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Sums of Darboux and continuous functions

by

Juris S t e p r ā n s (Toronto, Ont.)

Abstract. It is shown that for every Darboux function F there is a non-constant
continuous function f such that F + f is still Darboux. It is shown to be consistent—the
model used is iterated Sacks forcing—that for every Darboux function F there is a nowhere
constant continuous function f such that F + f is still Darboux. This answers questions
raised in [5] where it is shown that in various models of set theory there are universally bad
Darboux functions, Darboux functions whose sum with any nowhere constant, continuous
function fails to be Darboux.

1. Introduction. A function which maps any connected set to a con-
nected set is known as a Darboux function. This paper will be concerned
with functions from R to R and, in this context, Darboux simply means that
the image of any interval is an interval. While there are various results es-
tablishing similarities between continuous functions and Darboux functions
of first Baire class, the fact that it is possible to construct Darboux functions
by transfinite induction allows all sorts of pathologies to exist. For example,
transfinite induction can be used to construct a Darboux function F such
that the function F (x)+x is not Darboux [8]. In [6] it is shown that if G is a
family of functions such that card |G|+ < 2ℵ0 then there is a Darboux func-
tion F such that F + g is not Darboux for all g ∈ G. This result is extended
in [5] where it is established, assuming certain set theoretic hypotheses, that
there exists a universally bad Darboux function f : R → R, which means
that, for every nowhere constant continuous g : R → R, f + g does not
have the Darboux property. In unpublished work W. Weiss has shown that
a universally bad Darboux function can be constructed assuming only the
existence of a 2ℵ0 additive ideal I on B, the Borel subsets of R, such that
the Boolean algebra B/I has the 2ℵ0 chain condition; in other words, there
do not exist 2ℵ0 elements of B whose pairwise intersections belong to I.

In this paper it will be shown that some form of set theoretic hypothesis
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used is necessary for such a result because there is a model of set theory
where for every Darboux function F there is a nowhere constant continuous
function f such that F +f is also Darboux. The significance of the adjective
“nowhere constant” in this statement requires some comment because it
might seem a minor point. An indication that this is not so is given by the
fact that, in spite of having shown that there is a Darboux function f such
that for every nowhere constant continuous g : R→ R, f + g does have the
Darboux property, the authors of [5] pose the following question at the end
of their paper.

Question 1.1. Does there exist a Darboux function F : R→ R such that
F + g does not have the Darboux property whenever g is continuous but not
constant?

Section 2 provides a negative answer to this problem. Section 3 contains
some technical material on Sacks forcing and Section 4 makes use of this
material in proving the main consistency result. The final section contains
some open questions.

2. Sums with non-constant functions. The next lemma follows di-
rectly from Theorem 1.1 of [2]—a proof is presented here only for the con-
venience of the reader.

Lemma 2.1. If F is Darboux and not continuous at x then there is an
interval (a, b) 6= ∅ such that for each y ∈ (a, b) there is a sequence {xn |
n ∈ ω} such that limn→∞ xn = x and F (xn) = y for all n ∈ ω.

P r o o f. Because F is not continuous at x there are sequences {yan}n∈ω
and {ybn}n∈ω such that

lim
n→∞

yan = x = lim
n→∞

ybn and lim
n→∞

F (yan) = a < b = lim
n→∞

F (ybn).

Given n ∈ ω and y ∈ (a, b) let k be such that |yak − x| < 1/n, |ybk − x| < 1/n
and F (ybk) > y > F (yak). Then use the Darboux property of F to find xn
between yak and ybk such that F (xn) = y.

Corollary 2.1. If F is a Darboux function which is finite-to-one then
F is continuous.

Lemma 2.2. If F : R→ R is a Darboux function which is continuous at
only countably many points then there is a non-constant , continuous func-
tion f such that F + f is Darboux.

P r o o f. To each real x at which F is not continuous, use Lemma 2.1 to
assign an interval (ax, bx) such that for each y ∈ (ax, bx) there is a sequence
{xn | n ∈ ω} such that limn→∞ xn = x and F (xn) = y for all n. For rationals
p and q let X(p, q) be the set of all x such that ax < p < q < bx and note
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that X(p, q) is a closed set. Because F is continuous at only countably
many points, it cannot be the case that X(p, q) is nowhere dense for each
pair of rationals p and q. Therefore let [s, t] and [a, b] be intervals such that
[ax, bx] ⊇ [a, b] for each x ∈ [s, t] and, furthermore, F (s) = a and F (t) = b.
Observe that F−1{y} is dense in [s, t] for each y ∈ [a, b].

Next, choose a family of open intervals I such that

• I =
⋃
n∈ω In where In = {(uni , vni ) | i ∈ 2n − 1},

• vni < uni+1 for all n and i ∈ 2n − 1,
• uni = un+1

2i+1 and vni = vn+1
2i+1 for each n and i ∈ 2n − 1,

• ⋃ I is dense in [s, t],
• F (uni ) = a and F (vni ) = b for each n and i,
• supF ¹ [vni−1, u

n+1
2i ]∪ [vn+1

2i , uni ] ≤ supF ¹ [un+1
2i , vn+1

2i ]+1/(n+1) where
it is understood that, in the case i = 0, vn−1 = s and, in the case i = 2n − 1,
un2n−1 = t,
• inf F ¹ [vni−1, u

n+1
2i ]∪ [vn+1

i , un2i] ≥ inf F ¹ [un+1
2i , vn+1

2i ]− 1/(n+ 1), again
with vn−1 = s and un2n−1 = t.

Now let g be a non-decreasing, continuous function such that g ¹ I is
constant for each I ∈ I, g(s) = 0, g(t) = b− a and g is constant on (−∞, s]
and [t,∞). The reader who insists on concreteness may verify that

g(x) = sup{i/2n | uni ≤ x}(b− a)

satisfies these requirements.
To see that F + g is Darboux suppose that x < y and w lies between

F (x) + g(x) and F (y) + g(y). First of all observe that it may be assumed
that s ≤ x < y ≤ t. The reason it may be assumed that s ≤ x is that if
x < s then either w lies between F (x) + g(x) and F (s) + g(s) or else it lies
between F (s) + g(s) and F (y) + g(y). In order to eliminate the first case
use the fact that F is Darboux and g is constant on [x, s] to find z ∈ [x, s]
such that F (z) + g(z) = w. In the second case it may, of course, be assumed
that x = s. A similar argument can be applied to show that, without loss
of generality, y ≤ t.

First consider the case where there is some (u, v) ∈ I such that g has
constant value c on (u, v) and w ∈ (a+c, b+c) and such that x ≤ u < v ≤ y.
Use the fact that g is constant on [u, v], F is Darboux, F (u) = a and
F (v) = b to find z ∈ (u, v) such that F (z) + g(z) = w.

In the remaining case it follows from the fact that
⋃ I is dense and

the continuity of g that either w ≥ b + g(r) for every r ∈ ⋃ I ∩ (x, y) or
w ≤ a+g(r) for every r ∈ ⋃ I ∩ (x, y). Only the first case will be considered
since the other one is dealt with similarly. Furthermore, it will be assumed
that F (x)+g(x) < F (y)+g(y) since the other case is also similar. To begin,
suppose that y ∈ (u, v) ∈ I. Since F (u) = a < b ≤ w − g(y) it follows that
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F (u) < w − g(y) < F (y) and so it is possible to appeal to the Darboux
property of F and the constancy of g on [u, v].

On the other hand, if y 6∈ ⋃ I then there must be some m ∈ ω such that
F (y) + g(y)−w < 1/m. Choose δ > 0 such that y−x > δ and g(y)− g(r) >
1/(2m) if y − r < δ. Then there is some k≥2m such that (uki , v

k
i )∈Ik and

y−δ≤uki <vki <y≤uk−1
i/2 for some i∈2k−1. It follows that F (y) ≤ supF ¹

[vki , u
k−1
i ] < supF ¹ [uki , v

k
i ]+1/k and hence sup{F (r)+g(r) | r ∈ [uki , v

k
i ]} >

F (y)+g(y)−1/m. Therefore w < sup{F (r)+g(r) | r ∈ [uki , v
k
i ]}. In the case

being considered, it follows that w ≥ b+g(uki ) > a+g(uki ) = F (uki )+g(uki );
in other words, there is some r ∈ [uki , v

k
i ] such that

F (uki ) + g(uki ) < w < F (r) + g(r).

Because g is constant on [uki , v
k
i ] it now follows from the Darboux property

of F that there is z ∈ [uki , v
k
i ] such that F (z) + g(z) = w.

Lemma 2.3. If F is a Darboux function which is continuous on an un-
countable set then there is a continuous, non-constant function g such that
F + g is Darboux.

P r o o f. Because the set of points where F is continuous is Borel, it is
possible to find a perfect, nowhere dense set P such that F is continuous
at each point of P . Then R \ P =

⋃ I where I is a disjoint family of open
intervals of order type the rationals. Let g be any continuous, non-decreasing
function which is not constant, yet g has constant value gI on each interval
I ∈ I.

To see that F +g is Darboux suppose that x < y and that F (x)+g(x) <
w < F (y) + g(y); a similar proof works if F (x) + g(x) > w > F (y) + g(y).
If there is some interval I ∈ I such that I ⊆ [x, y] and supF ¹I ≥ w − gI ≥
inf F ¹I then the Darboux property of F guarantees that there is some z ∈ I
such that F (z) + g(z) = w.

If there is no such I then consider first the case where there are I and J
in I such that I ⊆ [x, y], J ⊆ [x, y], supF ¹I < w−gI and inf F ¹J > w−gJ
and suppose that sup I < inf J . Let z be the infimum of all intervals J ′ such
that sup I < inf J ′ and w − gJ′ < inf F ¹J ′. First observe that z 6∈ ⋃ I and
so F is continuous at z and hence

w − g(z) ≤ lim inf
r→z+

F (r) = lim
r→z+

F (r) = F (z).

Notice that this immediately implies z is not the right-hand end point of
any interval in I because if N = (η, z) ∈ I then gN = g(z) and so

supF ¹N < w − gN = w − g(z) ≤ F (z),

contradicting the continuity of F at z. Now, since g is also continuous at z
and there is a sequence of intervals from I converging to z, it follows from
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the defining property of z that

w − g(z) ≥ lim inf
r→z−

F (r) = lim
r→z−

F (r) = F (z)

and so F (z) + g(z) = w. Similar arguments in the other cases establish that
one of the following two possibilities holds:

• if I ⊆ [x, y] then supF ¹I < w − gI ,
• if I ⊆ [x, y] then inf F ¹I > w − gI .

Consider the first alternative. If y 6∈ ⋃ I then F is continuous at y and so

lim
s→y−

(F (s) + g(s)) = F (y) + g(y) ≤ w

and this is impossible because F (y) + g(y) > w. If y ∈ (a, b) ∈ I and
F (a) + g(a) > w then the same argument applies because a 6∈ ⋃ I. On the
other hand, if F (a) + g(a) ≤ w then the Darboux property of F and the
fact that g is constant on [a, b] yield z ∈ [a, y) such that F (z) + g(z) = w.
The other alternative is dealt with similarly.

Theorem 2.1. If F is a Darboux function then there is a non-constant
continuous function g such that F + g is Darboux.

P r o o f. Either F is continuous on an uncountable set or it is not. If it
is, use Lemma 2.3 and if it is not then use Lemma 2.2.

3. Sacks reals. The Sacks partial order of perfect trees will be denoted
by S and the iteration, of length ξ, of this partial order will be denoted by
Sξ; so S1 = S and S0 = ∅. For other notation and definitions concerning
Sacks reals see [7] as well as [1]. For any p ∈ Sξ define

p∗={θ : ξ×ω → 2 | (∀F ∈ [ξ]<ℵ0)(∀m ∈ ω)(θ ¹F ×m is consistent with p)}.
It is easy to see p∗ ⊆ 2ξ×ω is a closed set; but there is no reason to believe
that it should be non-empty. However, if p is determined (see p. 580 of [7] for
a definition) then p∗ is a reasonably accurate reflection of p. In [7] a notion
very similar to p∗ is defined and denoted by Ep. The only difference is that
Ep ⊆ (2ω)A where A is the domain of p. The projection function from 2ξ×ω

to 2γ×ω will be denoted by Πξ,γ .

Lemma 3.1. If p ∈ Sξ is (E, k)-determined and p °Sα “x ∈ R \ V ” then
for each E ∈ [α]<ℵ0 and k ∈ ω there is q such that (q, k) ≤E (p, k) and a
function Z : q∗ → R such that

(1) q ° “x = Z(G)”,
(2) Z(x) 6= Z(y) unless Πω2,1(x) = Πω2,1(y).

P r o o f. This is essentially Lemma 6 on p. 580 of [7]. The only difference
is that it is now required that (q, k) ≤E (p, k) whereas Miller’s Lemma 6 only
asserts that q ≤ p. On the other hand, the assertion required here is only that
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Z(x) 6= Z(y) unless Πω2,1(x) = Πω2,1(y); whereas a canonical condition for
x, in Miller’s terminology, actually yields a one-to-one function Z. The way
around this is to choose for each σ : E× k → 2 a condition qσ and a one-to-
one function Zσ : (qσ ¹β(σ))∗ → R such that qσ ° “x = Zσ(Πω2,β(σ)(G))”.
The point to notice is that the domain of Zσ depends on β(σ) and so there
may not be a single ordinal which works for all σ. Nevertheless, β(σ) ≥ 1
for each σ and so it is possible to define Z =

⋃
σ Zσ ◦ Πω2,β(σ). It follows

that Z(x) 6= Z(y) unless Πω2,1(x) = Πω2,1(y).

Lemma 3.2. If p ∈ Sξ is (E, k)-determined and F : p∗ → R and G : p∗ →
R are continuous functions such that F ¹ q∗ 6= G ¹ q∗ for each q ≤ p then
there is some q such that (q, k) <E (p, k) and the images of q∗ under F and
G are disjoint.

P r o o f. Let Σ be the set of all σ : E × k → 2 which are consistent
with p. For each σ ∈ Σ, F ¹ (p|σ)∗ 6= G ¹ p|σ∗ and so it is possible to find
some xσ ∈ (p|σ)∗, Eσ ∈ [ξ]<ℵ0 and kσ ≥ k such that F (xσ) 6= G(xσ) and,
moreover, the image of ((p|xσ ¹Eσ)×kσ)∗ under F is disjoint from the image
under G. Let q′ =

⋃
σ∈Σ((p|xσ ¹Eσ)σ × kσ). By repeating this operation for

each pair {σ, τ} ∈ [Σ]2 it is possible to obtain q with the desired propert-
ies.

4. Darboux functions and the Sacks model

Lemma 4.1. If H : I → R is Darboux then there is a countable set D
such that , for any continuous function F , if for every a ∈ D and b ∈ D and
t such that

H(a) + F (a) < t < H(b) + F (b)
there is some c between a and b such that H(c) + F (c) = t then H + F is
also Darboux.

P r o o f. Let D be any countable set such that H ¹D is dense in the graph
of H and suppose that F is continuous. If F (x) +H(x) < t < F (y) +H(y)
then, because F is continuous at both x and y, H is Darboux and H ¹D
is dense in the graph of H there are dx ∈ D and dy ∈ D, between x and
y, such that F (dx) + H(dx) < t < F (dy) + H(dy). Hence, if there is some
z between dx and dy such that H(z) + F (z) = t then z also lies between x
and y.

For the rest of this section by a condition in Sξ will be meant a deter-
mined condition. Real-valued functions will be considered to have as their
domain the unit interval I. This is merely a convenience that allows the use
of the complete metric space of all continuous real-valued functions on the
unit interval using the sup metric. This space will be denoted by C(I,R)
and its metric will be %(f, g) = sup{|f(x)− g(x)| : x ∈ I}.
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Theorem 4.1. Let V be a model of 2ℵ0 = ℵ1 and V [G] be obtained by
adding ω2 Sacks reals with countable support iteration. If H : I → R is a
Darboux function in V [G] then there is a second category set of continuous
functions f such that H + f is also Darboux.

P r o o f. If the theorem fails then, in V [G], let H be a Darboux function
and X be a comeagre subset of C(I,R) which provide a counterexample. Let
D be a countable set, provided by Lemma 4.1, such that for any continuous
function F , if for every a ∈ D and b ∈ D and t such that H(a) +F (a) < t <
H(b)+F (b) there is some c between a and b such that H(c) +F (c) = t then
H + F is also Darboux. It must be true that, for each continuous function
g ∈ X there is an interval N(g) = [a, b], with endpoints in D, and a real
T (g) between H(a) + g(a) and H(b) + g(b) such that there is no z ∈ [a, b]
such that H(z) + g(z) = T (g).

By a closure argument, there must exist α ∈ ω2 such that

• D ∈ V [G ∩ Sα],
• T (f) ∈ V [G ∩ Sα] for every f ∈ X which belongs to V [G ∩ Sα],
• if x is in V [G ∩ Sα] then so is H(x),
•X =

⋂
n∈ω Un where each Un is a dense open set belonging to V [G∩Sα].

To simplify notation it may be assumed that V = V [G ∩ Sα]. In V , let
{di | i ∈ ω} enumerate D, let G denote the generic function from ω2×ω to 2
which is obtained from an Sω2 generic set, and let p0 ∈ Sω2 be a determined
condition.

Let M be a countable elementary submodel of (H(ω3),∈) containing
the functions T and N and the name H. Let {En | n ∈ ω} be an increas-
ing sequence of finite sets such that

⋃
n∈ω En = M ∩ ω2. (The use of the

elementary submodel is only a convenience that allows the finite set En
to be chosen before beginning the fusion argument, thereby avoiding some
bookkeeping.) Construct, by induction on n ∈ ω, functions fn, as well as
conditions pn ∈ Sω2 , reals εn > 0 and integers kn, all in M, such that:

IH(0) fn ∈ C(I,R) and f0 is chosen arbitrarily,
IH(1) the neighbourhood of fn of radius εn < 1/n in C(I,R) is contained

in
⋂
i≤n Ui,

IH(2) %(fn, fn+1) < εn · 2−n−1,
IH(3) pn is (En, kn) determined.

For each n, an integer Jn and a sequence Cn = {cnj | j ≤ Jn} such that
cn0 = 0 < cn1 < cn2 < . . . < cnJn = 1 will be chosen so that

IH(4) dn ∈ Cn and Ci ⊆ Cn if i ∈ n,
IH(5) if i ∈ n and c ∈ Ci then fn(c) = fi(c).
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For each n and each j ≤ Jn a continuous function Φn,j : p∗n → R will be
found so that there is a name zn,j such that

IH(6) pn °Sω2
“H(zn,j) = Φn,j(G)” for each j ∈ Jn.

A function Zn,j : 2ω2×ω → R will also be constructed so that

IH(7) pn °Sω2
“zn,j = Zn,j(G)”,

IH(8) if Zn,j(x) = Zn,j(y) then Πω2,1(x) = Πω2,1(y),

and, with Cn,m,j denoting the image of pn under the mapping Zm,j ,

IH(9) if m < k ≤ n, j ∈ Jm and i ∈ Jk then Cn,m,j ∩ Cn,k,i = ∅.
By [Am,j , Bm,j ] will be denoted the interval with endpoints (fm + H)(cmj )
and (fm + H)(cmj+1). Observe that IH(5) implies that the definition of
[Am,j , Bm,j ] does not change at later stages of the induction.

IH(10) the image of pn under fn ◦Zn,j +Φn,j ◦Πω2,1 contains the interval
[An,j , Bn,j ] for each j ∈ Jn.

For x ∈ [0, 1] let pxn,m,j be the join of all conditions pn|σ such that σ :
En × kn → 2 is consistent with pn and x belongs to the image of (pn|σ)∗

under the mapping fn◦Zm,j+Φm,j◦Πω2,1. The following is the key inductive
requirement.

IH(11) if x ∈ [Am,j , Bm,j ] then (pxn+1,m,j , kn+1) <En+1 (pxn,m,j , kn).

Assuming that the induction can be completed, let f = limn→∞ fn. It
will be shown that there is a condition pω ∈ Sω2 which forces that T (f)
belongs to the image of N(f) under f . This contradiction will establish the
theorem because IH(1) and IH(2) obviously guarantee that f ∈ X.

Let m be an integer such that there is some j ∈ Jm such that [cmj , c
m
j+1] ⊆

N(f) and T (f) ∈ [Am,j , Bm,j ]. The integers m and j must exist because the
endpoints of N(f) belong to D and so N(f) = [cmi , c

m
k ] for some m, i and

k. Furthermore, from IH(5) it follows that

[H + f(cmi ),H + f(cmk )] = [H + fm(cmi ),H + fm(cmk )] =
⋃

i≤v<k
[Am,v, Bm,v].

There must, therefore, be some j between i and k − 1 which is suitable.
It follows from IH(10) that the range of fm ◦Zm,j +Φm,j ◦Πω2,1 contains

T (f) and so pT (f)
m,m,j 6= ∅. From IH(11) it follows that

(pT (f)
n+1,m,j , kn+1) <En+1 (pT (f)

n,m,j , kn)

for each n ≥ m and so there is a condition pω ∈ Sω2 such that pω ≤
p
T (f)
n,m,j for n ≥ m. It follows that T (f) belongs to the image of p∗ω under
f ◦ Zm,j + Φm,j ◦Πω2,1. Furthermore, because the diameters of the images
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of (pT (f)
n,m,j)

∗ under fn ◦Zm,j +Φm,j approach 0 as n increases, it follows that
f ◦ Zm,j + Φm,j ◦Πω2,1 has constant value T (f) on p∗ω.

It follows that pω ° “f ◦ Zm,j + Φm,j ◦Πω2,1(G) = T (f)”. From IH(6)
and the fact that pω ≤ pm it follows that pω ° “H(zm,j) = Φm,j ◦Πω2,1(G)”
and from IH(7) that pω ° “zm,j = Zm,j(G)”. Therefore pω ° “f(zm,j) +
H(zm,j) = T (f)” and this is a contradiction because zm,j ∈ [cmj , c

m
j+1] ⊆

N(f) by definition.
To carry out the induction suppose that fn, {Φn,j | j ∈ Jn} and {Zn,j |

j ∈ Jn} as well as conditions pn ∈ Sω2 have all been defined for n ≤ K. To
begin, let 0 = cK+1

0 < cK+1
1 < . . . < cK+1

JK+1
= 1 be such that

• {dK} ∪ CK ⊆ CK+1 = {cK+1
i | i ≤ JK+1},

• the diameter of the fK-image of [cK+1
i , cK+1

i+1 ] is less than εK · 2−K−4,
• 0 < |H(cK+1

i )−H(cK+1
i+1 )| < εK · 2−K−3.

The first condition ensures that IH(4) is satisfied. The second is easily ar-
ranged using uniform continuity. The last condition can be satisfied by a
further refinement using the Darboux property of H.

Note that Πω2,1(p∗K), the image of p∗K under Πω2,1, is perfect and so, for
each i ∈ JK+1 it is possible to find ΦK+1,i : Πω2,1(p∗K)→ R such that

• ΦK+1,i is a continuous mapping,
• the image of p∗K under ΦK+1,i ◦ Πω2,1 is the interval with endpoints

H(cK+1
i ) and H(cK+1

i+1 ),
• if (m, j) 6= (K+1, i) then ΦK+1,i ◦Πω2,1(x) 6= Φm,j ◦Πω2,1(x) for every

x ∈ p∗K ,
• ΦK+1,i is finite-to-one.

Observe that the last point implies that ΦK+1,i ◦Πω2,1(G) does not belong
to the ground model V .

In any generic extension there must be a real between cK+1
i and cK+1

i+1 at
which H takes on the value ΦK+1,i ◦Πω2,1(G) because H is assumed to be
Darboux. Let zK+1,i be a name for such a real. It follows from the choice of
ΦK+1,i that 1 ° “zm,j 6= zK+1,i” for each m ≤ K + 1 and j ∈ Jm such that
(K + 1, i) 6= (m, j).

Now find k and p such that

• (p, kK) <EK+1 (pK , kK),
• p is (EK+1, k) determined,
• for each σ : EK+1 × kK → 2 which is consistent with pK and for each

m ≤ K, j ∈ Jm and for each x in the image of (pK |σ)∗ under fK ◦ Zm,j +
Φm,j ◦Πω2,1 there is some σ′ : EK+1 × k → 2 such that

— σ′ is consistent with p,
— σ ⊆ σ′,



116 J. Steprāns

— the distance from x to the image of (p|σ′)∗ under fK ◦Zm,j +Φm,j ◦
Πω2,1 is less than εK · 2−K−4,

• the diameter of the image of (p|σ)∗ under fK ◦ Zm,j + Φm,j ◦Πω2,1 is
less than εK · 2−K−4 for each σ : EK+1 × k → 2 which is consistent with p.

Now let kK+1 and p be such that

• (p, kK+1) <EK+1 (p, k),
• p is (EK+1, kK+1) determined.

Because V is closed under H and Φm,j ◦ Πω2,1(G) 6∈ V it follows that
zK+1,i is a name for a real which does not belong to V . Lemma 3.1 can there-
fore be used JK+1 times to find a condition q such that (q, kK+1) ≤EK+1

(p, kK+1) and for each i ∈ JK+1 there is a function ZK+1,i : q∗ →
[cK+1
i , cK+1

i+1 ] such that

• q ° “zK+1,i = ZK+1,i(G)”,
• ZK+1,i(x) 6= ZK+1,i(y) unless Πω2,1(x) = Πω2,1(y).

Now observe that if (m, j) 6= (K + 1, i) then there cannot be q̂ ≤ q such
that Zm,j ¹ q̂∗ = ZK+1,i ¹ q̂∗ because it has already been remarked that 1 °
“zm,j 6= zK+1,i” for each m ≤ K+1 and j ∈ Jm such that (K+1, i) 6= (m, j).
It is therefore possible to use Lemma 3.2 repeatedly to find a single condition
pK+1 such that (pK+1, kK+1) <EK+1 (q, kK+1) and the image of p∗K+1 under
ZK+1,i is disjoint from the image of p∗K+1 under Zm,j if (m, j) 6= (K + 1, i).
Observe that pK+1 is (EK+1, kK+1) determined because p is. Hence IH(3) is
satisfied. Now define CK+1,K+1,i to be the range of ZK+1,i. This, along with
the induction hypothesis, will guarantee that IH(6)–IH(9) are all satisfied.

For integers m ≤ K + 1, j ∈ Jm let {[u0
m,j,v, u

1
m,j,v] | v ∈ Lm,j} be a

partition of [Am,j , Bm,j ] into intervals of length εK · 2−K−2. Now, for each
σ : EK+1 × kK+1 → 2 and for each pair of integers m ≤ K + 1, j ∈ Jm and
for each v ∈ Lm,j let W [σ,m, j, v] be a perfect, nowhere dense subset of

(fK + Φm,j ◦ (Πω2,1 ¹(pK+1|σ)) ◦ Z−1
m,j)

−1
[
u0
m,j,v −

εK
2K+3 , u

1
m,j,v +

εK
2K+3

]

if this is possible. By choosing smaller sets, if necessary, it may be assumed
that the sets W [σ,m, j, v] are pairwise disjoint and that W [σ,m, j, v] ∩
CK+1 = ∅. Then define Fσ,m,j,v : W [σ,m, j, v] → [u0

m,j,v, u
1
m,j,v] to be any

continuous surjection and let fσ,m,j,v = Fσ,m,j,v −Φm,j ◦Πω2,1 ◦Z−1
m,j . Note

that IH(8) implies that Πω2,1 ◦ Z−1
m,j is a function even though Zm,j is not

one-to-one.
Similarly, for each i ≤ JK+1 let Wi be a perfect, nowhere dense sub-

set of [cK+1
i , cK+1

i+1 ] disjoint from each W [σ,m, j, v] and define Fi : Wi →
[AK+1,i, BK+1,i] to be a continuous surjection. Then let f i = Fi − ΦK+1,i ◦
Πω2,1 ◦ Z−1

K+1,i. Notice that the domains of all the functions fσ,m,j,v and f i
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are pairwise disjoint. Hence it is possible to find fK+1 : I → R extending
each of these functions in such a way that %(fK+1, fK) does not exceed

max
{
|fK+1(y)− fK(y)| : y ∈

(⋃

i

Wi

)
∪
( ⋃

σ,m,j,v

W [σ,m, j, v]
)}

and, moreover, because W [σ,m, j, v] ∩ CK+1 = ∅ and Wi ∩ CK+1 = ∅, it
may also be arranged that fK+1(c) = fK(c) if c ∈ CK . Therefore IH(5) is
satisfied as well as IH(0). Observe that IH(10) is satisfied because the choice
of Fj ensured that it maps Wj onto [AK+1,j , BK+1,j ]. Since fK+1 ¹Wj =
Fj −ΦK+1,j ◦Πω2,1 ◦Z−1

K+1,j it follows that fK+1 ◦ZK+1,j +ΦK+1,j ◦Πω2,1

maps pK+1 onto [AK+1,j , BK+1,j ].
To see that IH(2) holds it suffices to consider only

fK+1 ¹
(⋃

i

Wi

)
∪
( ⋃

σ,m,j,v

W [σ,m, j, v]
)

because fK+1 was defined not to exceed this bound. Consider first y ∈
W [σ,m, j, v]. Then |fK+1(y)− fK(y)| is equal to

|fσ,m,j,v(y)− fK(y)| = |Fσ,m,j,v(y)− (Φm,j ◦Πω2,1 ◦ Z−1
m,j(y) + fK(y))|.

Next, the definition of Fσ,m,j,v implies that Fσ,m,j,v(y) ∈ [u0
m,j,v, u

1
m,j,v]. By

the definition of W [σ,m, j, v],

(fK + Φm,j ◦Πω2,1 ◦ Z−1
m,j)(y) ∈ [u0

m,j,v − εK/2−K−3, u1
m,j,v + εK/2−K−3]

because y ∈ W [σ,m, j, v]. Consequently, |fK+1(y) − fK(y)| is no greater
than the diameter of

[u0
m,j,v − εK/2−K−3, u1

m,j,v + εK/2−K−3],

which is εK · 2−K−3 + εK · 2−K−2 + εK · 2−K−3 = εK · 2−K−1.
On the other hand, if y ∈Wi then, as before,

|fK+1(y)− fK(y)| = |Fi(y)− (Φm,j ◦Πω2,1 ◦ Z−1
m,j(y) + fK(y))|.

Recall that ΦK+1,i is chosen to map onto [H(cK+1
i ),H(cK+1

i+1 )]; moreover,
because y ∈ [cK+1

i , cK+1
i+1 ] it follows from the choice of CK+1 that

fK(y) ∈ [fK(cK+1
i )− εK/2−k−4, fK(cK+1

i ) + εK/2−k−4]

and so Φm,j ◦Πω2,1◦Z−1
m,j(y)+fK(y) belongs to [AK+1,i−εK/2−K−4, BK+1,i

+εK/2−K−4]. Furthermore, Fi(y) belongs to [AK+1,i, BK+1,i] by design. By
the choice of CK+1 the diameter of [AK+1,i, BK+1,i] is less than εK/2−K−4+
εK/2−K−3 and so the diameter of

[AK+1,i − εK/2−K−4, BK+1,i + εK/2−K−4]

is no greater than εK/2−K−1 and it follows that |fK+1(y) − fK(y)| <
εK · 2−K−1.
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Now all of the induction hypotheses have been shown to be satisfied
except for IH(1) and IH(11). To verify IH(11) suppose that m ≤ K, j ∈ Jm
and x ∈ [Am,j , Bm,j ]. It follows that there is some v ∈ Lm,j such that
x ∈ [u0

m,j,v, u
1
m,j,v]. Suppose also that σ : EK+1× kK → 2 is consistent with

pxK,m,j . It follows that there is some σ′ : EK+1 × k → 2 such that

• σ′ is consistent with p,
• σ ⊆ σ′,
• the distance from x to the image of (p|σ′)∗ under fK◦Zm,j+Φm,j◦Πω2,1

is less than εK · 2−K−4.

It suffices to show that τ is consistent with pxK+1,m,j for each τ : EK+1×
kK+1 → 2 such that σ′ ⊆ τ ; the reason for this is that kK+1 was chosen
so that (p, kK+1) ≤EK+1 (pK , k) and (pK+1, kK+1) ≤EK+1 (p, kK+1). Recall
that the diameter of the image of (p|σ′)∗ under fK ◦ Zm,j + Φm,j ◦ Πω2,1

is less than εK · 2−K−4 because σ′ : EK+1 × k → 2 is consistent with p.
Because the distance from x to the image of (p|σ′)∗ under fK ◦ Zm,j +
Φm,j ◦Πω2,1 is less than εK · 2−K−4 it must be that this image is contained
in [u0

m,j,v − εK · 2−K−3, u1
m,j,v − εK · 2−K−3]. Because pK+1 < p it follows

that the image of (pK+1|τ)∗ under fK ◦ Zm,j + Φm,j ◦ Πω2,1 is contained
in [u0

m,j,v − εK · 2−K−3, u1
m,j,v − εK · 2−K−3] and so W [τ,m, j, v] 6= ∅. The

choice of Fτ,m,j,v ensures that it maps W [τ,m, j, v] onto [u0
m,j,v, u

1
m,j,v] and

therefore fK+1 + Φm,j ◦ (Πω2,1 ¹ (pK+1|τ)) ◦ Z−1
m,j maps W [τ,m, j, v] onto

[u0
m,j,v, u

1
m,j,v]. Hence τ is consistent with pxK+1,m,j .

Finally, choose εK+1 so that the neighbourhood of fK+1 of radius εK+1

is contained in UK+1.

Corollary 4.1. If set theory is consistent then it is consistent that for
every Darboux function F there is a nowhere constant continuous function
f such that F + f is also Darboux.

P r o o f. The model to use is the one for Theorem 4.1. Given a Darboux
F to obtain a nowhere constant continuous f use the fact that the set of
nowhere constant functions is comeagre in C(I,R).

5. Further remarks. It should be observed that the function f in
Corollary 4.1 has very few nice properties other than continuity. It is natural
to ask the following question.

Question 5.1. Is there a Darboux function H : I → R such that H + f
is not Darboux for every non-constant , differentiable function f?

The answer to Question 5.1 for functions with continuous derivative is
positive. The same question can be asked with absolutely continuous in place
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of differentiable. Recall that differentiable functions satisfy the property T1

of Banach [9].

Definition 5.1. A function F : R→ R satisfies T1 if and only if the set
of all x such that f−1{x} is infinite has measure zero.

Banach showed that differentiable functions satisfy T1. Question 5.1 is
of interest for differentiable functions because Corollary 2.1 shows that a
strengthening of T1 yields a positive theorem.

Another potentially interesting direction to pursue would be to ask
whether the size of the set of continuous functions in Theorem 4.1 can be
increased.

Question 5.2. Is there a Darboux function F such that the set of con-
tinuous functions f with F + f Darboux is not comeagre?

Question 5.3. Is there a Darboux function F such that the set of con-
tinuous functions f with F + f Darboux does not have measure one?

In [5] it is shown that the answers to these questions are consistently
negative.

In the same paper the authors also consider not only sums of a Darboux
function and a continuous function, but also products and other algebraic
constructions. It is not difficult to check that everything that has been es-
tablished in this paper for sums also holds for products, but it is not clear
that this must always be so.

Question 5.4. If there is a Darboux function F such that F + g is
not Darboux for every nowhere constant function g, must it also be the
case that there is a Darboux function F such that F · g is not Darboux
for every nowhere constant function g? What about the opposite implica-
tion?
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