show the following estimate, uniform in n :

$$
\begin{equation*}
\int_{\mathbb{T}^{d}} f_{n}\left(T_{n} T_{n-1} \ldots T_{1} x\right) f_{n+p}\left(T_{n+p} T_{n+p-1} \ldots T_{1} x\right) d x=O\left(p^{-\sigma}\right) \tag{9}
\end{equation*}
$$

In fact, let $h_{n}(x)=f_{n}\left(T_{n} T_{n-1} \ldots T_{1} x\right)$. If $\sigma>1$, the sequence $\left\{h_{n}\right\}$ is quasiorthogonal. If $\sigma=1$, the sequence $\left\{n^{-\varepsilon / 2} h_{n}\right\}(\forall \varepsilon>0)$ is quasi-orthogonal. If $\sigma<1$, the sequence $\left\{n^{-(1-\sigma) / 2} h_{n}\right\}$ is quasi-orthogonal.

Now we deduce (9) from Theorem 2.
According to Lemma 5, we consider the sequence $f_{n} \circ \Phi_{n} \circ q(n \geq 1)$ defined on X and apply Theorem 2 to it. Then to prove (9), it suffices to show

$$
\begin{equation*}
\omega_{n+p-1}\left(f_{n} \circ \Phi_{n} \circ q\right)=O\left(p^{-\sigma}\right) \tag{10}
\end{equation*}
$$

Suppose $x=\left(x_{j}\right)$ and $y=\left(y_{j}\right)$ belong to X and satisfy $x_{j}=y_{j}$ for $1 \leq j \leq n+p-1$. We have

$$
q(x)-q(y)=\sum_{j=n+p}^{\infty}\left(x_{j}-y_{j}\right) .
$$

As $x_{j}, y_{j} \in H_{j} \subset G^{j-1}$, Lemma 2 implies that there exist $\xi_{j}^{\prime}, \xi_{j}^{\prime \prime} \in D$ such that

$$
x_{j}=\Psi_{j-1} \xi_{j}^{\prime}, \quad y_{j}=\Psi_{j-1} \xi_{j}^{\prime \prime} \quad\left(\bmod \mathbb{Z}^{d}\right)
$$

Then

$$
\begin{aligned}
\left\|\Phi_{n} \circ q(x)-\Phi_{n} \circ q(y)\right\|_{\mathbb{T}^{d}} & \leq\left\|\Phi_{n}\left(\sum_{j=n+p}^{\infty} \Psi_{j}\left(\xi_{j}^{\prime}-\xi_{j}^{\prime \prime}\right)\right)\right\| \\
& =\left\|\sum_{j=n+p}^{\infty} \Phi_{n} \Psi_{j}\left(\xi_{j}^{\prime}-\xi_{j}^{\prime \prime}\right)\right\|=\sum_{j=n+p}^{\infty}\left\|T_{n+1}^{-1} \ldots T_{j}^{-1}\right\| .
\end{aligned}
$$

With this in mind, we can deduce (10) from (2).
Proof of Corollary. Let ϱ be the spectral radius of T^{-1}. By the hypothesis, $\varrho<1$. Let $\varrho<\varrho_{1}<1$. For n sufficiently large we have
$\left\|T^{-n}\right\|<\varrho_{1}^{n}$. Consequently,

$$
\tau_{n, p}=O\left(\sum_{k=0}^{\infty} \varrho_{1}^{p+k}\right)=O\left(\varrho_{1}^{p}\right)
$$

This estimate and the hypothesis on f allow us to verify condition (2) of Theorem 1 with $\sigma>0$.

REFERENCES

[1] G. Brown and A. H. Dooley, Odometer actions on G-measures, Ergodic Theory Dynamical Systems, 11 (1991), 279-307.
[2] M. Kac, R. Salem and A. Zygmund, A gap theorem, Trans. Amer. Math. Soc. 63 (1948), 235-243.
[3] S. Kakutani and K. Petersen, The speed of convergence in the Ergodic Theorem, Monatsh. Math. 91 (1981), 11-18.
[4] K. Petersen, Ergodic Theory, Cambridge Univ. Press, 1983.
[5] D. A. Raikov, On some arithmetical properties of summable functions, Mat. Sb .1 (43) (1936), 377-384 (in Russian).
[6] F. Riesz, Sur la théorie ergodique, Comment. Math. Helv. 17 (1944-1945), 217-248.
[7] J. Rosenblatt, Convergence of series of translations, Math. Ann. 230 (1977), 245272.
[8] J. Rosenblatt and A. del Junco, Counterexamples in ergodic theory and number theory, Math. Ann. 245 (1979), 185-197.
[9] A. Zygmund,Trigonometric Series, Vols. I and II, Cambridge Univ. Press, 1959.

MATHÉMATIQUES (BÂT. I)
UNIVERSITÉ DE CERGY-PONTOISE
8, LE CAMPUS
95033 CERGY-PONTOISE, FRANCE
E-mail: FAN@N-CERGY.FR

Reçu par la Rédaction le 31.1.1994;
en version modifiée le 8.7.1994

