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Sums of Darboux and continuous functions
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Juris Steprans (Toronto, Ont.)

Abstract. It is shown that for every Darboux function F' there is a non-constant
continuous function f such that F' + f is still Darboux. It is shown to be consistent—the
model used is iterated Sacks forcing—that for every Darboux function F' there is a nowhere
constant continuous function f such that F' + f is still Darboux. This answers questions
raised in [5] where it is shown that in various models of set theory there are universally bad
Darboux functions, Darboux functions whose sum with any nowhere constant, continuous
function fails to be Darboux.

1. Introduction. A function which maps any connected set to a con-
nected set is known as a Darboux function. This paper will be concerned
with functions from R to R and, in this context, Darboux simply means that
the image of any interval is an interval. While there are various results es-
tablishing similarities between continuous functions and Darboux functions
of first Baire class, the fact that it is possible to construct Darboux functions
by transfinite induction allows all sorts of pathologies to exist. For example,
transfinite induction can be used to construct a Darboux function F' such
that the function F'(z)+ x is not Darboux [8]. In [6] it is shown that if G is a
family of functions such that card |G|+ < 2% then there is a Darboux func-
tion F' such that F' + ¢ is not Darboux for all g € G. This result is extended
in [5] where it is established, assuming certain set theoretic hypotheses, that
there exists a universally bad Darboux function f : R — R, which means
that, for every nowhere constant continuous g : R — R, f + g does not
have the Darboux property. In unpublished work W. Weiss has shown that
a universally bad Darboux function can be constructed assuming only the
existence of a 2% additive ideal Z on B, the Borel subsets of R, such that
the Boolean algebra B/Z has the 2% chain condition; in other words, there
do not exist 2% elements of B whose pairwise intersections belong to Z.

In this paper it will be shown that some form of set theoretic hypothesis
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used is necessary for such a result because there is a model of set theory
where for every Darboux function F' there is a nowhere constant continuous
function f such that F'+ f is also Darboux. The significance of the adjective
“nowhere constant” in this statement requires some comment because it
might seem a minor point. An indication that this is not so is given by the
fact that, in spite of having shown that there is a Darboux function f such
that for every nowhere constant continuous g : R — R, f + g does have the
Darboux property, the authors of [5] pose the following question at the end
of their paper.

QUESTION 1.1. Does there exist a Darbouz function F' : R — R such that
F + g does not have the Darbouz property whenever g is continuous but not
constant?

Section 2 provides a negative answer to this problem. Section 3 contains
some technical material on Sacks forcing and Section 4 makes use of this
material in proving the main consistency result. The final section contains
some open questions.

2. Sums with non-constant functions. The next lemma follows di-
rectly from Theorem 1.1 of [2]—a proof is presented here only for the con-
venience of the reader.

LEMMA 2.1. If F is Darboux and not continuous at x then there is an
interval (a,b) # O such that for each y € (a,b) there is a sequence {x,, |
n € w} such that lim, o x, = x and F(z,) =y for alln € w.

Proof. Because F' is not continuous at = there are sequences {y%},ecw
and {y°},c. such that
lim y¢ =z = lim y° and lim F(y%) =a<b= lim F(3%).
Given n € w and y € (a,b) let k be such that |y¢ — x| < 1/n, |y? —z| < 1/n
and F(y?) > y > F(y{). Then use the Darboux property of F to find
between y¢ and y? such that F(z,) =y. =

COROLLARY 2.1. If F' is a Darbouz function which is finite-to-one then
F' is continuous.

LEMMA 2.2. If F: R — R is a Darboux function which is continuous at
only countably many points then there is a non-constant, continuous func-
tion f such that F' + f is Darboux.

Proof. To each real z at which F' is not continuous, use Lemma 2.1 to
assign an interval (a,, b,) such that for each y € (ay, b;) there is a sequence
{zy, | n € w} such that lim,, - x,, = z and F(z,,) = y for all n. For rationals
p and ¢ let X (p, q) be the set of all = such that a, < p < ¢ < b, and note
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that X (p,q) is a closed set. Because F' is continuous at only countably
many points, it cannot be the case that X (p,q) is nowhere dense for each
pair of rationals p and q. Therefore let [s,t] and [a, b] be intervals such that
[az,bs] D [a,b] for each x € [s,t] and, furthermore, F'(s) = a and F(t) = b.
Observe that F~1{y} is dense in [s,t] for each y € [a, b].

Next, choose a family of open intervals Z such that

® T =U,epIn where Z,, = {(uj,v}") | i € 2" — 1},

o v <ujyy forallnandie€?2" —1,

o ul = ubth and o' = vjtY for each n and i € 2" — 1,

. UI is dense in [s t],

o F'(u') = a and F(v}') = b for each n and 1,

o sup F' [ vl , uli U ogitt ul] < sup F [ [ubs™, vl +1/(n+1) where
it is understood that, in the case ¢ = 0, v"; = s and, in the case i = 2" — 1,
Ugn_ =1,

o inf F'[ [v}" 1,u§j1] Ulv
with v = s and u5._; =

v ug) > inf P ug™ 03— 1/(n + 1), again
t.
Now let g be a non—decreasing, continuous function such that ¢ [ I is

constant for each I € Z, g(s) =0, g(t) = b—a and g is constant on (—oo, s]
and [t,00). The reader who insists on concreteness may verify that

g(x) = sup{i/2" [ ui" <w}(b—
satisfies these requirements.

To see that F' + g is Darboux suppose that * < y and w lies between
F(x) + g(z) and F(y) + g(y). First of all observe that it may be assumed
that s < & < y < t. The reason it may be assumed that s < z is that if
x < s then either w lies between F'(x) + g(x) and F(s) + g(s) or else it lies
between F'(s) + g(s) and F(y) + ¢g(y). In order to eliminate the first case
use the fact that F' is Darboux and ¢ is constant on [z, s] to find z € [z, s]
such that F'(z)+ g(z) = w. In the second case it may, of course, be assumed
that z = s. A similar argument can be applied to show that, without loss
of generality, y < t.

First consider the case where there is some (u,v) € 7 such that g has
constant value ¢ on (u,v) and w € (a+c¢,b+c¢) and such that t <u < v <y.
Use the fact that g is constant on [u,v], F' is Darboux, F'(u) = a and
F(v) =b to find z € (u,v) such that F(z) + g(z) = w.

In the remaining case it follows from the fact that (JZ is dense and
the continuity of ¢ that either w > b+ g(r) for every r € JZ N (z,y) or
w < a+g(r) for every r € | JZ N (z,y). Only the first case will be considered
since the other one is dealt with similarly. Furthermore, it will be assumed
that F'(x)+g(z) < F(y)+g(y) since the other case is also similar. To begin,
suppose that y € (u,v) € Z. Since F(u) = a < b < w — g(y) it follows that
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F(u) < w—g(y) < F(y) and so it is possible to appeal to the Darboux
property of F' and the constancy of g on [u, v].

On the other hand, if y & |JZ then there must be some m € w such that
F(y)+9(y) —w < 1/m. Choose ¢ > 0 such that y —z > § and g(y) — g(r) >
1/(2m) if y —r < §. Then there is some k >2m such that (u¥,v¥)€Z;, and

—§ <uf <o <y<uk/ ! for some i €2F—1. It follows that F(y) < sup F'|

o] < sup [ oLk bencomF(r) +50) | o]} >
F(y)+g( )—1/m. Therefore w < sup{F(r)+g(r) | r € [ ,v¥]}. In the case
being considered, it follows that w > b+ g(u ) >a+g(u ) = F(uf)+g(ub);

in other words, there is some r € [uF, v¥] such that

F(uf) +g(uf) <w < F(r) +g(r).

Because g is constant on [uf, v¥] it now follows from the Darboux property

of F that there is z € [u¥,v¥] such that F(z) 4+ g(z) = w. m

19 Y%

LEmMA 2.3. If F' is a Darboux function which is continuous on an un-
countable set then there is a continuous, non-constant function g such that
F + g is Darbouz.

Proof. Because the set of points where F' is continuous is Borel, it is
possible to find a perfect, nowhere dense set P such that I’ is continuous
at each point of P. Then R\ P = |JZ where Z is a disjoint family of open
intervals of order type the rationals. Let g be any continuous, non-decreasing
function which is not constant, yet g has constant value g; on each interval
Iel.

To see that F'+ g is Darboux suppose that < y and that F(z)+g(x) <
w < F(y) + g(y); a similar proof works if F(z) + g(x) > w > F(y) + 9(y)
If there is some interval I € 7 such that I C [z,y] and sup F' [ I > w — g1 >
inf F'[ I then the Darboux property of I’ guarantees that there is some z € I
such that F(z) + g(z) = w.

If there is no such I then consider first the case where there are I and J
in 7 such that I C [z,y], J C [z,y],sup F [ <w—grand inf F[J >w—gy
and suppose that sup I < inf J. Let z be the infimum of all intervals J’ such
that sup I < infJ’ and w — g < inf F'[J’. First observe that z ¢ | JZ and
so F' is continuous at z and hence

w—g(z) < hmmfF( )= lim F(r)= F(z).

r—zt r—zt

Notice that this immediately implies z is not the right-hand end point of
any interval in Z because if N = (1,2) € Z then gy = g(z) and so

sup F'IN <w — gy =w — g(2) < F(z),

contradicting the continuity of F' at z. Now, since ¢ is also continuous at z
and there is a sequence of intervals from Z converging to z, it follows from



Sums of Darboux and continuous functions 111

the defining property of z that

w—g(z) > liminf F(r) = lim F(r) = F(z)
and so F(z) + g(z) = w. Similar arguments in the other cases establish that
one of the following two possibilities holds:

o if I C[z,y] then sup F'[I < w — gy,
o if I C [z,y] then inf F/[I > w — g;.

Consider the first alternative. If y ¢ (JZ then F' is continuous at y and so
Jim (F(s) +9(s) = Fly) + 9(y) < w

and this is impossible because F(y) + g(y) > w. If y € (a,b) € Z and
F(a) 4 g(a) > w then the same argument applies because a ¢ JZ. On the
other hand, if F(a) + g(a) < w then the Darboux property of F' and the
fact that ¢ is constant on [a,b] yield z € [a,y) such that F(z) + g(z) = w.
The other alternative is dealt with similarly. =

THEOREM 2.1. If F' is a Darboux function then there is a non-constant
continuous function g such that F' + g is Darbouz.

Proof. Either F is continuous on an uncountable set or it is not. If it
is, use Lemma 2.3 and if it is not then use Lemma 2.2. m

3. Sacks reals. The Sacks partial order of perfect trees will be denoted
by S and the iteration, of length &, of this partial order will be denoted by
Se; so S; = S and Sg = 0. For other notation and definitions concerning
Sacks reals see [7] as well as [1]. For any p € S¢ define

p*={0:¢xw — 2| (VF € [€]<R0)(Vm € w)(A | F x m is consistent with p)}.

It is easy to see p* C 28%“ is a closed set; but there is no reason to believe
that it should be non-empty. However, if p is determined (see p. 580 of [7] for
a definition) then p* is a reasonably accurate reflection of p. In [7] a notion
very similar to p* is defined and denoted by E,. The only difference is that
E, C (2¢¥)4 where A is the domain of p. The projection function from 28*¢
to 27« will be denoted by II¢ .

LEMMA 3.1. If p € S¢ is (E, k)-determined and p Ik, “c € R\ V" then
for each E € [a]<Y and k € w there is q such that (¢,k) <g (p,k) and a
function Z : ¢* — R such that

(1) ¢IF “z = Z(G)”,
(2) Z(x) # Z(y) unless 1,1 (x) = o, 1 (y)-
Proof. This is essentially Lemma 6 on p. 580 of [7]. The only difference

is that it is now required that (¢, k) <g (p, k) whereas Miller’s Lemma 6 only
asserts that ¢ < p. On the other hand, the assertion required here is only that
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Z(x) # Z(y) unless I1,, 1(z) = I, 1(y); whereas a canonical condition for
x, in Miller’s terminology, actually yields a one-to-one function Z. The way
around this is to choose for each o : E X k — 2 a condition ¢, and a one-to-
one function Z : (¢, [ 8(c))* — R such that ¢, IF “z = Z,(I1,,, g(»)(G))".
The point to notice is that the domain of Z, depends on (o) and so there
may not be a single ordinal which works for all o. Nevertheless, G(o) > 1
for each o and so it is possible to define Z = J, Z, o Il,,, g(»). It follows
that Z(z) # Z(y) unless I1,,, 1(z) = I, 1(y). =

LEMMA 3.2. Ifp € S¢ is (E, k)-determined and F : p* — R and G : p* —
R are continuous functions such that F [ q* # G | ¢* for each q < p then
there is some q such that (q, k) <g (p, k) and the images of ¢* under F' and
G are disjoint.

Proof. Let X be the set of all ¢ : E X k — 2 which are consistent
with p. For each 0 € X, F [ (p|o)* # G [ p|lo* and so it is possible to find
some z, € (p|lo)*, E, € [€]<"° and k, > k such that F(z,) # G(z,) and,
moreover, the image of ((p|z, [ F») X ky)* under F' is disjoint from the image
under G. Let ¢’ = |, ¢ ((p|zo [ E5)s X ko). By repeating this operation for
each pair {0, 7} € [¥]? it is possible to obtain ¢ with the desired propert-
ies. m

4. Darboux functions and the Sacks model

LEMMA 4.1. If H : I — R is Darboux then there is a countable set D
such that, for any continuous function F', if for everya € D and b € D and
t such that

H(a)+ F(a) <t < H(b) + F(b)
there is some c between a and b such that H(c) + F(c) =t then H + F is
also Darbouz.

Proof. Let D be any countable set such that H [ D is dense in the graph
of H and suppose that F' is continuous. If F(z) + H(z) <t < F(y) + H(y)
then, because F' is continuous at both x and y, H is Darboux and H [ D
is dense in the graph of H there are d, € D and d, € D, between x and
y, such that F(d;) + H(d;) <t < F(d,) + H(d,). Hence, if there is some
z between d, and d, such that H(z) + F(z) =t then z also lies between x
and y. m

For the rest of this section by a condition in S¢ will be meant a deter-
mined condition. Real-valued functions will be considered to have as their
domain the unit interval I. This is merely a convenience that allows the use
of the complete metric space of all continuous real-valued functions on the
unit interval using the sup metric. This space will be denoted by C(I,R)
and its metric will be o(f,g) = sup{|f(z) — g(z)| : x € I}.
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THEOREM 4.1. Let V be a model of 2% = Xy and V[G] be obtained by
adding wy Sacks reals with countable support iteration. If H : I — R is a
Darbouz function in V[G] then there is a second category set of continuous
functions f such that H + f is also Darbouz.

Proof. If the theorem fails then, in V[G], let H be a Darboux function
and X be a comeagre subset of C(I, R) which provide a counterexample. Let
D be a countable set, provided by Lemma 4.1, such that for any continuous
function F, if for every a € D and b € D and ¢ such that H(a)+ F(a) <t <
H(b) + F(b) there is some ¢ between a and b such that H(c) + F(c) = t then
H + F is also Darboux. It must be true that, for each continuous function
g € X there is an interval N(g) = [a,b], with endpoints in D, and a real
T(g) between H(a) + g(a) and H(b) 4+ g(b) such that there is no z € [a, b]
such that H(z) + g(z) = T(g).

By a closure argument, there must exist a € wy such that

o D e V[GNSa.,

e T(f) € VI[GNS,] for every f € X which belongs to V[G NS,],

e if x is in V]G NS,] then so is H(x),

® X =(,c. Un where each U, is a dense open set belonging to V[GNS,].

To simplify notation it may be assumed that V = V|G N S,]. In V, let
{d; | i € w} enumerate D, let G denote the generic function from ws X w to 2
which is obtained from an S,,, generic set, and let pg € S,,, be a determined
condition.

Let 9 be a countable elementary submodel of (H(ws),€) containing
the functions 7" and N and the name H. Let {E,, | n € w} be an increas-
ing sequence of finite sets such that (J, ., En = M Nws. (The use of the
elementary submodel is only a convenience that allows the finite set FE,
to be chosen before beginning the fusion argument, thereby avoiding some
bookkeeping.) Construct, by induction on n € w, functions f,, as well as
conditions p,, € S, reals €, > 0 and integers k,, all in 91, such that:

IH(0) f, € C(I,R) and fj is chosen arbitrarily,

IH(1)  the neighbourhood of f,, of radius ¢, < 1/n in C(I,R) is contained
in mign Ui,

IH(Q) Q(fnv fn—i—l) <é&n- 2—n—17

IH(3)  py is (Ey, ky,) determined.

For each n, an integer J, and a sequence C, = {C? | 7 < Jn} such that
g =0<c} <cy <...<cj =1wil be chosen so that

IH(4) d,€C,and(C; CC,ifi€n,

IH(5) ifi€n and ceC; then f,(c) = fi(c).
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For each n and each j < J, a continuous function &, ; : p;, — R will be
found so that there is a name z,_ ; such that

IH(6)  pnlFs,, “H(zn;) = ®n;(G)" for each j € J,.
A function Z,, ; : 2“2*“ — R will also be constructed so that

IH(?) Pn H_Sw2 “ij = ij (G)”,
IH(8) if Zﬂ,](x) - Zn,j (y) then sz,l(x) - sz,l(y)7

and, with C,, ,,, ; denoting the image of p,, under the mapping Z,, ;,
IHY) ifm<k<n,je€J,andiécJythen Cy ;i NChii=0.

By [Ap,j, Bm,j] will be denoted the interval with endpoints (f,, + H)(c]")
and (fm + H)(c]} ). Observe that TH(5) implies that the definition of
[Ap,.j, B ;] does not change at later stages of the induction.

IH(10)  the image of p,, under f,, 0 Z, ; +®,, ;joll,, 1 contains the interval
[A,, j, By, ;] for each j € J,.

For z € [0,1] let p;, ., ; be the join of all conditions p,|o such that o :
E, x k, — 2 is consistent with p,, and = belongs to the image of (p,|o)*
under the mapping f,,0Z, j+Pm_ joll,, 1. The following is the key inductive
requirement.

IH(11)  if 2 € [Am j, Bm ] then (07 1 55 knt1) <goay (05 En)-

Assuming that the induction can be completed, let f = lim,, .o f,. It
will be shown that there is a condition p, € S,, which forces that T'(f)
belongs to the image of N(f) under f. This contradiction will establish the
theorem because TH(1) and TH(2) obviously guarantee that f € X.

Let m be an integer such that there is some j € Jy, such that [}, ¢ ] C
N(f)and T(f) € [Ap,j, Bm ;|- The integers m and j must exist because the
endpoints of N(f) belong to D and so N(f) = [c¢[", ¢}"] for some m, i and
k. Furthermore, from IH(5) it follows that

[H + f(&"), H+ f(e)) = [H + fun(]), H+ f(D)] = | [Amovs Bl
i<v<k
There must, therefore, be some j between i and k — 1 which is suitable.
It follows from IH(10) that the range of f,, 0 Z,, j + Py, j 0 Il,,, 1 contains

T(f) and so pr) £ 9. From TH(11) it follows that

m,m,j
T T
(pn(+f1),m,j’ kn—l—l) <En+1 (pn,('r{L),jv kn)

for each n > m and so there is a condition p, € S,, such that p, <

pz’(n’?’ ; for n > m. It follows that T'(f) belongs to the image of p, under

foZmj+ Pmjoll,, . Furthermore, because the diameters of the images
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of (p:(ﬂ;) ;)" under fy, 0 Zy, j + @y, ; approach 0 as n increases, it follows that
fo Zn’w-’—k &, ; o Il,,, 1 has constant value T'(f) on pf,.

It follows that p,, IF “f o Zy, ; + P j 0 I, 1(G) = T(f)”. From IH(6)
and the fact that p,, < p,, it follows that p,, IF “H (2, ;) = Prm,j 0 I, 1(G)”
and from IH(7) that p, I+ “2,,; = Z,,;(G)”. Therefore p,, IF “f(zm ;) +
H(zm,;) = T(f)” and this is a contradiction because z,; € [c]*,c]} ] C
N(f) by definition.

To carry out the induction suppose that f,, {®, ; | j € J,} and {Z,, ; |
j € Jn} as well as conditions p,, € S, have all been defined for n < K. To

begin, let 0 = cé<+1 < cf“ <. .. < c?}jﬁl =1 be such that

o {dx}UCk CCri1 ={cf i< Ty},

e the diameter of the fx-image of [¢/*T? cfi'{l] is less than e -

00 < |[H(cEM) — H(cff:lﬂ <eg-27K3

The first condition ensures that IH(4) is satisfied. The second is easily ar-
ranged using uniform continuity. The last condition can be satisfied by a
further refinement using the Darboux property of H.

Note that I, 1 (p} ), the image of p} under I1,, 1, is perfect and so, for
each i € Jg 41 it is possible to find @1 : Iy, 1(p)) — R such that

2—K—4

)

o O 11, is a continuous mapping,

e the image of pj, under @y ;0 Il,, 1 is the interval with endpoints
H(ef ) and H(cf31Y),

o if (m,j) # (K +1,7) then @11 ;011 1(x) # iy joll,, 1(x) for every
T € Dy

® Oy is finite-to-one.

Observe that the last point implies that @1 ; 0 I1,, 1(G) does not belong
to the ground model V.

In any generic extension there must be a real between clK 1 and cfﬁll at
which H takes on the value @1, 0 I1,, 1(G) because H is assumed to be
Darboux. Let zx1,; be a name for such a real. It follows from the choice of
D41, that 1IF “zp, 5 # 241" for each m < K +1 and j € J,, such that
(K +1,1) # (m, ).

Now find k£ and p such that

® (p,kK) <Br.,, (PK,kK),
e pis (Ex41,k) determined,
e for each 0 : Ex 41 X kg — 2 which is consistent with px and for each
m < K, j € J,, and for each x in the image of (px|o)* under fx o Z,, ; +
Py j o 11, 1 there is some o’ : Ex 11 x k — 2 such that
— ¢’ is consistent with p,
— o Co,
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— the distance from x to the image of (p|o’)* under fx o Z, j+Pp, ;o
11, is less than ek - - K-4

e the diameter of the image of (p|o)* under fx o Zp, j + Py, j 0 I, 1 is

less than ex - 2= 5% for each o : Ex4+1 X k — 2 which is consistent with p.

Now let kx 1 and p be such that

b (ﬁa kK-l-l) <Exi1 (p7 k)?
e pis (Exi1,kxy1) determined.

Because V is closed under H and &, ; o Il,,, 1(G) ¢ V it follows that
2K +1,i is a name for a real which does not belong to V. Lemma 3.1 can there-
fore be used Jg 11 times to find a condition ¢ such that (g, kx1) <Exii
(P, kx+1) and for each i € Jg4q there is a function Zgi1,; @ ¢ —
[cKHL cﬁ'{l] such that

1

® qlF “zri1i = Zk11,(G)",
o Zry1,i(x) # Zx11,:(y) unless Il,, 1(x) = I, 1(y).

Now observe that if (m,j) # (K + 1,4) then there cannot be g < ¢ such
that Z,, ; [§* = Zk+1,i [ ¢* because it has already been remarked that 1 I+
“Zm.j # 2Kk +1,i for eachm < K+1 and j € J,, such that (K+1,7) # (m, j).
It is therefore possible to use Lemma 3.2 repeatedly to find a single condition
pr+1 such that (pry1,kr41) <Eryy (¢, kx11) and the image of pj- ; under
Zrc 41, is disjoint from the image of pj., under Z,, ; if (m,j) # (K +1,14).
Observe that pxy1 is (Fx41, kx+1) determined because P is. Hence TH(3) is
satisfied. Now define C'x 11, +1,; to be the range of Zx 1 ;. This, along with
the induction hypothesis, will guarantee that IH(6)-IH(9) are all satisfied.
For integers m < K + 1, j € Jy let {[u)), 5, up, ] | v € Lim j} be a
partition of [A,, j, B, ;] into intervals of length e - 2752, Now, for each
0: Frgi1 X kg1 — 2 and for each pair of integers m < K + 1, j € J,, and
for each v € L, ; let Wo,m, j,v] be a perfect, nowhere dense subset of

1 \— EK €K
(fK + émvj o (HWQJ r(pK-i-l’U)) ° Zm,lj) ! ugl,j,v - 2K+37u71n,j,v + W

if this is possible. By choosing smaller sets, if necessary, it may be assumed
that the sets W(o,m,j,v] are pairwise disjoint and that W{o,m,j,v] N

Cr+1 = 0. Then define F, ,, ;o : Wlo,m, j,v] — [ul ul -] to be any

m,g,v? Tm,j,v

continuous surjection and let fo m v = Fom, jo — Pm,j 0w, 10 Z;l’lj. Note
that TH(8) implies that II,, 1 o Z;L’lj is a function even though Z,, ; is not
one-to-one.

Similarly, for each ¢ < Jg1 let W; be a perfect, nowhere dense sub-
set of [clK +1,cf${1] disjoint from each Wio, m, j,v] and define F; : W; —
[Ak+1,i, Bk+1,:] to be a continuous surjection. Then let f* = F; — $g 140

11,10 Z;{ilﬂ.. Notice that the domains of all the functions fy , j, and f*
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are pairwise disjoint. Hence it is possible to find fx4+1 : I — R extending
each of these functions in such a way that o(fx+1, fx) does not exceed

max {|frci1(9) — few)l sy e (UW:) u (U Wioom.giol)}
i o,m,j,v
and, moreover, because W(o,m,j,v] N Cxi1 = 0 and W; N Cxy1 = 0, it
may also be arranged that fxi1(c) = fx(c) if ¢ € Ck. Therefore TH(5) is
satisfied as well as IH(0). Observe that IH(10) is satisfied because the choice
of F; ensured that it maps W; onto [Axy1j, Bryi,;]. Since fxi1 [ W, =
Fj — @KJF]_,]‘ oll,, 10 ZI_(}&-I,j it follows that fx 410 ZK+17]‘ + ¢K+1,j oll,,1
maps pr+1 onto [Ax 115, Brt1,;]-
To see that TH(2) holds it suffices to consider only

JK+1 f(UWz) U ( U W[a,m,j,v])
% o,m,J,v
because fxy1 was defined not to exceed this bound. Consider first y €
W[O-amaja U]' Then |fK+1(y) - fK(y)| is equal to

| fom.gw(®) = FrW)] = [Fom jw(y) = (Prmj © My 1 0 Z i (y) + [ (y)]-

Next, the definition of Fy . implies that Fy m jo(y) € [Up, ;.4 Un jo)- By
the definition of Wa, m, j,v],

(fix +Prnj 0 Moo © Ziy ) )(Y) € [ jo = €xc/27 5 2 o +erc /27577
because y € W{o,m, j,v]. Consequently, |frxi1(y) — fx(y)| is no greater
than the diameter of

[ug)n,j,v —5K/2_K_3 ul +€K/2_K_3],

) m’j7v
which is ek - 2-K-=3 4 EK - 2-K=2 4 €K - 2-K=3 — EK - - K-1,
On the other hand, if y € W; then, as before,
|1 (y) = fe@)] = 1Fi(y) = (Prng 0 Moy 1 0 Zyy 5 (y) + fre(y)].

Recall that @1, is chosen to map onto [H(cf“),H(cﬁJ[l)]; moreover,

because y € [c;* T, cﬁ'{l] it follows from the choice of Cx 1 that

Fre() € (™) —ex /27874 fre(ef ) +er /277
and so D, joll,, 1 OZT;}J» (y)+ fx (y) belongs to [Ax11.i—ex /27574 By i1,
+ex /27K~ Furthermore, F;(y) belongs to [Ak+1.i, Bk+1,:] by design. By
the choice of Cc41 the diameter of [Ag 114, Bx 11, is less than e /2754 +
ex/27%~3 and so the diameter of
[Aki1,; —erx /27574 Brgi +ex /27574

is no greater than ex /2 %=1 and it follows that |fxi1(y) — frx(y)| <
EK * - K-1



118 J. Steprans

Now all of the induction hypotheses have been shown to be satisfied
except for IH(1) and TH(11). To verify IH(11) suppose that m < K, j € J,,
and x € [Ap, j, Bm j]. It follows that there is some v € L,,; such that
x € [ugn,j,v’ u71n7]—7v]. Suppose also that o : Ex 1 X kg — 2 is consistent with
D .m, ;- 1t follows that there is some ¢’ : Ex 41 X k — 2 such that

e o’ is consistent with p,

eoCo,

e the distance from x to the image of (p|o’)* under fxoZ,, ;+Pp, joll,, 1
is less than ep - 2754,

It suffices to show that 7 is consistent with pg, ,, ; for each 7 : Ex41 X
krx4+1 — 2 such that ¢’ C 7; the reason for this is that kx 1 was chosen
so that (ﬁv kK-l-l) SEK+1 (pKa k) and (pK—Ha kK+1) SEK+1 (ﬁv kK-I-l)' Recall
that the diameter of the image of (p|o’)* under fx o Zp, ;j + Pryj © Iy 1
is less than e - 27%~% because ¢’ : Exy1 X k — 2 is consistent with p.
Because the distance from x to the image of (p|o’)* under fx o Z,, ; +
D, 501l 1 is less than e - 2~ K=4 it must be that this image is contained

in [uh, i, —ex - 27530y 5 — ek - 27573]. Because pr i1 < p it follows
that the image of (px+1|7)" under fx o Z,, ; + @p, j 0 I1,,, 1 is contained
in [ud, ;, —ex 2757l 5 —ex - 2757 and so Wr,m, j,v] # 0. The
choice of F; p, j, ensures that it maps W(r,m, j,v] onto [uy, ; U, ;] and

therefore fry1 + Pmj o Iy, [ (Pr41]T)) © Zn_%lj maps W[r, m, j,v] onto

0 1
m,j,v) Ym,jo

Finally, choose €11 so that the neighbourhood of fx 1 of radius ex 41
is contained in Ugy1. m

[u ]. Hence 7 is consistent with p7, F1m,j

COROLLARY 4.1. If set theory is consistent then it is consistent that for
every Darboux function F there is a nowhere constant continuous function
f such that F + f is also Darbouz.

Proof. The model to use is the one for Theorem 4.1. Given a Darboux
F' to obtain a nowhere constant continuous f use the fact that the set of
nowhere constant functions is comeagre in C(I,R). m

5. Further remarks. It should be observed that the function f in
Corollary 4.1 has very few nice properties other than continuity. It is natural
to ask the following question.

QUESTION 5.1. Is there a Darbouzx function H : I — R such that H + f
is mot Darboux for every non-constant, differentiable function f?

The answer to Question 5.1 for functions with continuous derivative is
positive. The same question can be asked with absolutely continuous in place
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of differentiable. Recall that differentiable functions satisfy the property T3
of Banach [9].

DEFINITION 5.1. A function F : R — R satisfies 77 if and only if the set
of all x such that f~'{x} is infinite has measure zero.

Banach showed that differentiable functions satisfy 7;. Question 5.1 is
of interest for differentiable functions because Corollary 2.1 shows that a
strengthening of T yields a positive theorem.

Another potentially interesting direction to pursue would be to ask
whether the size of the set of continuous functions in Theorem 4.1 can be
increased.

QUESTION 5.2. Is there a Darboux function F such that the set of con-
tinuous functions f with F'+ f Darbouz is not comeagre?

QUESTION 5.3. Is there a Darbouz function F' such that the set of con-
tinuous functions f with F' + f Darbouz does not have measure one?

In [5] it is shown that the answers to these questions are consistently
negative.

In the same paper the authors also consider not only sums of a Darboux
function and a continuous function, but also products and other algebraic
constructions. It is not difficult to check that everything that has been es-
tablished in this paper for sums also holds for products, but it is not clear
that this must always be so.

QUESTION 5.4. If there is a Darboux function F such that F + g is
not Darboux for every mowhere constant function g, must it also be the
case that there is a Darbouz function F such that F - g is not Darboux
for every nowhere constant function g? What about the opposite implica-
tion?
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