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AND THIRD ORDER DIFFERENTIAL EQUATIONS

BY
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1. Introduction. In this paper we consider two nonlinear second and
third order differential equations with homogeneous initial values. First we
study the equation

(1.1) u(z) = g(z)u(z)? (x>0, -1 <f<1),
with the initial condition
(1.2) u(0) = u/(0) = 0.

Next we apply the existence and uniqueness results obtained for the problem
(1.1), (1.2) to the study of the initial value problem

(1.3) W = g(u(x)),

(1.4) u(0) =« (0) = " (0) = 0.

Throughout the paper we assume that g satisfies the conditions
(1.5) g€ C(0,00), g(xz)>0 forx >0,

(1.6) there exists m > 0 such that 2™ g(x) is bounded as =z — 0+,

5
(1.7) 0< fg(s)sﬁ ds < oo for some § > 0.
0

Recently the equation (1.1) with g < 0 and —1 < 8 < 0 was considered in
(3], [4] as a model for some problems of applied mathematics. Unfortunately,
the technical arguments used therein involved the concavity properties of
solutions. Therefore those methods are inapplicable in our case, where u is
convex.

The results obtained in this paper generalize previous ones in [8], where
the initial value problem (1.3), (1.4) was considered with ¢ satisfying (1.6)
with m = 1/2.
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We are interested in the existence of nonnegative solutions u € C[0, 00)N
C?(0,00) to the problem (1.1), (1.2) and we study the maximal solution of
this problem in the sense of [6].

Using the method of the initial values perturbation we see that the initial
value problem

ul(z) = g(x)us(z)” (x> e),
ue(e) = ug(e) =0,
where 0 < f < 1 and € > 0 is chosen so that g(¢) > 0, has a solution u.
positive for z > e. Taking u.(z) = 0 for 0 < x < ¢ the function u. becomes
a solution of (1.1), (1.2). Hence it follows easily that in the case 0 < § < 1
the maximal solution of (1.1), (1.2), if it exists, is positive for = > 0. If
—1 < 8 <0 the same result is obtained immediately.
Before stating our results we introduce some auxiliary definitions and

notations.
Let g satisfy (1.5), (1.6). We put
= x_

(1.8) 9" (x) "

We easily see that g(z) < g*(z) for x > 0 and 2™ g*(z) is nondecreasing.
We will deal with two function classes Ky and K* defined as follows:

sup s™g(s) for x > 0.
0<s<z

Ko ={g: g satisfies (1.5), (1.6) and z™¢(x) is nondecreasing},
K* ={g : g satisfies (1.5)—(1.7) and sup G*(x)/G(z) < oo},
o<z

where
xr X

G(z) :fg(s)sﬁ ds, G*(x)= fg*(s)sﬁ ds.
0 0
Some a priori estimates of solutions to (1.1), (1.2) are established in the
following theorem and remark.

THEOREM 1.1. Let g € Ko, —1 < f < 1 and u be a solution to (1.1),
(1.2) positive for x > 0. Then there exist constants c1, co > 0 such that

(1.9) c1x<“(x"“")>lﬁ gof (z — s)g(s)s? ds < 62m<1ﬁ$)>1ﬁ.

Remark 1.1. If g € K* and — 1 < 3 <0, then the a priori estimates in
(1.9) are still valid.

The existence result for (1.1), (1.2) is stated in the following theorem
and its corollary.

THEOREM 1.2. Let g € Ky. Then the condition (1.7) is necessary and
sufficient for the existence of a unique solution to the problem (1.1), (1.2)
positive for x > 0.
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COROLLARY 1.2. Let g € K*. Then the problem (1.1), (1.2) has a maz-
imal solution. If —1 < B < 0, then it is the unique solution positive for
x> 0.

The above results applied to the study of the problem (1.3), (1.4) allow
us to obtain

THEOREM 1.3. Let g € K*. Then the problem (1.3), (1.4) has a unique
continuous solution u positive for x > 0 if and only if

s

o -1
(1.10) f{sl/z f(s—t)g(t)t—1/2dt} s < oo
0

0

for some 6 > 0.

We also give a condition for the blow-up of solutions which means that
there exists 0 < L < oo such that lim,_ .7 u(x) = oc.

THEOREM 1.4. Let g € K*. The continuous solution u to (1.3), (1.4)
positive for x > 0 blows up if and only if

j‘o{sl/Z f(s_t)g(t>t_l/2dt}1/3 b o
0 0

The condition (1.10) is called the generalized Osgood condition for the
problem (1.3), (1.4). Such conditions for ordinary differential equations
u(™ (z) = g(u(x)) with homogeneous initial values, and more generally for
convolution type integral equations u(z) = fow k(z — s)g(u(s)) ds, have been
widely studied (see [5], [7], [2]). Unfortunately, only the case of nondecreas-
ing functions g was considered there. Theorems 1.3 and 1.4 of the present
paper are corresponding results obtained for functions g which can oscillate
at 0. Some examples of the problem (1.3), (1.4) with g like |sin(1/z)| have
been given in [8].

2. Proofs of theorems. Technical arguments used in our consider-
ations employ the fact that the considered solutions u are convex. Some
properties of convex functions needed in the sequel are collected in the fol-
lowing lemma.

LEMMA 2.1. Let w"(z) > 0 for x > 0 and w(x) = fox(a: — s)w’(s) ds.
Then

(i) zw’ —w and w/x are nondecreasing for x > 0;
if x™w" is nondecreasing for some m > 0, then

(ii) (zw’ —w)? < 22%w"w +mw(zw’ —w) (x> 0);
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if w" € K*, then for each v € (—1/2,00) there exist constants c1(7y), ca(7)
> 0 such that

@ abs(42) e f (a =) (22} s

T S

< c2<v>x<“’(‘””)>w (0 > 0).

x

Proof. The property (i) is well known for convex functions.
Since zw’ — w and x™w” are nondecreasing, (ii) can be obtained as
follows:

2" (2w — w)? =2 f s (sw’ — w) ds +m f s (sw' —w)? ds
0 0

< 222" w + ma™w(zw —w) (x> 0).
To prove (iii) we first consider an auxiliary function w defined by w(x) =

Jy (@ = s)(w")*(s) ds, where (w")* is defined by (1.8). We will show that @

satisfies (iii). Since z™w"” is nondecreasing and

)Y N

— () (ﬁ“) il (@) — B())? (“’(3“)) (£ 1),

x x

the required estimates will be obtained by an application of (ii).
In the case —1/2 < v < 0 we derive the inequalities

) o)

(2.1) (14 27)@"(x) (@(1‘))7

X

L)Y ()

valid for = > 0, which give the inequality (iii) for w with

_ 1 —my
144y 1+9)(1+2y)

In the case v > 0 we can proceed as previously to derive two inequalities
as (2.1) with reverse signs, from which it follows that the right inequality
in (iii) is true for any v > 0 with ¢2(y) = 1/(1 + ) and the left one for
0 <y <1/mwith ¢ (y) = (1—my)/((1+7)(1+27)).

c1(v) and  ¢ca(y) = (
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To complete the proof of (iii) for w we employ the Jensen inequality

@f(x—s)m(s)(wis))m ds > <a(1x) f(a:—s)fﬁ”(s)<wis)>7ds>n

0

valid for v > 0 and n > 1.
We also easily verify that

(2.2) lim ¢(y) = lim ¢c(y) = 1.
¥—0+ ¥—0+
Now we are ready to consider w. By the definition of I* we have
(2.3) Aw' (z) <w'(x) <w'(x) (x> 0),

for some constant 0 < A < 1. Since w”(z) < w”(x), from (2.3) we get

W' (z) <“’(””)>7 < max(1, A")@" (z) (M)” (x>0, 7> —1/2),

T xT

which gives the right inequality in (iii) with cp () = max(1, A7) A~ (v)
for v > —1/2.

We prove the left inequality in two steps.

When v € (—1/2,0], the proof is easy because (w(s)/s)” is a nonincreas-
ing function. In that case we can take c;(vy) = 1.

In the case v > 0 we first observe that
(2.4) f (x — s)w"(s) <w(s)> ds > A7 f (x — s)w"(s) <w(s)> ds

0 5 0 5

for x > 0. An integration by parts applied to the integral on the right hand
side and an application of (2.3) allow us to write

x

(2.5) f(x—s)w"(s)(wis))vds Zj(m—s)@”(s)<w)7ds

§ S
T ~ 2l
+(A-1) fw’(s)<“’(3)> ds (z>0).
g S
The second integral on the right hand side can be estimated as follows:

(2.6) Hlvx(w;“))lﬂ < f {17’(56)<@€(:)>’de

0

< x({g(@)“” (x > 0).

T
Combining (2.4)—(2.6) we get

f w2 a5z ame(") T @)

S T
0
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with ¢1(y) = AY(¢1(y) + A —1). Since in view of (2.2), lim, o+ c1(y) = A4,
the left inequality in (iii) is valid for small 0 < . For other values of v > 0,
we can use the same arguments as those based on the application of the
Jensen inequality used in the case of w.

The a priori estimates for solutions to the problem (1.1), (1.2) can be
derived as follows.

Proof of Theorem 1.1. First we note that u”(s)(u(s)/s)™? = g(s)s”.
We obtain, as in the proof of Lemma 1.1(ii), the inequality

ot 2 s (400) 7 (40) (40)',

0

+m fs"“l(su’ —u)?ds
0

2
< 220"+ mau(xu’ — u
—1+p ( )

valid for z > 0, from which it follows that
2.7)  (2u/(x) —u(x))?

IA
[\]
8
N
:\
—~
oy
g
—~
8
~
+
3
£
—~
8
~—
8
£
&
|
A
8
Nt
—~
8
\
=

X

— o) (M) et () — () (1)) s,

in the case 0 < 3 we can apply (2.7) to obtain the following two inequalities:

) Y s )
() < ) Y () )

valid for z > 0, which give the required estimates with

1 1+mB)(1+ 0
Cl:m and 62:( (Tln_)é)z )

Now we can consider the case of —1 < 3 < 0. From (2.8) we get

(29)  0<u(2) (“f:))_ﬁ <= ! 6( (““’)y_ﬁ)” (x> 0),

which gives the right inequality in (1.9) with ¢co = 1/(1 — ().
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The left inequality can be proved as follows. In view of (2.9) we define
an auxiliary function w(z) = [;'(z — s)g(s)s” ds and obtain the inequality

O e ]

from which it follows that
0 <u(z) = g(x)u’ (x)
B/(1-8)
< (1= ) ) (M) (o> 0).

Since for —1 < 3 < 0 we have —1/2 < 3/(1 — ) < 0, by an application of
Lemma 1.1(iii) we obtain the inequality

w(s) > B/(1-p3) s

S

) £ (=90 [ @ sy (o)
0

1/(1-p)
< 02$<w(x))

xT

valid for z > 0, from which the required inequality follows immediately.

Proof of Remark 1.1. The proof is exactly the same as that of
Theorem 1.1 in the case of —1 < 8 < 0.

Now we are ready to consider the existence problem for (1.1), (1.2).

Proof of Theorem 1.2. In view of the proved a priori estimates the
necessity part of the theorem is obvious.

Now assuming that the condition (1.7) is satisfied we can define auxiliary
functions w(z) = [; (z — s)g(s)s” ds and ¢(z) = z(w(z)/z)/=7) (2 > 0).
We look for solutions to (1.1), (1.2) in the function cone

Xz = {v € C]0,00) : there exist constants ¢, ca > 0 such that
crp(x) < v(z) < cpp(x), x>0},

as fixed points of the integral operator

Tav(x) = f (z — s)g(s)v?(s)ds
0

defined on &j3. Since

T

Tyo(a) = [ (@ — s)u’(s)(w(s)/s)* 1= ds
0

and §/(1 — ) > —1/2 for —1 < § < 1, from Lemma 1.1(iii) and the
monotonicity properties of T it follows that T3 maps Xz into Xj3.
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We introduce a pseudometric g in Xz by

M(Ul ‘ ’1)2)
=Iln———== X
Q(UlaUQ) n m(vl ’ U2) (Ul,v? € ﬁ)a
where
v1(s) v1(s)

= inf M = ——
el = ey Ml =Gy

which becomes a metric ¢ in the quotient space /'Eg = Xj/~, where
v1 ~ vy if and only if wv; = Avy for some A > 0.
Moreover, (fﬁ, 0) is a complete metric space (see [1], [9]).
Since Ts(M) = APTp(v) for any v € X3 and A > 0, we can consider Tj
on Xj. From the monotonicity properties of T} it follows that

o(Tpv1,Tpva) < |Blo(v1,v2) for any vy,v2 € ??ﬂ,

which allows us to find a unique solution v € X3 to the problem (1.1), (1.2)
by a contraction argument. In view of the a priori estimates (1.9) this must
be the unique solution of that problem positive for x > 0.

Proof of Corollary 1.2. The same arguments as those used in
the proof of Theorem 1.2 show that the problem (1.1), (1.2) has a unique
solution u in Xg. We will prove that it is maximal.

In the case —1 < 8 < 0 the proof is easy because in view of Remark 1.1,
u must be the unique continuous solution to (1.1), (1.2).

In the case 0 < (8 < 1, for any solution v to (1.1), (1.2) we get

v(z) j(x—s)g(s)s*B(v(S))ﬁds

S

Sj(x—s)g(s)sﬁds<v(x)>ﬁ (z > 0).

T

Hence it follows that v(xz) < ¢(x) for & > 0. Therefore we can find a
constant ¢ > 0 such that v(x) < cu(z) for x > 0, and by using an iteration
process we obtain the inequality

v(z) = T(z) < T"(cu)(x) = A u(z) (x> 0),
which gives the required result as n — oc.

Now we consider the initial value problem for the third order differential
equation. Substituting v(x) = 272/3u/(u~!(x))? in the problem (1.3), (1.4),
where u ! is the inverse function to u, we see that v satisfies
V(@) = g(a) P (2) (2> 0)

(2:10) v(0) ='(0) = 0.
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Proof of Theorems 1.3 and 1.4. Sincev™/?(z) = 213 (w1 (z),

it suffices to apply the estimates

X x

clx<v(:€)>3/2 gof (z — s)g(s)s /2 ds < c2m<”(“3))3/2 (z > 0)

for solutions of (2.10) obtained by Remark 1.1.
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