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STOCHASTIC VIABILITY AND A COMPARISON THEOREM

BY

ANNA MIL IAN (KRAKÓW)

We give explicit necessary and sufficient conditions for the viability of
polyhedrons with respect to Itô equations. Using the viability criterion we
obtain a comparison theorem for multi-dimensional Itô processes.

1. Introduction. The notion of viable trajectories, used in the the-
ory of deterministic differential equations, refers to those trajectories which
remain at any time in a fixed subset of the state space. The viability prob-
lem consists in characterizing a fixed subset and an equation such that the
equation has viable trajectories in the subset for any initial state from the
subset. Characterizing a subset and an equation in order for each solution
to the equation starting from the subset to be viable in the subset is another
problem, called the invariance problem.

In the theory of viable solutions the concept of the contingent cone plays
a fundamental role. In fact, the pioneering theorem, proved in 1942 by
Nagumo, gives a criterion for the existence of viable trajectories in terms
of contingent cones. Namely, the Nagumo theorem states that if f is a
bounded, continuous map from a closed subset K of Rm to Rm, then a
necessary and sufficient condition for the differential equation

x′(t) = f(x(t)), x(0) = x0,

to have viable trajectories in K, for all initial states x0 ∈ K, is that

∀x ∈ K, f(x) belongs to the contingent cone to K at x.

Various generalizations of the Nagumo theorem provide viability conditions
in terms of contingent cones (see for instance [2, Th. 1, p. 191]).

Viability and invariance with respect to Itô equations have been investi-
gated first by J.-P. Aubin and G. Da Prato in [3]. The stochastic contingent
set defined in that paper is an adaptation of the deterministic concept. Crite-
rions for the viability and invariance of closed and convex subset of Rm, given
in [3], are expressed in terms of stochastic contingent sets. Their results were
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generalized to arbitrary subsets (which can also be time-dependent and ran-
dom) by the present author in [12]. Independently in [8] similar, but not
identical, results were obtained by S. Gautier and L. Thibault and according
to [8] in a preprint [4] by J.-P. Aubin and G. Da Prato.

Conditions expressed by stochastic contingent sets are general but un-
fortunately not easy to check and the aim of the present paper is to give
checkable conditions for general equations and sets which are polyhedrons.

Necessary and sufficient conditions for viability are given in Theorem 1.
As an important corollary of Theorem 1 we obtain a comparison result for
multidimensional Itô equations in the form of Theorem 2 generalizing [10,
Th. 1.1, p. 352]. The proof of Theorem 1 is divided into several steps. First
we give necessary conditions for the viability of half-spaces. Then we prove
that the necessary conditions are also sufficient. Finally, we extend the
result to general polyhedrons. The basic tool in this step is Theorem A1
about polyhedrons, of independent interest, postponed with its proof to the
Appendix. The proof of Theorem 2 is an easy consequence of Theorem 1.

2. Formulation of the main theorems. Let (Ω,F , P ) be a proba-
bility space with a right-continuous increasing family F = (Ft)t≥0 of sub-
σ-fields of F each containing P -null sets, K be a closed subset of Rm and
J ⊂ R an interval.

A stochastic process X(t), t ∈ J , is said to be viable in K on the interval
J if P{X(t) ∈ K, t ∈ J} = 1.

Given mappings f = [fi] : [0,∞)×Rm → Rm, g = [gij ] : [0,∞)×Rm →
Rm×r and an r-dimensional F -Wiener process W : [0,∞) × Ω → Rr, we
consider the stochastic differential Itô equation

(1) X(t) = x0 +
t∫

t0

f(s,X(s)) ds+
t∫

t0

g(s,X(s)) dW (s), t ∈ [t0,∞).

A set K is said to be stochastically invariant for the pair (f, g) (or for
the equation (1)) if for any x0 ∈ K and any t0 ≥ 0 every solution X to (1)
is viable in K on the interval [t0,∞).

We say that K has the stochastic viability property with respect to (f, g)
(or with respect to (1)) if for any x0 ∈ K and any t0 ≥ 0 there exists a
solution X to (1) which is viable in K on [t0,∞).

The notions of stochastic viability and stochastic invariance, introduced
by J.-P. Aubin and G. Da Prato, are more general because x0 is assumed
to be a random variable taking values in K almost surely. In this paper
we restrict our investigation to the case of deterministic initial states. Let
P (a,n) denote the half-space in Rm determined by a point a ∈ Rm and a
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vector n ∈ Rm. Obviously

P (a,n) = {x ∈ Rm : 〈x− a,n〉 ≥ 0},

where 〈·, ·〉 is the usual scalar product in Rm. The term polyhedron refers
to any set of the form ⋂

α∈I

P (aα,nα),

where I = {1, . . . , N} is a finite subset of N.
The aim of the paper is to prove the following theorem:

Theorem 1. Let K =
⋂

α∈I P (aα,nα) be a polyhedron in Rm. Suppose
that the coefficients f(t, x) and g(t, x) of (1), defined for t ≥ 0 and x ∈ Rm,
satisfy the following conditions:

(i) For each T > 0 there exists KT > 0 such that for all x ∈ K and
t ∈ [0, T ],

‖f(t, x)‖2 + ‖g(t, x)‖2 ≤ KT (1 + ‖x‖2).

(ii) For all T > 0, x ∈ K, y ∈ K and t ∈ [0, T ],

‖f(t, x)− f(t, y)‖+ ‖g(t, x)− g(t, y)‖ ≤ KT ‖x− y‖.

(iii) For each x ∈ K the functions f(·, x) and g(·, x), defined for t ≥ 0,
are continuous.

Then K has the viability property with respect to (f, g) if and only if the
following condition holds:

(a) For all α ∈ I and x ∈ K such that 〈x− aα,nα〉 = 0, we have

〈f(t, x),nα〉 ≥ 0, 〈gj(t, x),nα〉 = 0, for t ≥ 0, j = 1, . . . , r,

where gj is the jth column of the matrix g = [gij ].

From the above theorem we shall derive the following comparison theo-
rem:

Theorem 2. Let I be a nonempty subset of {1, . . . ,m}. Assume that for
each T > 0 there exists a constant KT > 0 such that

(i) For all x, y ∈ Rm and t ∈ [0, T ],

‖f(t, x)− f(t, y)‖+ ‖g(t, x)− g(t, y)‖ ≤ KT ‖x− y‖.

(ii) For all x ∈ Rm and t ∈ [0, T ],

‖f(t, x)‖2 + ‖g(t, x)‖2 ≤ KT (1 + ‖x‖2).

(iii) For each x ∈ Rm the functions f(·, x) and g(·, x), defined for t ≥ 0,
are continuous.
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Assume further that f and g also satisfy the above conditions. Let X and
X be solutions to equation (1) with coefficients (f, g) and (f, g), respectively.
Then the following conditions are equivalent :

(a) For all t0 ≥ 0, x0 = (x0
1, . . . , x

0
m) ∈ Rm and x0 = (x0

1, . . . , x
0
m) ∈ Rm,

if x0
i ≤ x0

i , i ∈ I, then

P{Xi(t) ≤ Xi(t), i ∈ I, t ≥ t0} = 1.

(b) For all p ∈ I, x = (x1, . . . , xm) ∈ Rm and x = (x1, . . . , xm) ∈ Rm

such that xi ≤ xi, i ∈ I, if xp = xp, then for all t ≥ 0, j = 1, . . . , r,

fp(t, x) ≤ fp(t, x) and gpj(t, x) = gpj(t, x).

3. Proof of Theorem 1. We begin with the following lemma.

Lemma 1. Let X be a solution to (1) such that x0 = (x0
1, . . . , x

0
m) and

x0
q = 0 for some q ∈ {1, . . . ,m}. Suppose that conditions (i)–(iii) of Theo-

rem 2 hold. Suppose further that

(iv) P{Xq(t0 + t) ≥ 0 (≤ 0), t ≥ 0} = 1.

Then

(a) fq(t0, x0) ≥ 0 (≤ 0),
(b) gqj(t0, x0) = 0 for j = 1, . . . , r.

P r o o f. It is enough to consider the case t0 = 0. By (iv),

1
t
EXq(t) =

1
t
E

t∫
0

fq(s,X(s)) ds ≥ 0 (≤ 0).

From (i) and (iii) it follows that f is continuous. Therefore

lim
t→0+

1
t
E

t∫
0

fq(s,X(s)) ds = fq(0, x0) ≥ 0 (≤ 0),

and (a) holds.
Suppose that (b) fails. Then gqj(0, x0) 6= 0 for some j ∈ {1, . . . , r}.

Repeating the previous argument shows the continuity of g. Hence the
process g(t,X(t))t≥0 is continuous and by [11] or [15] it follows that tn → 0
as n→∞ implies that

1
Wtn

tn∫
0

gqj(s,X(s)) dWj(s) → gqj(0, x0).

On the other hand, from Blumenthal’s zero-one law (see [6, pp. 14–15]), if
tn → 0 as n→∞ then

lim inf
n→∞

Wj(tn)√
tn

= −∞ a.s.
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Hence there is a sequence tn → 0 as n→∞ such that

lim inf
n→∞

1√
tn

tn∫
0

gqj(s,X(s)) dWj(s) = −∞ a.s.

Applying the above arguments again, we conclude that

P

{
lim inf
t→0+

1√
t

r∑
j=1

t∫
0

gqj(s,X(s)) dWj(s) = −∞
}

= 1.

But

lim
t→0+

1√
t

∣∣∣ t∫
0

fq(s,X(s)) ds
∣∣∣ = 0 a.s.

Since (1/
√
t)Xq(t) ≥ 0 with probability 1, we have

P

{
lim inf
t→0+

1√
t
Xq(t) ≥ 0

}
= 1,

which is a contradiction.
The next lemma states that conditions (a) and (b) of Lemma 1 are also

sufficient for the viability of half-spaces.

Lemma 2. Let f = (f1, . . . , fm) and g = [gi,j ], i = 1, . . . ,m, j = 1, . . . , r
be defined in Pq = {(x1, . . . , xm) ∈ Rm : xq ≥ 0}, where q ∈ {1, . . . ,m}.
Suppose that

(i) For each T > 0 and N > 0 there exists a constant KT,N > 0 such
that for 0 ≤ t ≤ T and x, y ∈ Pq with |x| ≤ N and |y| ≤ N ,

‖g(t, x)− g(t, y)‖+ ‖f(t, x)− f(t, y)‖ ≤ KT,N‖x− y‖.
(ii) For each T > 0 there exists KT > 0 such that for 0 ≤ t ≤ T and

x ∈ Pq,
‖g(t, x)‖2 ≤ KT (1 + ‖x‖2).

(iii) For each T > 0 there exists KT > 0 such that for 0 ≤ t ≤ T and
x ∈ Pq,

m∑
j=1

xjfj(t, x) ≤ KT (1 + ‖x‖2),

and moreover , f is locally bounded.
(iv) For all t ≥ 0, xi ∈ R, i ∈ {1, . . . ,m}, i 6= q, and j ∈ {1, . . . , r},

gq,j(t, x1, . . . , xq−1, 0, xq+1, . . . , xm) = 0.

(v) For all t ≥ 0 and xi ∈ R, i ∈ {1, . . . ,m}, i 6= q,

fq(t, x1, . . . , xq−1, 0, xq+1, . . . , xm) ≥ 0.

Then
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(a) For each t0 ≥ 0 and x0 = (x0
1, . . . , x

0
m) such that x0

q ≥ 0 there exists
a solution X = (X1, . . . , Xm) to (1 ) such that

P{X(t0) = x0} = 1 and P{Xq(t) ≥ 0, t ≥ t0} = 1.

(b) If x0
q > 0 then P{Xq(t) > 0, t ≥ t0} = 1.

P r o o f. It is sufficient to prove the lemma with (i) replaced by

(i∗) For each T > 0 there exists a constant KT > 0 such that for 0 ≤ t ≤
T and x, y ∈ Pq,

‖g(t, x)− g(t, y)‖+ ‖f(t, x)− f(t, y)‖ ≤ KT ‖x− y‖.
Indeed, take N > 0 and consider BN = {x ∈ Rm : ‖x − x0‖ ≤ N}. Let

πN denote the projector onto BN , associating with any x ∈ Rm the unique
element πN (x) ∈ BN such that

‖x− πN (x)‖ = inf{‖x− z‖ : z ∈ BN}.
We consider equation (1) with coefficients fN (t, x) = f(t, πN (x)) and
gN (t, x) = g(t, πN (x)). Since fN and gN satisfy (i∗) and (ii)–(v), we con-
clude that the solution XN of (1) with coefficients fN and gN satisfies (a)
and (b). This gives the lemma.

Thus we are reduced to showing (a) and (b) under assumptions (i∗) and
(ii)–(v). First we prove (b) by means of a suitable change of variables. Set

(2) ϕ(x) = p−1(lnx), where p(x) =
x∫

0

ds√
1 + s2

.

It is easily seen that ϕ is a one-to-one, increasing function from (0,∞) to
R. Let ψ = ϕ−1. Then Φ(x1, . . . , xm) = (x1, . . . , xq−1, ϕ(xq), xq+1, . . . , xm)
is a diffeomorphism from the interior of K to Rm. Write Ψ = Φ−1 and let
JΦ be the Jacobi matrix of Φ. We consider equation (1) with coefficients

f(t, x) = (f1(t, x), . . . , fm(t, x)), g(t, x) = JΦ(Ψ(x))g(t, Ψ(x)),

where

fp(t, x) =
m∑

i=1

∂

∂xi
Φ(p)(Ψ(x)))fi(t, Ψ(x))

+
1
2

m∑
i,j=1

r∑
l=1

∂2Φ(p)

∂xi∂xj
(Ψ(x))gil(t, Ψ(x)))gjl(t, Ψ(x)),

Φ = (Φ(1), . . . , Φ(m)), Ψ = (Ψ (1), . . . , Ψ (m)) and p = 1, . . . ,m.
We will prove that f and g satisfy all assumptions of the existence the-

orem for (1) ([7, p. 300, Th. 3.11]). To this end fix T > 0; we will estimate
f(t, x) and g(t, x) for t ∈ [0, T ] and x ∈ Rm. There exists L > 0 such that

|ψ(x)| ≤ L(1 + |x|) for x ∈ R.
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Hence for i 6= q we have LT > 0 such that for t ∈ [0, T ] and x ∈ Rm,

|gij(t, x)|2 = |gij(t, Ψ(x))|2 ≤ LT (1 + ‖Ψ(x)‖2) ≤ LT (1 + ‖x‖2).

By (iv) we have

|gqj(t, x)| = |ϕ′(ψ(xq))gqj(t, Ψ(x))|

=
√

1 + x2
q|ψ(xq)|−1|gqj(t, x1, . . . , xq−1, ψ(xq), xq+1, . . . , xm)

− gqj(t, x1, . . . , xq−1, 0, xq+1, . . . , xm)| ≤ LT

√
1 + x2

q.

Thus |g(t, x)|2 ≤ LT (1 + ‖x‖2) for some constant LT > 0 and all t ∈ [0, T ]
and x ∈ Rm. By assumption (ii),

r∑
j=1

g2
qj(t, Ψ(x)) =

r∑
j=1

(gqj(t, x1, . . . , xq−1, ψ(xq), xq+1, . . . , xm)

− gqj(t, x1, . . . , xq−1, 0, xq+1, . . . , xm))2 ≤ LT (ψ(xq))2.

After some standard calculations, using assumptions (iii) and (iv) we find
that

xqϕ
′′(ψ(xq))

r∑
j=1

g2
qj(t, Ψ(x)) ≤ LT (1 + ‖x‖2),

ψ(xq)fq(t, Ψ(x)) +
∑
j 6=q

xjfj(t, Ψ(x)) ≤ LT (1 + ‖x‖2),

xqϕ
′(ψ(xq))fq(t, Ψ(x))− ψ(xq)fq(t, Ψ(x)) ≤ LT (1 + ‖x‖2).

Thus
m∑

j=1

xjf j(t, x) =
1
2
xqϕ

′′(ψ(xq))
r∑

j=1

g2
qj(t, Ψ(x))

+ xqϕ
′(ψ(xq))fq(t, Ψ(x)) +

∑
j 6=q

xjfj(t, Ψ(x)) ≤ LT (1 + ‖x‖2)

for x ∈ Rm and 0 ≤ t ≤ T . Hence there exists a process X(t), t ≥ t0, such
that X(t0) = Φ(x0) and

dX(t) = f(t,X(t))dt+ g(t,X(t)) dW (t).

Using the Itô formula ([7, Th. 2.9, p. 287]) one can verify that the process
X(t) = Ψ(t,X(t)), t ≥ t0, is a solution to (1) with coefficients f(t, x) and
g(t, x), starting at t0 from x0. Moreover, P{Xq(t) > 0, t ≥ t0} = 1.

Let now x0 = (x0
1, . . . , x

0
m) be such that x0

q ≥ 0 and let t0 ≥ 0. Then there
exists a sequence xn = (xn

1 , . . . , x
n
m), n ∈ N, converging to x0 as n→∞ and

such that xn
q > 0. Denote by X0 = (X0

1 , . . . , X
0
m) and Xn = (Xn

1 , . . . , X
n
m)

the solutions to equation (1) starting at t0 from x0 and xn respectively. By
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the second part of the assertion which we have proved, P{Xn
q (t) > 0, t ≥ t0}

=1 for each n∈N. Using the theorem on continuous dependence of solutions
to (1) upon initial conditions, we obtain E|Xn(t)−X0(t)|2→0 as n→∞, for
t≥ t0. Hence for each t ≥ t0 we have P{X0

q (t) ≥ 0} = 1 and consequently
P{X0

q (t) ≥ 0, t ≥ t0} = 1. This completes the proof of the lemma.

P r o o f o f T h e o r e m 1. Assume that K has the viability property
with respect to (f, g). Fix α ∈ I, t0 ≥ 0 and x0 ∈ K such that

〈x0 − aα,nα〉 = 0.

The viability implies that there exists a solution X to (1) such that X(t0)
= x0 and P{X(t) ∈ K, t ≥ t0} = 1. Therefore P{〈X(t) − aα,nα〉 ≥ 0,
t ≥ t0} = 1. Since nα 6= 0, there exists q ∈ {1, . . . ,m} such that nα

q 6= 0,
where nα = (nα

1 , . . . , n
α
m).

Let the one-to-one mapping

U : P (aα,nα) → Pq = {(x1, . . . , xm) ∈ Rm : xq ≥ 0},
be given by the formula

(3) U(x1, . . . , xm)

=
(
x1 − aα

1 , . . . , xq−1 − aα
q−1,

m∑
i=1

(xi − aα
i )nα

i , xq+1 − aα
q+1, . . . , xm − aα

m

)
,

where aα = (aα
1 , . . . , a

α
m). By the Itô formula, the process Z(t) = U(X(t)),

t ≥ t0, satisfies (1) with coefficients

(4) f = (f1, . . . , fm), g = [gij ],

where

f i(t, x) =
{
fi(t, U−1(x)) for i 6= q, i ∈ {1, . . . ,m},∑m

j=1 n
α
j fj(t, U−1(x)) for i = q,

and

gij(t, x) =
{
gij(t, U−1(x)) for i 6=q, i∈{1, . . . ,m}, j∈{1, . . . , r},∑m

p=1 n
α
p gpj(t, U−1(x)) for i = q, j ∈ {1, . . . , r}.

Moreover, Z(t0) = z0 = (z0
1 , . . . , z

0
m), where z0

q = 0, and P{Z(t) ∈ Pq,
t ≥ t0} = 1. Since f and g satisfy all assumptions of Lemma 1 we conclude
that fq(t0, z0) ≥ 0 and gqj(t0, z0) = 0 for j ∈ {1, . . . , r} and consequently
we obtain condition (a) from the statement of our theorem.

The proof of sufficiency of (a) will be divided into several steps.

S t e p 1. We assume additionally that K is a half-space:

K = P (a,n) = {x ∈ Rm : 〈x− a,n〉 ≥ 0},
and that f and g satisfy the assumptions of Theorem 1 with (ii) replaced
by
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(ii′) ∀T > 0 ∀N > 0 ∃KT,N > 0 ∀t ∈ [0, T ] ∀x, y ∈ K, ‖x‖, ‖y‖ ≤ N ,

‖f(t, x)− f(t, y)‖+ ‖g(t, x)− g(t, y)‖ ≤ KT,N‖x− y‖.

Fix t0 ≥ 0 and x0 ∈ K. Our purpose is to find a process X(t), t ≥ t0,
satisfying (1) such that P{X(t) ∈ K, t ≥ t0} = 1. To this end, take q ∈
{1, . . . ,m} such that nq 6= 0, where n = (n1, . . . , nm). We consider equation
(1) with coefficients f and g defined on Pq by (4). Since they satisfy all as-
sumptions of Lemma 2, there is a solution Z(t) = (Z1(t), . . . , Zm(t)), t ≥ t0,
to (1) with coefficients f and g such that Z(t0) = U(x0) and P{Zq(t) ≥ 0,
t ≥ t0} = 1. By the Itô formula, the process X(t) = U−1(Z(t)), t ≥ t0,
satisfies our requirements.

S t e p 2. Our next goal is to construct some special extensions of the
coefficients f and g of (1).

Let Kε = {x ∈ Rm : d(x,K) ≤ ε}, where d(x,K) = inf{‖x−z‖ : z ∈ K}
and ε > 0. By Theorem A1 (see Appendix) there exist ε > 0 and π : Kε →
K such that

(a) π|K = id,
(b) π is Lipschitz continuous,
(c) ∀α ∈ I, ∀x ∈ Kε, 〈x− aα,nα〉 = 0 ⇒ 〈π(x)− aα,nα〉 = 0.

Fix 0 < ε1 < ε2 < ε and let ϕ : [0,∞) → [0, 1] be a Lipschitz continuous
function such that ϕ|[0,ε1] ≡ 1 and ϕ|[ε2,∞) ≡ 0. Define

f̃(t, x) =
{
ϕ(d(x,K))f(t, π(x)), x ∈ Kε, t ≥ 0,
0, x 6∈ Kε, t ≥ 0,

and

g̃(t, x) =
{
ϕ(d(x,K))g(t, π(x)), x ∈ Kε, t ≥ 0,
0, x 6∈ Kε, t ≥ 0.

We will show that f̃ and g̃ satisfy the following conditions:

(i′) For all T > 0 there exists LT > 0 such that for all t ∈ [0, T ] and
x ∈ Rm,

‖f̃(t, x)‖2 + ‖g̃(t, x)‖2 ≤ LT (1 + |x|2).
(ii′) For all T,N > 0 there exists LT,N > 0 such that for all t ∈ [0, T ]

and x, y ∈ Rm with ‖x‖, ‖y‖ ≤ N ,

‖f̃(t, x)− f̃(t, y)‖+ ‖g̃(t, x)− g̃(t, y)‖ ≤ LT,N‖x− y‖.

(iii′) For all t ≥ 0, x ∈ Rm, α ∈ I and j = 1, . . . , r, the equality 〈x −
aα,nα〉
= 0 implies 〈f̃(t, x),nα〉 ≥ 0 and 〈g̃j(t, x),nα〉 = 0.

Here g̃j is the jth column of the matrix g̃ = [g̃ij ].
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P r o o f o f (i′)–(iii′). Condition (i′) is true because ‖f̃‖ ≤ ‖f‖, ‖g̃‖ ≤
‖g‖, π is Lipschitz continuous, and f and g satisfy assumption (i) of Theo-
rem 1.

In order to prove (ii′) we consider two cases.

C a s e 1: x ∈ Kε, y ∈ Kε. Then (ii′) holds because π and ϕ are Lip-
schitz continuous, and f and g satisfy assumptions (i) and (ii) of Theorem 1.

C a s e 2: x ∈ Kε, y 6∈ Kε. We consider the only interesting case
d(x,K) ≤ ε2. There exists z on the line segment with end points x and y
such that d(z,K) > ε2 and z ∈ Kε. Hence ϕ(d(z,K)) = ϕ(d(y,K)) = 0
and using the result of Case 1 we obtain

‖f̃(t, x)− f̃(t, y)‖ ≤ ‖f̃(t, x)− f̃(t, z)‖+ ‖f̃(t, z)− f̃(t, y)‖
≤ LT,N‖x− z‖ ≤ LT,N‖x− y‖.

Since f and g satisfy condition (a) of Theorem 1 and π satisfies (c), we have
(iii′).

S t e p 3. Finally, we show that condition (a) of Theorem 1 implies the
viability property of our polyhedron K. Having f and g, defined for t ≥ 0
and x ∈ K, we extend them to all of Rm, using the construction presented
in Step 2. We denote the extensions by f̃ and g̃.

Let X(t), t ≥ t0, be a solution to (1) with coefficients f̃ and g̃ and with
X(t0) = x0 ∈ K. For every α ∈ I, by the uniqueness theorem for (1) and
by Step 1 we conclude that

P{〈X(t)− aα,nα〉 ≥ 0, t ≥ t0} = 1,

and consequently P{X(t) ∈ K, t ≥ t0} = 1. This completes the proof of
Theorem 1.

4. Proof of Theorem 2. Define

K = {(x1, . . . , xm, x1, . . . , xm) ∈ R2m : xp ≤ xp, p ∈ I}.

Denote by es, s ∈ {1, . . . , 2m}, the canonical basis of R2m. It is easy to see
that K =

⋂
p∈I Hp, where Hp = {z ∈ R2m : 〈z,np〉 ≥ 0} and

〈np, es〉 =

{−1 for s = p,
+1 for s = m+ p,
0 for s 6= p and s 6= m+ p.

Consider two m-dimensional Itô processes:

X(t) = x0 +
t∫

t0

f(s,X(s)) ds+
t∫

t0

g(s,X(s)) dW (s),
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X(t) = x0 +
t∫

t0

f(s,X(s)) ds+
t∫

t0

g(s,X(s)) dW (s).

Define Z(t) = (X1(t), . . . , Xm(t), X1(t), . . . , Xm(t)) for t ≥ t0. It is easily
seen that

Z(t) = z0 +
t∫

t0

F (s, Z(s)) ds+
t∫

t0

G(s, Z(s)) dW (s),

where

F (s, z) =
[
f(s, π1(z))
f(s, π2(z))

]
, G(s, z) =

[
g(s, π1(z))
g(s, π2(z))

]
, z0 = (x0, x0),

π1(x1, . . . , xm, x1, . . . , xm) = (x1, . . . , xm),

π2(x1, . . . , xm, x1, . . . , xm) = (x1, . . . , xm).

Condition (a) of Theorem 2 is equivalent to the stochastic invariance of K
for the pair (F,G). Since all assumptions of the existence and uniqueness
theorems for (1) are satisfied by f and g and consequently by F and G, the
stochastic invariance of K for (F,G) is equivalent to the stochastic viability
property of K with respect to (F,G). By Theorem 1 we conclude that the
latter is equivalent to the following condition: ∀p ∈ I, ∀z ∈ K, if 〈z,np〉 = 0
then for t ≥ 0,

〈F (t, z),np〉 ≥ 0 and 〈Gj(t, z),np〉 = 0 for j = 1, . . . , r,

where Gj is the jth column of the matrix G = [Gij ]. It is easily seen that
the last condition is exactly condition (b) of our theorem.

Appendix. Let d(x,K) denote the distance between x ∈ Rm and a
closed subset K ⊂ Rm, defined by d(x,K) = inf{‖x − z‖ : z ∈ K}. Let
Kε = {x ∈ Rm : d(x,K) ≤ ε}, ε > 0. Suppose that K is a polyhedron in
Rm. Recall this means that K =

⋂N
α=1 Pα(aα,nα), where

Pα(aα,nα) = {x ∈ Rm : 〈x− aα,nα〉 ≥ 0}, aα,nα ∈ Rm.

Put

Hα = {x ∈ Rm : 〈x− aα,nα〉 = 0}, α ∈ I = {1, . . . , N}.
This section will be devoted to the proof of the following theorem.

Theorem A1. Let K be a polyhedron in Rm. Then there exist ε > 0 and
f : Kε → K such that

(1) f |K = id,
(2) f is Lipschitz continuous,
(3) ∀α ∈ I, ∀x ∈ Kε, if x ∈ Hα then f(x) ∈ Hα.
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Before we start the proof, we state the relevant theorems from [5], [13]
and [14], thus making the Appendix selfcontained.

Theorem A2 [5, Th. 32.1, p. 85]. The intersection of two hyperplanes,
H ′ of dimension k′ and H ′′ of dimension k′′, lying in Rm is either empty
or a hyperplane of dimension at least k′ + k′′ −m.

Theorem A3 [13, Th. 4.15, p. 49]. Let K be a polyhedron in Rm. Then
there exist points ai ∈ Rm, i = 1, . . . , r, and vectors vj , j = 1, . . . , s, such
that

K =
{
x =

r∑
i=1

αiai +
s∑

j=1

βjvj : αi ≥ 0,
r∑

i=1

αi = 1, βj ≥ 0
}
.

Theorem A4 [13, Th. 2.3, p. 19]. If M1 and M2 are convex and disjoint
subsets of Rm, then there exists a vector n ∈ Rm such that

〈x− y,n〉 ≤ 0 for all x ∈M1, y ∈M2.

Theorem A5 [13, Th. 2.4, p. 19]. If M1 and M2 are convex , disjoint
subsets of Rm and one of them is compact , then there exist a vector n and
ε > 0 such that

〈x− y,n〉 ≤ −ε for all x ∈M1, y ∈M2.

Theorem A6 [14, Th. 1.31, p. 21]. Let H be a Hilbert space, S any subset
of H, and Φ : S → H. Suppose ‖Φ(x)− Φ(y)‖ < D‖x− y‖ for all x, y ∈ S.
Then Φ can be extended to all of H in such a way that the extension satisfies
the same Lipschitz condition.

The proof of Theorem A1 will be divided into several parts.

R e m a r k A1. Let K be a polyhedron in Rm. Then by Theorem A3
there exist points ai ∈ Rm, i = 1, . . . , r, and vectors vj , j = 1, . . . , s, such
that

K =
{
x =

r∑
i=1

αiai +
s∑

j=1

βjvj : αi ≥ 0,
r∑

i=1

αi = 1, βj ≥ 0
}
.

We shall say that K is determined by the points ai and the vectors vj .
Assume, moreover, that

∀x ∈ K, 〈x− a,n〉 ≤ 0

for a given vector n ∈ Rm and a point a ∈ Rm. Set

H = {x : 〈x− a,n〉 = 0}.
It is easy to see that either K ∩ H = ∅ or K ∩ H is the polyhedron in H
determined by all points ai, i ∈ {1, . . . , r}, such that ai ∈ H and by all
vectors vj , j ∈ {1, . . . , s}, such that 〈vj ,n〉 = 0.
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Lemma A1. Suppose that K and L are disjoint polyhedrons in Rm. Then
there exists a half-space P = {x : 〈x − a,n〉 ≥ 0} such that K ⊂ P and
L ∩ P = ∅.

P r o o f. The proof is by induction on m. In fact, assuming the lemma
to hold for m ≤ k, we will construct the required half-space for m = k + 1,
using our inductive assumption twice: for m = 2 and for m = k. Hence
we begin with the cases m = 1 and m = 2. We give the proof only for the
latter.

By Theorem A3, K is determined by some points a1, . . . , ar and vectors
n1, . . . ,ns and L is determined by b1, . . . , bp and w1, . . . ,wq. By Theo-
rem A4, there exists a vector n ∈ R2 such that

∀x ∈ K, ∀y ∈ L, 〈x− y,n〉 ≤ 0.

Define
x ≤ y if and only if 〈x− y,n〉 ≤ 0.

Let ai ≤ ap for all i ∈ {1, . . . , r}. Consider the line

l = {x ∈ R2 : 〈x− ap,n〉 = 0}.
Of course, 〈ap − y,n〉 ≤ 0 for each y ∈ L and it is easy to check that
〈x − ap,n〉 ≤ 0 for each x ∈ K. Hence, if K ∩ l = ∅ or L ∩ l = ∅ then the
proof of the lemma in the case m = 2 is finished.

It remains to consider the more difficult case K ∩ l 6= ∅ and L ∩ l 6= ∅.
Since K ∩ l and L∩ l are disjoint polyhedrons contained in l, there exists an
ordering “<” in l such that x < y for all x ∈ K ∩ l and y ∈ L ∩ l. Let

d0 = sup{x : x ∈ K ∩ l} and g0 = inf{x : x ∈ L ∩ l}.
Of course, d0 < g0. Take points c1 and c2 such that d0 < c1 < c2 < g0.
By Theorem A5 there exist vectors n1 and n2 such that for all x ∈ K and
y ∈ L,

〈x− c1,n1〉 > 0 and 〈y − c2,n2〉 > 0.
If n1 ‖n2, then we can assume that n1 = n2 or n1 = −n2. Since we

have 〈c2 − g0,n2〉 < 0 and 〈c2 − g0,n1〉 > 0 we conclude that only the case
n1 = −n2 is possible. Clearly, 〈c2 − c1,n1〉 < 0 and 〈y − c2,n1〉 < 0 for
y ∈ L. Consequently, 〈y − c1,n1〉 < 0 for every y ∈ L and the half-space

P1 = {x : 〈x− c1,n1〉 ≥ 0}
satisfies our requirements.

Now we consider the case when n1 and n2 are not parallel. Set

l1 = {x : 〈x− c1,n1〉 = 0}, l2 = {x : 〈x− c2,n2〉 = 0}, l1 ∩ l2 = {x}.
We have two possibilities : either 〈x − c1,n〉 > 0 or 〈x − c1,n〉 < 0. We
consider the case 〈x− c1,n〉 > 0, the other one is analogous. We will show
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that
P = {x : 〈x− c2,n2〉 < 0}

is the required half-space. Observe that 〈y− c2,n2〉 > 0 for y ∈ L. If y ∈ K
then there exist α ≥ 0 and β ≥ 0 such that

y = c1 + α(d0 − c1) + β(c1 − x).

Since

sgn(d0 − c1,n2) = sgn(c2 − g0,n2) = −1,
sgn(c1 − c2,n2) = sgn(c2 − g0,n2) = −1,

for each y ∈ K we have

〈y − c2,n2〉 = 〈y − c1,n2〉+ 〈c1 − c2,n2〉
= α〈d0 − c1,n2〉+ β〈c1 − x,n2〉+ 〈c1 − c2,n2〉 < 0,

which proves the lemma in the case m = 2.
Assume now that the lemma holds for m ≤ k, where k ≥ 2. We will

prove it for m = k + 1. Suppose that K and L are disjoint polyhedrons
in Rk+1. By Theorem A3, K is determined by some points a1, . . . , at and
vectors w1, . . . ,wr and L is determined by b1, . . . , bl and v1, . . . ,vκ.

By Theorem A4, there exists a vector n ∈ Rm such that 〈y − x,n〉 ≥ 0
for all y ∈ K and x ∈ L. Let bi ≤ b for b ∈ {b1, . . . , bl} and i ∈ {1, . . . , l}
(here bi ≤ bj if and only if 〈bi − bj ,n〉 ≤ 0). Define

P = {x : 〈x− b,n〉 = 0}.
Of course, 〈y−b,n〉 ≤ 0 for all y ∈ L. If 〈ai−b,n〉 > 0 for each i ∈ {1, . . . , t},
then it is easy to see that 〈y − b,n〉 > 0 for all y ∈ K and P is the required
half-space.

It remains to consider the case when there exists ai such that 〈ai − b,n〉
= 0. Since K ∩ P = K1 6= ∅ and L ∩ P = L1 6= ∅, K1 and L1 are disjoint
polyhedrons in the k-dimensional space P .

Using our inductive assumption we have a vector n parallel to P and
such that 〈y1 − x1,n〉 > 0 for all x1 ∈ L1 and y1 ∈ K1. By Remark A1,
L1 is determined by bi1 , . . . , bip and vj1 , . . . ,vjq , where bis ∈ P and vjt is
parallel to P for s = 1, . . . , p and t = 1, . . . , q. Considering the relation

bi ≤ bj if and only if 〈bi − bj ,n〉 ≤ 0

we have b ∈ {bi1 , . . . , bip} such that bis ≤ b for s = 1, . . . , p. We can assume

that b = 0. We write H for the linear subspace of Rm generated by the
vectors n and n. Let πH denote the projector onto H, associating with any
x ∈ Rm the unique element πH(x) ∈ H satisfying |x − πH(x)| = d(x,H).
Define K ′ = πH(K) and L′ = πH(L). Of course, K ′ and L′ are polyhedrons
in H. Moreover, H was chosen so that K ′ and L′ are disjoint. Hence
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using our inductive assumption again, we have a vector ñ ‖H such that
〈y′ − x′, ñ〉 > 0 for all y′ ∈ K ′ and x′ ∈ L′.

Let y ∈ K, x ∈ L and let H⊥ be the orthogonal complement of H. Then
y = y′ + y, where y′ ∈ H and y ∈ H⊥. Analogously, x = x′ + x, where
x′ ∈ H and x ∈ H⊥. Hence we have 〈y − x, ñ〉 = 〈y′ − x′, ñ〉+ 〈y − x, ñ〉 =
〈y′ − x′, ñ〉 > 0. Choose b ∈ {b1, . . . , bl} such that bi ≤ b for i = 1, . . . , l.
Then

{x : 〈x− b, ñ〉 ≥ 0}
is the desired half-space and the proof is complete.

Lemma A2. Assume that K and L are disjoint polyhedrons in Rm. Then
d(K,L) = inf{|x− y| : x ∈ K, y ∈ L} > 0.

P r o o f. By Lemma A1 we can suppose without any loss of generality
that L = {x : 〈x− a,n〉 ≥ 0} for some a ∈ Rm and n ∈ Rm.

Moreover, we can assume that a = 0. Let

K =
{ r∑

i=1

αixi +
s∑

j=1

βjvj : αi ≥ 0,
r∑

i=1

αi = 1, βj ≥ 0
}
.

Since K ∩ L = ∅ we have 〈
∑r

i=1 αixi +
∑s

j=1 βjvj ,n〉 < 0 for αi and βj as
above.

Let

K0 =
{ r∑

i=1

αixi : αi ≥ 0,
r∑

i=1

αi = 1
}
.

For each x ∈ K0 we have 〈x,n〉 < 0. Since K0 is compact, there exists a
positive constant γ such that 〈x,n〉 ≤ −γ for each x ∈ K0. It is easily seen
that 〈vj ,n〉 ≤ 0 for each j = 1, . . . , s. Hence 〈x,n〉 ≤ −γ for each x ∈ K
and so d(K,L) > 0.

We shall use the next lemmas to prove that the projection f from the
statement of Theorem A1, which we construct, satisfies the Lipschitz con-
dition.

Lemma A3. Let H1 and H2 be subspaces of Rm such that H1 ∩H2 6= ∅.
Let f : H1 ∪H2 → Rm be such that f |H1 and f |H2 are Lipschitz continuous.
Then f is Lipschitz continuous.

P r o o f. Set E = H1∩H2. Let x ∈ H1 \H2, y ∈ H2 \H1 and a = πE(x).
We consider two cases:

1) The points x, y and a are collinear. Since H1 and H2 are convex, a
belongs to the line segment with endpoints x and y. Then

|f(x)− f(y)| ≤ |f(x)− f(a)|+ |f(a)− f(y)|
≤ L|x− a|+ L|a− y| = L|x− y|.
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2) The points x, y and a are not collinear, so they determine a triangle
xya. Let α, β, γ denote the angles axy, xya and xay respectively. Then

|x− a|
sinβ

=
|a− y|
sinα

=
|x− y|
sin γ

= c,

and consequently

|f(x)− f(y)| ≤ L(|x− a|+ |a− y|) ≤ 2L|x− y| 1
sin γ

.

It is sufficient to show that there exists δ > 0 such that sin γ ≥ δ. Let e ∈ E
and w ∈ E⊥ ∩H2 be such that y − a = e+ w. Since x− a ∈ E⊥, we have

|cos γ| =
∣∣∣∣〈 y − a

|y − a|
,
x− a

|x− a|

〉∣∣∣∣ =
∣∣∣∣〈 w

|e+ w|
,
x− a

|x− a|

〉∣∣∣∣ ≤ ∣∣∣∣〈 w

|w|
,
x− a

|x− a|

〉∣∣∣∣
(x − a 6= 0, y − a 6= 0 and w 6= 0, because x 6∈ E and y 6∈ E). Since
E⊥ ∩H1 ∩H2 = {0}, it follows that for each u ∈ E⊥ ∩H1 and v ∈ E⊥ ∩H2

such that |u| = |v| = 1 we have |〈u, v〉| < 1. As the sphere in a finite-
dimensional space is compact, there exists δ > 0 such that sin γ ≥ δ, which
completes the proof.

Lemma A4. Let K =
⋂r

α=1 Pα, where

Pα = P (aα,nα) = {x ∈ Rm : 〈x− aα,nα〉 = 0}, aα,nα ∈ Rm, α = 1, . . . , r,

and define

Hα = H(aα,nα) = {x ∈ Rm : 〈x− aα,nα〉 = 0}.

Let S = Hi1 ∩ . . . ∩ Hin 6= ∅, where {i1, . . . , in} ⊂ {1, . . . , r}. Then there
exist C > 0 and δ > 0 (depending on S) such that for all x ∈ S, and all
ε ∈ (0, δ),

d(x,K) ≤ ε implies d(x, S ∩K) ≤ Cε.

P r o o f. The proof will be divided into two steps.

S t e p 1. Let H1, . . . ,Hd be (m − 1)-dimensional subspaces of Rm and
E = H1 ∩ . . .∩Hd 6= ∅. Let π and πi denote the orthogonal projectors onto
E and Hi respectively, i = 1, . . . , d. Then there exists C > 0 such that for
each x ∈ Rm we have

(1) |x− π(x)| ≤ Cmax{|x− πi(x)| : i = 1, . . . , d}.

The proof is by induction on m. Of course, (1) is true for m = 1. Assuming
(1) to hold for m− 1, we will prove it for m. Fix x ∈ Rm. If x ∈ E we can
take C = 1.

Hence we consider the case when x 6∈ Hr for some r ∈ {1, . . . , d}. Since
E ⊂ Hr one can check that π(πr(x)) = π(x). Namely,
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|π(πr(x))− π(x)|2 = 〈π(πr(x))− πr(x), π(πr(x))− π(x)〉
+ 〈πr(x)− x, π(πr(x))− π(x)〉
+ 〈x− π(x), π(πr(x))− π(x)〉 = 0.

Consequently, by the Pythagoras theorem we have

(2) |x− π(x)| = (|x− πr(x)|2 + |πr(x)− π(x)|2)1/2.

Of course,

(3) |x− πr(x)| ≤ max{|x− πi(x)| : i = 1, . . . , d}.
Since Hi and Hr are not parallel, we conclude that dimHi ∩Hr = m− 2 by
Theorem A2, and we can use our inductive assumption:

|πr(x)− π(x)| = d(πr(x), (H1 ∩Hr) ∩ . . . ∩ (Hr−1 ∩Hr)(4)
∩ (Hr+1 ∩Hr) ∩ . . . ∩ (Hd ∩Hr))

≤ Cmax{d(πr(x),Hi ∩Hr) : i = 1, . . . , d, i 6= r}.
Let ni and nr be normal vectors to Hi and Hr respectively, and let H
denote the plane parallel to ni and nr such that x ∈ H. It is obvious that
πi(x), πr(x) ∈ H. Since ni,nr ⊥ Hi ∩Hr, we have dim(Hi ∩Hr)⊥ ≥ 2. But
by Theorem A2 we know that dimHi ∩Hr ≥ m− 2, so dim(Hi ∩Hr)⊥ = 2.
Moreover, since H ⊂ (Hi ∩ Hr)⊥ we conclude that H = (Hi ∩ Hr)⊥. Let
z = πHi∩Hr (πr(x)). As z − πr(x) ⊥ Hi ∩ Hr we have z − πr(x) ‖H and
since πr(x) ∈ H we conclude that z ∈ H. Thus the quadrilateral with
vertices x, πr(x), πi(x) and z lies in the 2-dimensional plane H. The vectors
πi(x)−x, z−πi(x) are orthogonal, and so are x−πr(x), πr(x)−x. Moreover,
|x− πr(x)| > 0. Considering all possible cases:

(i) z = πr(x),
(ii) z 6= πr(x), πi(x) = x,
(iii) z 6= πr(x), πi(x) 6= x,

we conclude that there exists C > 0 such that

|z − πr(x)| ≤ Cmax{|x− πr(x)|, |x− πi(x)|}.
Taking into account (4) and the last inequality, we obtain (1).

S t e p 2. Let K and S satisfy the assumptions of Lemma A4 and let
C > 0 be the constant given by Step 1. Set

G = {Hα1 ∩ . . . ∩Hαk
: {α1, . . . , αk} ⊂ {1, . . . , r}}

and % = min{d(D,K) : D ∈ G, D ∩K = ∅}, where d(D,K) = inf{|x− y| :
x ∈ D, y ∈ K}. Assume x ∈ S and d(x,K) ≤ ε, where ε ∈ (0, %/(C + 1)r).
We now construct a finite sequence of points x0, x1, . . . , xl such that:

(i) x0 = x,
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(ii) xk ∈ Sk = S ∩ Hα1 ∩ . . . ∩ Hαk
, where Hi1 , . . . ,Hin ,Hα1 , . . . ,Hαk

are all distinct and Sk ∩K 6= ∅,
(iii) d(xk,K) ≤ (1 + C)kε,
(iv) |xk+1 − xk| ≤ C(1 + C)kε,
(v) xk 6∈ K for k < l and xl ∈ K.

Note that x0 satisfies conditions (i)–(iii).
Suppose that a sequence x0, . . . , xk satisfies conditions (i)–(iv) and xk 6∈

K. Hence there exists α ∈ {1, . . . , r} such that 〈xk − aα,nα〉 < 0. Since
Sk ∩K 6= ∅ there exists y ∈ Sk such that 〈y− aα,nα〉 ≥ 0 and consequently
Sk ∩ Hα 6= ∅. We define Sk+1 to be Sk ∩ Hα and xk+1 = πSk+1(xk). By
Step 1 we have for j = 1, . . . , n, s = 1, . . . , k,

|xk+1 − xk| ≤ Cmax{d(xk,Hij
), d(xk,Hαs

), d(xk,Hα)}.
But d(xk,Hα) ≤ d(xk,K) so by (iii), keeping in mind that xk ∈ Sk, we
obtain |xk+1−xk| ≤ C(1+C)kε. Consequently, d(xk+1,K) ≤ |xk+1−xk|+
|xk − πK(xk)| ≤ (C + 1)k+1ε. We observe that k + 1 ≤ r − s.

Since d(Sk+1,K) ≤ |xk+1 − πK(xk)| < %, we conclude that Sk+1 ∩ K
6= ∅. We have only a finite number of different Hα so we can continue our
construction at most l = r − n times and finally xl ∈ K.

Having such a sequence, it is easy to finish the proof of the lemma:

d(x, S ∩K) ≤ |x− xl| ≤
l−1∑
k=0

|xk+1 − xk| ≤
l−1∑
k=0

C(C + 1)kε ≤ rC(C + 1)rε.

We are now in a position to prove Theorem A1. The proof consists
in the construction of f : Kε → K, for ε sufficiently small. Recall that
K =

⋂
i∈I Pi(ai,ni), where I = {1, . . . , N}. Define

G = {S = Hi1 ∩ . . . ∩Hin : i1, . . . , in ∈ I},
% = min{min{d(S,K) : S ∈ G, S 6= ∅, S ∩K = ∅},

min{d(S, S′) : S, S′ ∈ G, S ∩ S′ = ∅}, min{δ(S) : S ∈ G, S 6= ∅}}.
By Lemmas A2 and A4, % is positive. We will define f on K%. Let

C = max{C(S) : S ∈ G, S 6= ∅}, where C(S) is given by Lemma A4,
Gd = {S ∈ G : S ∩K 6= ∅, S is not a subset of K, dimS = d},
d0 = min{d : Gd 6= ∅}.

I. First we extend f to
⋃
{S∩K% : S ∈ Gd0}. For fixed S ∈ Gd0 we define

f |K%∩S = πK∩S . If S1 and S2 belong to Gd0 and S1 ∩ S2 6= ∅ then either
S1 ∩S2 is a subset of K or not. In the first case f |S1∩S2 = id, in the second
case we have two possibilities:

(i) S1 ∩ S2 = S1,
(ii) S1 ∩ S2 6= S1.
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If (i) holds, then S1 ⊂ S2 and dimS1 = dimS2 = d0 so S1 = S2. In the case
(ii) we have dimS1 ∩ S2 < d0 and by the definition of d0 we conclude that
S1 ∩S2 ∩K = ∅ and consequently S1 ∩S2 ∩K% = ∅. So f is well defined on⋃
{S ∩K% : S ∈ Gd0}.

II. It is clear that for each S ∈ Gd0 , if x ∈ S ∩K% then f(x) ∈ S ∩K.
III. We have to show that f is Lipschitz continuous on

⋃
{S ∩ K% :

S ∈ Gd0}. Let x ∈ S1 ∈ Gd0 and y ∈ S2 ∈ Gd0 . If S1 ∩ S2 6= ∅ then
f |S1∪S2 satisfies the Lipschitz condition by Lemma A3. If S1 ∩ S2 = ∅ then
|x− y| ≥ d(S1, S2) ≥ % and

|f(x)− f(y)|
|x− y|

≤ |f(x)− x|
|x− y|

+
|x− y|
|x− y|

+
|y − f(y)|
|x− y|

≤ 1 +
|f(x)− x|

%
+
|f(y)− y|

%
.

Since d(x,K) ≤ % , by Lemma A4 we have |x− f(x)| ≤ C% and so |f(x)−
x|/% ≤ C. Analogously, |f(y) − y|/% ≤ C and consequently f satisfies the
Lipschitz condition on

⋃
{S ∩K% : S ∈ Gd0}.

IV. Assume that f is Lipschitz continuous on
⋃
{S : S ∈ Gd, d ≤ k}, and

for all d ≤ k and S ∈ Gd, if x ∈ S ∩K% then f(x) ∈ S ∩K. Fix S ∈ Gk+1.
By our inductive assumption, f is well defined on

⋃
i Si ∩ K%, where

Si ∈ G, dimSi ≤ k, Si ∩ S 6= ∅, and is Lipschitz continuous.
We extend f to K ∩ S by setting f |K∩S = id; it is easy to see that f

is still Lipschitz continuous. By Theorem A6, f has a Lipschitz continuous
extension f1 : S → S. We define f |K%∩S = πS∩K ◦ f1.

By our construction f is well defined on
⋃
{S ∩ K% : s ∈ G, dimS ≤

k + 1}. The Lipschitz property of f is checked as in III. It follows from our
construction that

∀S ∈ Gk+1, ∀x ∈ S ∩K%, f(x) ∈ S ∩K.

We continue this procedure till d = m− 1 and finally we extend f to K by
setting f |K = id. We extend this function to K% using Theorem A6. This
is the desired function, which proves the theorem.
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