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A SINGULAR INITIAL VALUE PROBLEM FOR SECOND
AND THIRD ORDER DIFFERENTIAL EQUATIONS

BY

WOJCIECH M Y D L A R C Z Y K (WROC LAW)

1. Introduction. In this paper we consider two nonlinear second and
third order differential equations with homogeneous initial values. First we
study the equation

(1.1) u′′(x) = g(x)u(x)β (x > 0, −1 < β < 1),

with the initial condition

(1.2) u(0) = u′(0) = 0.

Next we apply the existence and uniqueness results obtained for the problem
(1.1), (1.2) to the study of the initial value problem

u′′′ = g(u(x)),(1.3)
u(0) = u′(0) = u′′(0) = 0.(1.4)

Throughout the paper we assume that g satisfies the conditions

g ∈ C(0,∞), g(x) ≥ 0 for x > 0,(1.5)
there exists m ≥ 0 such that xmg(x) is bounded as x → 0+,(1.6)

0 <
δ∫

0

g(s)sβ ds < ∞ for some δ > 0.(1.7)

Recently the equation (1.1) with g ≤ 0 and −1 < β < 0 was considered in
[3], [4] as a model for some problems of applied mathematics. Unfortunately,
the technical arguments used therein involved the concavity properties of
solutions. Therefore those methods are inapplicable in our case, where u is
convex.

The results obtained in this paper generalize previous ones in [8], where
the initial value problem (1.3), (1.4) was considered with g satisfying (1.6)
with m = 1/2.
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We are interested in the existence of nonnegative solutions u ∈ C[0,∞)∩
C2(0,∞) to the problem (1.1), (1.2) and we study the maximal solution of
this problem in the sense of [6].

Using the method of the initial values perturbation we see that the initial
value problem

u′′ε (x) = g(x)uε(x)β (x > ε),
uε(ε) = u′ε(ε) = 0,

where 0 < β < 1 and ε > 0 is chosen so that g(ε) > 0, has a solution uε

positive for x > ε. Taking uε(x) = 0 for 0 ≤ x < ε the function uε becomes
a solution of (1.1), (1.2). Hence it follows easily that in the case 0 < β < 1
the maximal solution of (1.1), (1.2), if it exists, is positive for x > 0. If
−1 < β ≤ 0 the same result is obtained immediately.

Before stating our results we introduce some auxiliary definitions and
notations.

Let g satisfy (1.5), (1.6). We put

(1.8) g∗(x) = x−m sup
0<s<x

smg(s) for x > 0.

We easily see that g(x) ≤ g∗(x) for x > 0 and xmg∗(x) is nondecreasing.
We will deal with two function classes K0 and K∗ defined as follows:

K0 = {g : g satisfies (1.5), (1.6) and xmg(x) is nondecreasing},
K∗ = {g : g satisfies (1.5)–(1.7) and sup

0<x
G∗(x)/G(x) < ∞},

where

G(x) =
x∫

0

g(s)sβ ds, G∗(x) =
x∫

0

g∗(s)sβ ds.

Some a priori estimates of solutions to (1.1), (1.2) are established in the
following theorem and remark.

Theorem 1.1. Let g ∈ K0, −1 < β < 1 and u be a solution to (1.1),
(1.2) positive for x > 0. Then there exist constants c1, c2 > 0 such that

(1.9) c1x

(
u(x)

x

)1−β

≤
x∫

0

(x− s)g(s)sβ ds ≤ c2x

(
u(x)

x

)1−β

.

R e m a r k 1.1. If g ∈ K∗ and− 1 < β ≤ 0, then the a priori estimates in
(1.9) are still valid.

The existence result for (1.1), (1.2) is stated in the following theorem
and its corollary.

Theorem 1.2. Let g ∈ K0. Then the condition (1.7) is necessary and
sufficient for the existence of a unique solution to the problem (1.1), (1.2)
positive for x > 0.
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Corollary 1.2. Let g ∈ K∗. Then the problem (1.1), (1.2) has a max-
imal solution. If −1 < β ≤ 0, then it is the unique solution positive for
x > 0.

The above results applied to the study of the problem (1.3), (1.4) allow
us to obtain

Theorem 1.3. Let g ∈ K∗. Then the problem (1.3), (1.4) has a unique
continuous solution u positive for x > 0 if and only if

(1.10)
δ∫

0

{
s1/2

s∫
0

(s− t)g(t)t−1/2 dt
}−1/3

ds < ∞

for some δ > 0.

We also give a condition for the blow-up of solutions which means that
there exists 0 < L < ∞ such that limx→L− u(x) = ∞.

Theorem 1.4. Let g ∈ K∗. The continuous solution u to (1.3), (1.4)
positive for x > 0 blows up if and only if

∞∫
0

{
s1/2

s∫
0

(s− t)g(t)t−1/2 dt
}−1/3

ds < ∞.

The condition (1.10) is called the generalized Osgood condition for the
problem (1.3), (1.4). Such conditions for ordinary differential equations
u(n)(x) = g(u(x)) with homogeneous initial values, and more generally for
convolution type integral equations u(x) =

∫ x

0
k(x− s)g(u(s)) ds, have been

widely studied (see [5], [7], [2]). Unfortunately, only the case of nondecreas-
ing functions g was considered there. Theorems 1.3 and 1.4 of the present
paper are corresponding results obtained for functions g which can oscillate
at 0. Some examples of the problem (1.3), (1.4) with g like |sin(1/x)| have
been given in [8].

2. Proofs of theorems. Technical arguments used in our consider-
ations employ the fact that the considered solutions u are convex. Some
properties of convex functions needed in the sequel are collected in the fol-
lowing lemma.

Lemma 2.1. Let w′′(x) ≥ 0 for x > 0 and w(x) =
∫ x

0
(x − s)w′′(s) ds.

Then

(i) xw′ − w and w/x are nondecreasing for x > 0;

if xmw′′ is nondecreasing for some m ≥ 0, then

(ii) (xw′ − w)2 ≤ 2x2w′′w + mw(xw′ − w) (x > 0);
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if w′′ ∈ K∗, then for each γ ∈ (−1/2,∞) there exist constants c1(γ), c2(γ)
> 0 such that

c1(γ)x
(

w(x)
x

)1+γ

≤
x∫

0

(x− s)w′′(s)
(

w(s)
s

)γ

ds(iii)

≤ c2(γ)x
(

w(x)
x

)1+γ

(x > 0).

P r o o f. The property (i) is well known for convex functions.
Since xw′ − w and xmw′′ are nondecreasing, (ii) can be obtained as

follows:

xm(xw′ − w)2 = 2
x∫

0

sm+1w′′(sw′ − w) ds + m
x∫

0

sm−1(sw′ − w)2 ds

≤ 2xm+2w′′w + mxmw(xw′ − w) (x > 0).

To prove (iii) we first consider an auxiliary function w̃ defined by w̃(x) =∫ x

0
(x− s)(w′′)∗(s) ds, where (w′′)∗ is defined by (1.8). We will show that w̃

satisfies (iii). Since xmw̃′′ is nondecreasing and

1
1 + γ

(
x

(
w̃(x)

x

)1+γ)′′
= w̃′′(x)

(
w̃(x)

x

)γ

+ γx−3(xw̃′(x)− w̃(x))2
(

w̃(x)
x

)γ−1

(γ 6= −1),

the required estimates will be obtained by an application of (ii).
In the case −1/2 < γ ≤ 0 we derive the inequalities

1
1 + γ

(
x

(
w̃(x)

x

)1+γ)′′
≤ w̃′′(x)

(
w̃(x)

x

)γ

;

(2.1) (1 + 2γ)w̃′′(x)
(

w̃(x)
x

)γ

≤ 1
1 + γ

(
x

(
w̃(x)

x

)1+γ)′′
− mγ

1 + γ

((
w̃(x)

x

)1+γ)′
valid for x > 0, which give the inequality (iii) for w̃ with

c̃1(γ) =
1

1 + γ
and c̃2(γ) =

1−mγ

(1 + γ)(1 + 2γ)
.

In the case γ > 0 we can proceed as previously to derive two inequalities
as (2.1) with reverse signs, from which it follows that the right inequality
in (iii) is true for any γ > 0 with c̃2(γ) = 1/(1 + γ) and the left one for
0 < γ < 1/m with c̃1(γ) = (1−mγ)/((1 + γ)(1 + 2γ)).
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To complete the proof of (iii) for w̃ we employ the Jensen inequality

1
w̃(x)

x∫
0

(x− s)w̃′′(s)
(

w̃(s)
s

)nγ

ds ≥
(

1
w̃(x)

x∫
0

(x− s)w̃′′(s)
(

w̃(s)
s

)γ

ds

)n

valid for γ > 0 and n > 1.
We also easily verify that

(2.2) lim
γ→0+

c̃1(γ) = lim
γ→0+

c̃2(γ) = 1.

Now we are ready to consider w. By the definition of K∗ we have

(2.3) Aw̃′(x) ≤ w′(x) ≤ w̃′(x) (x > 0),
for some constant 0 < A < 1. Since w′′(x) ≤ w̃′′(x), from (2.3) we get

w′′(x)
(

w(x)
x

)γ

≤ max(1, Aγ)w̃′′(x)
(

w̃(x)
x

)γ

(x > 0, γ > −1/2),

which gives the right inequality in (iii) with c2(γ) = max(1, Aγ)A−(1+γ)c̃2(γ)
for γ > −1/2.

We prove the left inequality in two steps.
When γ ∈ (−1/2, 0], the proof is easy because (w(s)/s)γ is a nonincreas-

ing function. In that case we can take c1(γ) = 1.
In the case γ > 0 we first observe that

(2.4)
x∫

0

(x− s)w′′(s)
(

w(s)
s

)γ

ds ≥ Aγ
x∫

0

(x− s)w′′(s)
(

w̃(s)
s

)γ

ds

for x > 0. An integration by parts applied to the integral on the right hand
side and an application of (2.3) allow us to write

(2.5)
x∫

0

(x− s)w′′(s)
(

w̃(s)
s

)γ

ds ≥
x∫

0

(x− s)w̃′′(s)
(

w̃(s)
s

)γ

ds

+ (A− 1)
x∫

0

w̃′(s)
(

w̃(s)
s

)γ

ds (x > 0).

The second integral on the right hand side can be estimated as follows:

1
1 + γ

x

(
w̃(x)

x

)1+γ

≤
x∫

0

w̃′(x)
(

w̃(s)
s

)γ

ds(2.6)

≤ x

(
w̃(x)

x

)1+γ

(x > 0).

Combining (2.4)–(2.6) we get
x∫

0

(x− s)w′′(s)
(

w(s)
s

)γ

ds ≥ c1(γ)x
(

w̃(x)
x

)1+γ

(x > 0)
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with c1(γ) = Aγ(c̃1(γ) + A− 1). Since in view of (2.2), limγ→0+ c1(γ) = A,
the left inequality in (iii) is valid for small 0 < γ. For other values of γ > 0,
we can use the same arguments as those based on the application of the
Jensen inequality used in the case of w̃.

The a priori estimates for solutions to the problem (1.1), (1.2) can be
derived as follows.

Proof of Theorem 1.1. First we note that u′′(s)(u(s)/s)−β = g(s)sβ .
We obtain, as in the proof of Lemma 1.1(ii), the inequality

xm(xu′ − u)2 = 2
x∫

0

sm+3u′′(s)
(

u(s)
s

)−β(
u(s)

s

)′(
u(s)

s

)β

ds

+ m
x∫

0

sm−1(su′ − u)2 ds

≤ 2
1 + β

xm+2u′′u + mxmu(xu′ − u)

valid for x > 0, from which it follows that

(2.7) (xu′(x)− u(x))2

≤ 2
1 + β

x2u′′(x)u(x) + mu(x)(xu′(x)− u(x)) (x > 0).

Since

(2.8)
1

1− β

(
x

(
u(x)

x

)1−β)′′
= u′′(x)

(
u(x)

x

)−β

− βx−3(xu′(x)− u(x))2
(

u(x)
x

)−β−1

(x > 0),

in the case 0 < β we can apply (2.7) to obtain the following two inequalities:

1
1− β

(
x

(
u(x)

x

)1−β)′′
≤ u′′(x)

(
u(x)

x

)−β

,

1− β

1 + β
u′′(x)

(
u(x)

x

)−β

≤ 1
1− β

(
x

(
u(x)

x

)1−β)′′
+

mβ

1− β

((
u(x)

x

)1−β)′
valid for x > 0, which give the required estimates with

c1 =
1

1− β
and c2 =

(1 + mβ)(1 + β)
(1− β)2

.

Now we can consider the case of −1 < β ≤ 0. From (2.8) we get

(2.9) 0 ≤ u′′(x)
(

u(x)
x

)−β

≤ 1
1− β

(
x

(
u(x)

x

)1−β)′′
(x > 0),

which gives the right inequality in (1.9) with c2 = 1/(1− β).
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The left inequality can be proved as follows. In view of (2.9) we define
an auxiliary function w(x) =

∫ x

0
(x− s)g(s)sβ ds and obtain the inequality

w(x) ≤ 1
1− β

x

(
u(x)

x

)1−β

(x > 0),

from which it follows that

0 ≤ u′′(x) = g(x)uβ(x)

≤ (1− β)β/(1−β)w′′(x)
(

w(x)
x

)β/(1−β)

(x > 0).

Since for −1 < β ≤ 0 we have −1/2 < β/(1 − β) ≤ 0, by an application of
Lemma 1.1(iii) we obtain the inequality

u(x) ≤ (1− β)β/(1−β)
x∫

0

(x− s)w′′(s)
(

w(s)
s

)β/(1−β)

ds

≤ c2x

(
w(x)

x

)1/(1−β)

valid for x > 0, from which the required inequality follows immediately.

P r o o f o f R e m a r k 1.1. The proof is exactly the same as that of
Theorem 1.1 in the case of −1 < β ≤ 0.

Now we are ready to consider the existence problem for (1.1), (1.2).

P r o o f o f T h e o r e m 1.2. In view of the proved a priori estimates the
necessity part of the theorem is obvious.

Now assuming that the condition (1.7) is satisfied we can define auxiliary
functions w(x) =

∫ x

0
(x− s)g(s)sβ ds and ϕ(x) = x(w(x)/x)1/(1−β) (x > 0).

We look for solutions to (1.1), (1.2) in the function cone

Xβ = {v ∈ C[0,∞) : there exist constants c1, c2 > 0 such that
c1ϕ(x) ≤ v(x) ≤ c2ϕ(x), x > 0},

as fixed points of the integral operator

Tβv(x) =
x∫

0

(x− s)g(s)vβ(s) ds

defined on Xβ . Since

Tβϕ(x) =
x∫

0

(x− s)w′′(s)(w(s)/s)β/(1−β) ds

and β/(1 − β) > −1/2 for −1 < β < 1, from Lemma 1.1(iii) and the
monotonicity properties of Tβ it follows that Tβ maps Xβ into Xβ .
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We introduce a pseudometric % in Xβ by

%(v1, v2) = ln
M(v1 | v2)
m(v1 | v2)

(v1, v2 ∈ Xβ),

where

m(v1 | v2) = inf
s>0

v1(s)
v2(s)

, M(v1 | v2) = sup
s>0

v1(s)
v2(s)

,

which becomes a metric %̃ in the quotient space X̃β = Xβ/∼, where

v1 ∼ v2 if and only if v1 = λv2 for some λ > 0.

Moreover, (X̃β , %̃) is a complete metric space (see [1], [9]).
Since Tβ(λv) = λβTβ(v) for any v ∈ Xβ and λ > 0, we can consider Tβ

on X̃β . From the monotonicity properties of Tβ it follows that

%̃(Tβ ṽ1, Tβ ṽ2) ≤ |β|%̃(ṽ1, ṽ2) for any ṽ1, ṽ2 ∈ X̃β ,

which allows us to find a unique solution u ∈ Xβ to the problem (1.1), (1.2)
by a contraction argument. In view of the a priori estimates (1.9) this must
be the unique solution of that problem positive for x > 0.

P r o o f o f C o r o l l a r y 1.2. The same arguments as those used in
the proof of Theorem 1.2 show that the problem (1.1), (1.2) has a unique
solution u in Xβ . We will prove that it is maximal.

In the case −1 < β ≤ 0 the proof is easy because in view of Remark 1.1,
u must be the unique continuous solution to (1.1), (1.2).

In the case 0 < β < 1, for any solution v to (1.1), (1.2) we get

v(x) =
x∫

0

(x− s)g(s)sβ

(
v(s)
s

)β

ds

≤
x∫

0

(x− s)g(s)sβ ds

(
v(x)
x

)β

(x > 0).

Hence it follows that v(x) ≤ ϕ(x) for x > 0. Therefore we can find a
constant c > 0 such that v(x) ≤ cu(x) for x > 0, and by using an iteration
process we obtain the inequality

v(x) = Tnv(x) ≤ Tn(cu)(x) = cβn

u(x) (x > 0),

which gives the required result as n →∞.

Now we consider the initial value problem for the third order differential
equation. Substituting v(x) = 2−2/3u′(u−1(x))2 in the problem (1.3), (1.4),
where u−1 is the inverse function to u, we see that v satisfies

(2.10)
v′′(x) = g(x)v−1/2(x) (x > 0)
v(0) = v′(0) = 0.
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P r o o f o f T h e o r e m s 1.3 a n d 1.4. Since v−1/2(x) = 21/3(u−1)′(x),
it suffices to apply the estimates

c1x

(
v(x)
x

)3/2

≤
x∫

0

(x− s)g(s)s−1/2 ds ≤ c2x

(
v(x)
x

)3/2

(x > 0)

for solutions of (2.10) obtained by Remark 1.1.
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