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Properly homotopic nontrivial planes are isotopic

by

Bobby Neal W i n t e r s (Pittsburg, Kan.)

Abstract. It is proved that two planes that are properly homotopic in a noncompact,
orientable, irreducible 3-manifold that is not homeomorphic to R3 are isotopic. The end-
reduction techniques of E. M. Brown and C. D. Feustal and M. G. Brin and T. L. Thickstun
are used.

Introduction. In this paper it is proved that two planes that are prop-
erly homotopic in a noncompact, orientable, irreducible 3-manifold that
is not homeomorphic to R3 are isotopic. The end-reduction techniques of
Brown–Feustal and Brin–Thickstun are used.

It is not uncommon among those who study noncompact 3-manifolds
to consider the end-irreducible and eventually end-irreducible cases as a
starting point. These cases, while quite far from being general, do occur
often enough to be useful. In recent years a technique known as “end-
reduction”has been used to extend from the eventually end-irreducible case
to the general case.

The technique of end-reduction was used by Brown and Feustel in [BF]
to prove that if there is a “nontrivial” mapping of R2 in a noncompact
3-manifold W , then W must contain a “nontrivial” embedded plane as well.
This result had been proved in [BBF] for eventually end-irreducible W .

In [BT] Brin and Thickstun recognized that given a noncompact
3-manifold W and a compact K ⊂ W an eventually end-irreducible 3-
manifold WK could be associated with (W,K). By using the properties of
the eventually end-irreducible 3-manifold WK for increasingly large K and
piecing things together nicely, they were able to obtain results in a more
general case.

Following the approach of [BT], this author proved in [W] that if W is
a noncompact, orientable, irreducible 3-manifold that is not homeomorphic
to R3, and P and Q are planes that are nontrivial in W with P properly
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homotopic to Q and P ∩Q = ∅, then P and Q are parallel in W . This paper,
which is a sequel to [W], follows the methods of [BF] more closely, however.

Definitions. A plane (annulus, circle, arc, 2-sphere, disk) is a space
homeomorphic to R2 (S1 × I, S1, I, S2, D2).

Suppose that X, Y , and Z are topological spaces.
If f : X → Y is a map and f−1(K) is compact for every compact

K ⊂ Y , then f is said to be proper. If X ⊂ Y and X ∩ K is compact for
every compact K ⊂ Y , then X is proper in Y . (This is equivalent to the
inclusion map X → Y being proper.) If X ⊂ Y and X and Y are n- and
(n+ 1)- manifolds, respectively, then we say that X is properly embedded in
Y when X is proper in Y and X ∩ ∂Y = ∂X.

Suppose that X and Y are subspaces of Z. We say that X traps Y if
there is no proper homotopy h : Y × I → Z such that h(y, 0) = y for every
y ∈ Y and h(Y × 1) ∩X = ∅.

Let h : X × I → X be a proper map. For t ∈ I, define ht : X → X by
ht(x) = h(x, t). If h0 = 1W and ht is a homeomorphism for every t ∈ I, then
we say that h is an isotopy of X.

We let ](X) denote the number of path components of the space X.
Suppose that W is a noncompact 3-manifold.
If P ⊂ W is a plane, then we say that P is nontrivial in W when P is

proper in W and there is a compact subset of W that traps P .
An exhaustion or exhausting sequence for W is a function V from N to

the set of compact 3-submanifolds of W such that W =
⋃
n∈N V (n) and

V (n) ⊂ V (n+ 1)− Fr(V (n+ 1)). Traditionally we put Vn = V (n).
If there is an exhausting sequence V for W such that Fr(Vn) is incom-

pressible in W for every n ∈ N, then we say that W is end-irreducible.
If there is a compact subset K ⊂ W and an exhaustion V for W such

that K ⊂ V1−Fr(V1) and Fr(Vn) is incompressible in W−K for every n ∈ N,
then W is said to be end-irreducible rel K. If W is end-irreducible rel K for
some compact k ⊂W , then W is said to be eventually end-irreducible.

Some results about compact 3-manifolds

Lemma 1. Let M be a compact 3-manifold and let T ⊂ ∂M be a compact
2-manifold with at least two components. For i = 1, 2, let Ai be an annulus
that is properly embedded and incompressible in M with each component
of ∂Ai contained in a different component of T . Suppose that if J is a
component of A1∩A2, then J is a circle in M −∂M that is noncontractible
in M . If D is a compressing disk for T in M , then there is a compressing
disk D′ for T in M such that D′ ∩ (A1 ∪A2) = ∅.
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P r o o f. Suppose that D is a compressing disk for T in M . By Lemma 2
of [W] (in which the assumption of irreducibility in the hypothesis may be
dropped), we may assume that D ∩A1 = ∅. Now choose such a disk D with
](D ∩A2) minimal. By standard arguments involving innermost disks and
incompressibility, we may assume that no component of D ∩A2 is a circle.

To get a contradiction, suppose that α is an arc component of D ∩ A2.
Let Dα be a disk that is separated off D by α. We may choose α so that
Dα ∩ A2 = α. Since each component of ∂A2 is in a different component of
T , it follows that α is a separating arc of A2. Let Eα be the disk separated
off A2 by α. Then Dα ∪ Eα is a disk. Let J = ∂(Dα ∪ Eα).

If J is noncontractible in T , then there is a compressing disk D′ for T in
M that is parallel to Dα ∪Eα with D′ ∩ (A1 ∪A2) = ∅. On the other hand,
suppose that there is a disk E ⊂ T with ∂E = J . Then we may slide ∂D
along E to move it past A2 and remove an arc of D∩A2 while introducing a
circle of D ∩A2. This circle can be removed by standard methods. We have
reduced ](D ∩A2), which contradicts minimality. This ends the proof.

Lemma 2. Let M ⊂ N be compact , irreducible 3-manifolds such that each
component of cl(N −M) meets ∂N . Suppose that A0 and A1 are annuli that
are incompressible and properly embedded in M with ∂A0 = ∂A1. If A0 and
A1 are homotopic in N , then A0 and A1 are isotopic in M by an isotopy
fixed on ∂M .

P r o o f. Move A1 by an isotopy of M fixed on ∂M so that ](A0 ∩A1) is
minimal and A0 meets A1 transversely.

Suppose that J is a component of (A0∩A1)−∂A0 that is contractible in
either A0 or A1. It is easy to argue using the incompressibility of A0 and A1

that J must be contractible in both A0 and A1. Let D ⊂ A1 be a disk with
J = ∂D. Without loss of generality, we may assume that (D−∂D)∩A0 = ∅.
Let E ⊂ A0 be the disk with ∂E = ∂D. Since M is irreducible and D ∪ E
is a 2-sphere, there is a 3-ball B ⊂M with ∂B = D ∪ E. We may use B to
reduce #(A0 ∩A1) by an isotopy of M . Therefore, we may assume that no
component of (A0 ∩A1) is contractible in either A0 or A1. Consequently, if
F is the closure of a component of A0−A1 or A1−A0, then F is not a disk.

Suppose that F is the closure of a component of A0 −A1 or A1 −A0.
By Proposition 5.4 of [Wa], there is a product F × I ⊂ N such that

F × 0 ⊂ A0, (∂F × I) ∪ (F × 1) ⊂ A1, and (F × (0, 1)) ∩ (A0 ∪A1) = ∅.
Since ∂(F × I) ⊂M , either F × I ⊂M or the interior of F × I contains

a component of cl(N −M). Since each component of cl(N −M) meets ∂N ,
it follows that F × I ⊂M .

Since ](A0 ∩A1) is minimal, we have F × 0 = A0 and (∂F × I)∪ (F × 1)
= A1. Therefore A1 is isotopic in M to A0 by an isotopy fixed on ∂M .
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Handle moves respecting planes. Beginning now and for the rest
of the paper, let W be a connected, noncompact, orientable, irreducible
3-manifold that is not homeomorphic to R3, and let P and Q be planes that
are nontrivial in W .

In what follows, we will at times need to do handle moves along com-
pressing 1-, 2-, and 3-handles. In particular, suppose that M ⊂W .

First suppose that there is a properly embedded disk D ⊂ M with ∂D
a noncontractible circle in Fr(M). Let H be a regular neighborhood of D
in M . Then H is a compressing 1-handle for M . Let M(H) = cl(M −H).
We say that M(H) is obtained from M by removing the 1-handle H.

Suppose that D ⊂ cl(W −M) is a properly embedded disk with ∂D non-
contractible in Fr(M). Let H be a regular neighborhood of D in cl(W −M).
Then we say that H is a compressing 2-handle for M . Let M(H) = M ∪H.
We say that M(H) is obtained from M by adding the 2-handle H.

Suppose that S is a 2-sphere in Fr(M) that bounds a 3-ball H in
cl(W −M). Then H is a compressing 3-handle for M . Let M(H) = M ∪H.
Then M(H) is said to be obtained from M by adding the 3-handle H.

When H is a compressing 1-, 2-, or 3-handle for M , then we say that H
is a compressing handle for M .

Suppose that H1 is a compressing handle for M . Suppose that H2 is a
compressing handle for M(H1). Define M(H1,H2) = M(H1)(H2). Assume
that M(H1, . . . ,Hk−1) has been defined and let Hk be a compressing han-
dle for M(H1, . . . , Hk−1). Define M(H1, . . . ,Hk) = M(H1, . . . , Hk−1)(Hk).
Then we say that H1, . . . , Hk, . . . is a sequence of compressing handles in W
for M .

Let K ⊂ M and F ⊂ W . Suppose that H1, . . . , Hν is a sequence of
disjoint compressing 1-handles in W −K for M such that

(1) Hi ∩ F = ∅ and Hi ∩K = ∅ for 1 ≤ i ≤ ν, and
(2) Fr(M(H1, . . . , Hν)) is incompressible in W −K.

Then we say that M can be compressed in W − K to M(H1, . . . ,Hν) by
removing 1-handles that miss F .

Lemma 3. Suppose that K ⊂ W is a compact 3-manifold that traps P
and meets P in a single disk. Suppose that L ⊂ W is compact. Then there
is a compact , connected 3-manifold M ⊂W with K ∪L ⊂M −Fr(M) such
that P ∩M is a single disk and M can be compressed in W −K by removing
1-handles that miss P .

P r o o f. The proof is essentially the first two paragraphs of the proof of
Lemma 3 of [W], which owes much to Lemma 1.1 of [BF]. We repeat it here
for the convenience of the reader.
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Let M ⊂ W be a compact, connected 3-manifold with K ∪ L ⊂ M −
Fr(M) such that P ∩M is a single disk. There is a sequence H1, . . . ,Hν

of compressing 1-, 2-, and 3-handles in W − K for M such that if M∗ =
M(H1, . . . , Hν), then Fr(M)∗ is incompressible in W − K. We may argue
using Lemma 1 and the fact that W −K is irreducible that H1, . . . ,Hν may
be chosen so as to not intersect P . We choose M so that, with respect to
the indicated properties, H1, . . . , Hν contains the fewest possible 2-handles.

We claim that H1, . . . ,Hν has no 2-handles (and therefore no 3-handles).
Let k be the least integer such that Hk is a 2-handle. We may choose Hk so
that Hk∩Hi is a subproduct of the 1-handle structure of Hi for 1 ≤ i ≤ k−1.
Let H =

⋃k−1
i=1 Hi and let H ′1, . . . , H

′
µ be the components of cl(H −Hk).

Let M ′ = M ∪ Hk. Then H ′i is a 1-handle for M ′ for 1 ≤ i ≤ µ. Note
that M ′(H ′1, . . . ,H

′
µ,Hk+1, . . . , Hν) = M∗. Since H ′1, . . . , H

′
µ,Hk+1, . . . ,Hν

has fewer 2-handles, this contradicts the minimality assumption. This ends
the proof.

Let V be an exhaustion for W . For n ∈ N, let Gn = cl(Vn+1 − Vn),
An = P ∩Gn, and Bn = Q∩Gn. Suppose that An and Bn are incompressible
annuli that are properly embedded in Gn and meet both Fr(Vn+1) and
Fr(Vn), and suppose that each component of An∩Bn is a circle in Gn−∂Gn
that is noncontractible in Gn. Note that P ∩ V1 and Q ∩ V1 are necessarily
disks.

Lemma 4. Suppose that L ⊂ W is compact. There is a compact , con-
nected 3-manifold M ⊂ W such that V1 ∪ L ⊂ M − Fr(M), P ∩M and
Q ∩M are both disks, and M can be compressed in W − V1 by removing
1-handles that miss P ∪Q.

R e m a r k. The proof that follows is a modification of the first two para-
graphs of the proof of Lemma 3 of [W], which itself owes much to Lemma 1.1
of [BF].

P r o o f o f L e m m a 4. Note that, for n ∈ N, P ∩ Vn and Q ∩ Vn are
both single disks.

Let M be a compact, connected 3-manifold with V1 ∪ L ⊂ M − Fr(M)
such that P ∩ M and P ∩ Q are single disks, and P ∩ cl(M − V1) and
Q∩ cl(M − V1) are annuli that are incompressible in cl(M − V1), meet both
Fr(M) and Fr(V1), and intersect one another in circles that are noncon-
tractible in cl(M − V1). So far M = Vm for some m ≥ 2 would satisfy these
conditions.

Let H1, . . . , Hν be a compressing sequence of 1-, 2-, and 3-handles for
M which miss P ∪ Q. By Lemma 1, such a compressing sequence exists.
Choose M so that H1, . . . ,Hν has the fewest possible 2-handles. The rest of
the proof proceeds as in the latter part of the proof of Lemma 3.
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Proper homotopies between planes. Beginning now and for the rest
of the paper, let f : R2 × I →W be a proper map such that f |R2 × i is an
embedding for i ∈ ∂I, and f(R2 × 0) = P and f(R2 × 1) = Q.

For this section, suppose thatK ⊂W is a compact, connected 3-manifold
that traps both P and Q and meets P in a single disk. Also assume that no
component of Fr(K) is a 2-sphere. Since K traps P , it can be argued that
there is no 3-ball B ⊂ W with K ⊂ B − ∂B. It now follows that W − K
is irreducible and that π2(W −K) = 0. We may also argue that P −K is
incompressible in W −K.

Let ∆ ⊂ R2 be a disk and let Λ = cl(R2 −∆); then Λ is homeomorphic
to S1 × [0,∞), a half open annulus. Since f is proper, we may choose ∆ so
that f(Λ× I) ⊂W −K. It follows that P ∩K ⊂ f(∆× 0)− f(∂∆× 0). So
f(∂Λ× 0) = f(∂∆× 0) is noncontractible in W −K.

Let N be a compact, connected 3-manifold in W such that K ⊂ N −
Fr(N) and Fr(N) is in general position with respect to P and Q. Suppose
that f(∆ × I) ⊂ N − Fr(N) and that P ∩ N is a single disk. Let M ′ be
a compact 3-manifold obtained from N by removing 1-handles that miss
P and are transverse to Q. Suppose that there is a component M of M ′

such that K ⊂ M − Fr(M) and Fr(M) is incompressible in W − K. Let
D = cl(Fr(M)− Fr(N)). Then each component of D is a disk.

Since Fr(M) is incompressible in W −K, it follows that

(∗) ker(π1(Fr(M))→ π1(W −K))

is trivial. It is also easy to argue that

(∗∗) π2(Fr(M)) = π2((W −K)− Fr(M)) = 0.

In Lemma 5, we make use of the techniques used by Hempel in the proof
of Lemma 6.5 of [He]. For the convenience of the reader, we reproduce the
part of Hempel’s language that we need here without proof.

Let g : Λ × I → W −K be a proper map. We will wish at times in the
proof of Lemma 5 to obtain a proper map g1 : Λ× I →W −K that agrees
with g except on the interior of some closed 3-ball contained in Λ× I. These
modifications are in the from of three “moves” listed below. We refer the
reader to the body of the proof of Lemma 6.5 of [He] for the proof and more
specific details of the respective modifications. However, note that (∗) and
(∗∗) above satisfy all of the algebraic hypotheses that the proof requires.

Without loss of generality, we may assume that g−1(Fr(M)) is a 2-sided,
compact 2-manifold. Let F be a component of g−1(Fr(M)).

M o v e 1. Suppose that F is a 2-sphere that bounds a 3-ball B′ ⊂ Λ×I.
Then we change the definition of g on a regular neighborhood B ⊂ (Λ× I)
−∂(Λ× I) of B′ to obtain a new map g1 that agrees with g off B − ∂B and
g−1

1 (Fr(M)) = g−1(Fr(M))−B.
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M o v e 2. Suppose that F is a disk that is parallel in Λ× I to a disk in
∂(Λ×I) by a parallelism B′. We may change the definition of g on a regular
neighborhood B of B′ to obtain a map g1 that agrees with g off B − ∂B
such that g−1

1 (Fr(M)) = g−1(Fr(M))−B.

M o v e 3. Suppose that there is a disk D in Λ × I with ∂D = D ∩
g−1(Fr(M)) ⊂ F such that ∂D is contractible in F . Then there is a ball
B ⊂ (Λ×I)−∂(Λ×I) which contains D and intersects g−1(Fr(M)) precisely
in a regular neighborhood of ∂D in F . We may change the definition of g on
B to obtain a map g1 that agrees with g off B − ∂B such that g−1

1 (Fr(M))
may be obtained from g−1(Fr(M)) by removing the interior of an annulus
regular neighborhood of ∂D in F and capping off the two resulting circles
with a pair of disjoint disks in Λ× I which intersect g−1Fr(M) precisely in
the boundaries of the disks.

We will also borrow from Hempel the measure of complexity of maps
that he uses. For i = 2, 1, 0,−1, . . . , let ci(g) be the number of compo-
nents of g−1(Fr(M)) that have Euler characteristic equal to i. Let c(g) =
(. . . , c−1, c0(g), c1(g), c2(g)).

Lemma 5. (1) There is a proper map g : Λ × I → W − K such that
g|∂(Λ× I) = f |∂(Λ× I) and if F is a component of g−1(Fr(M)), then F is
2-sided , is not a 2-sphere, and the inclusion induced map π1(F )→ π1(Λ×I)
is injective.

(2) There is a proper map h : Λ × I → W − K such that h|Λ × ∂I =
f |Λ× ∂I and if F is a component of h−1(Fr(M)), then F is 2-sided , is not
a 2-sphere, the inclusion induced map π1(F ) → π1(Λ × I) is injective, and
no component of F ∩ (∂Λ× I) is a circle.

P r o o f. We mimic the proof of Lemma 6.5 of [He] with obvious modifi-
cations.

To prove part (1), let g : Λ × I → W − K be a proper map such that
g|∂(Λ× I) = f |∂(Λ× I) and let F = g−1(Fr(M)). We may choose g so that
F is 2-sided and g differs from f only by repeated modifications by Move 1
and Move 3. It may be that g = f . Choose g so that c(g) is minimal when
taken in lexicographic order. It is easy to check that no component F ′ of F
is a 2-sphere and that if F ′ is a component of F , then π1(F ′)→ π1(Λ× I)
is injective.

To prove part (2), let h : Λ × I → W − K be a proper map such that
h|Λ×∂I = f |Λ×∂I. Let F = h−1(Fr(M)). We may assume by part (1) that if
F ′ is a component of F , then F ′ is not a 2-sphere and π1(F ′)→ π1(Λ× I)
is injective. We allow h to differ from f by successive modifications by
Move 2. Choose h among such maps so that #(F ) is minimal.

We claim that no component of F ∩ (∂Λ × I) is a circle. To get a con-
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tradiction, suppose that J is such a component. Let FJ be the component
of F such that J ⊂ ∂FJ . We claim that J is contractible in ∂Λ × I. Since
h(∂Λ×I) ⊂ N−Fr(N), it follows that h(J) ⊂ D. Hence h(J) is contractible
in W −K. Since P −K is incompressible in W −K, it follows that h(J) is
not homotopic in W −K to P ∩Fr(N). Therefore J is not parallel in ∂Λ× I
to ∂Λ× 0. It follows that J is contractible in ∂Λ× I.

Since J is contractible in Λ × I and since π1(FJ) → π1(Λ × I) is injec-
tive, it follows that FJ is a disk. There is a 3-ball BJ in Λ × I such that
∂BJ = FJ ∪ (BJ ∩ (∂Λ × I)). We may choose J so that BJ ∩ F = FJ . By
using case (2) of Lemma 6.5 of [He], we may reduce ](F ). This is a contra-
diction.

Lemma 6. Let g : Λ × I → W −K be a proper map that agrees with f
on Λ× ∂I. Let F = g−1(Fr(M)). Suppose that F is properly embedded and
2-sided in Λ× I. Suppose that if F ′ is a component of F , then F ′ is not a
2-sphere and π1(F ′)→ π1(Λ× I) is injective.

(1) If F ′ is a component of F , then F ′ is either a disk or an annulus.
Furthermore, at least one component A of F is an annulus that meets Λ×0
in a single circle that is noncontractible in Λ× 0.

(2) If no component of F ∩ (∂Λ× I) is a circle, then either g(∂Λ× I) ⊂
M−Fr(M) or ](∂cl(Q− f(∆× 1)) ∩D) can be reduced by an isotopy of W
that is fixed on K ∪ cl(W −N).

(3) If g(∂Λ × I) ⊂ M − Fr(M), then ∂F ⊂ Λ × ∂I and either F = A
or ](Q ∩ Fr(M)) can be reduced by an isotopy of compact support fixed on
K ∪ g(∂Λ× I).

P r o o f. To prove (1), let F ′ be a component of F . Since π1(Λ× I) = Z,
it follows that F ′ is either a disk, annulus, or Möbius band. Note that Λ× I
contains no 2-sided Möbius band. Let A be the component of F that contains
the unique component of F∩(Λ×0). Since P−K is incompressible, it follows
that A is not a disk.

To prove (2), suppose that no component of F ∩ (∂Λ × I) is a circle
and that g(∂Λ× I) is not contained in M − Fr(M). Since g(∂Λ× I) is not
contained in M−Fr(M), it follows that F ∩(∂Λ×I) is nonempty. Let α be a
component of F ∩ (∂Λ×I). Then α is an arc. Since g(∂Λ×0) ⊂M−Fr(M),
it follows that ∂α ⊂ ∂Λ× 1. Let Dα ⊂ ∂Λ× I be the disk that is separated
off by α. Let β = Dα∩ (∂Λ×1) and let β′ = g(β). We may choose α so that
Dα ∩ F = α.

Now g(α) ⊂ D. Let h = g|Dα. Then exactly one of the following mani-
folds contains h(Dα):

(1) M −K or
(2) cl(N −M).
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Let Ω be whichever of these two manifolds contains h(Dα). Let Θ be the
result of splitting Ω along Q ∩Ω.

Recall thatDα ⊂ ∂Λ×I. We lose nothing by assuming that g is such that,
for some ε > 0, g(∂Λ×[1−ε, 1]) lies all on one side of a regular neighborhood
of Q in W . Consequently, h−1(Q) is the union of β and circles that are in
the interior of Dα. We may modify h so that h−1(Q) = β. Consequently, we
may assume that h(Dα) is contained in Θ. Note that h|α is fixed endpoint
homotopic in D to an arc. We may therefore assume that h(∂Dα) is a circle
in ∂Θ. Let B be a regular neighborhood of h(Dα) in Θ. Then, by the Loop
Theorem, there is a disk D′ ⊂ B such that ∂D′ is nontrivial in B ∩ ∂Θ.
Since B ∩ ∂Θ is an annulus, we may we may assume that ∂D′ = h(∂Dα).
Consequently, D′∩D = α and D′∩Q = β′. Let B′ be a regular neighborhood
of D′ in W such that B′ ∩Ω = B.

We may use B′ to reduce ](∂cl(Q− f(∆× 1)) ∩D) by an isotopy of W
fixed on K ∪ cl(W −N).

To prove (3), suppose that g(∂Λ×I) ⊂M−Fr(M). Then F∩(∂Λ×I) = ∅
and so F −(Λ×0) ⊂ Λ×1. Now suppose that F 6= A. Let G be a component
of F −A. Then ∂G ⊂ Λ× 1.

Suppose that G is a disk. Then g(∂G) is contractible in Fr(M). Therefore
there is a disk G′ ⊂ Fr(M) with ∂G′ = g(∂G). We may assume that G′∩Q =
∂G′. Let G′′ be the unique disk in Q with ∂G′′ = ∂G′. Since Q − K is
incompressible in W − k, it follows that G′′ ⊂ W − K. So G′ ∪ G′′ is a
2-sphere in W −K that bounds a 3-ball U ′ in W −K.

On the other hand, suppose that G is an annulus. By standard argu-
ments, there is a parallelism U ⊂ Λ× I with ∂U = G∪ (U ∩ (Λ× 1)). Then,
by Proposition 5.4 of [Wa], there is a parallelism U ′ in W − K between
g(U ∩ (Λ× 1)) and a 2-manifold in Fr(M).

In either case, we may use U ′ to reduce ](Q ∩ Fr(M)) by an isotopy of
compact support fixed on K ∪ g(∂Λ× 1).

The main theorem

Theorem 7. There is an isotopy qt : W →W such that q1(Q) = P .

P r o o f. By Lemma 1 of [W], there is a compact, connected 3-manifold
V1 that traps both P and Q and is such that P ∩ V1 is a single disk
and no component of Fr(V1) is a 2-sphere. Let ∆ ⊂ R2 be a disk and
let Λ = cl(R2 −∆). Choose ∆ so that f(Λ × I) is contained in W − V1.
By Lemma 3 there is a compact, connected 3-manifold V ′1 ⊂ W with
V1 ⊂ V ′1 − Fr(V ′1) such that f(∆ × I) ⊂ V ′1 − Fr(V ′1), V ′1 ∩ P is a disk,
and V ′1 can be compressed in W −V1 to a compact 3-manifold X ′1 by remov-
ing 1-handles that miss P . Let X1 be the component of X ′1 that contains V1.
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Then V1 ⊂ X1 − Fr(X1) and Fr(X1) is incompressible in W − V1. Let
D = cl(Fr(X1)− Fr(V ′1)).

Let h be an isotopy of W that has compact support. Let f̂ : R2×I →W
be defined by f̂(x, t) = ht(f(x, t)). Then f̂(R2×0) = P ; put f̂(R2×1) = Q1.
Let a = ](∂cl(Q1 − f̂(∆× 1)) ∩D) and let b = ](Q1 ∩ Fr(X1)). Suppose
that h is fixed on V1 and that ht(f(∆ × I)) ⊂ V ′1 − Fr(V ′1) for every t ∈ I.
Choose h among such isotopies so that (a, b) is minimal in lexicographic
order.

Let g : Λ× I →W − V1 be a proper map that agrees with f̂ on Λ× ∂I.
Let F = g−1(Fr(X1)). By Lemma 5 we may choose g so that if F ′ is a
component of F , then F ′ is not a 2-sphere and the inclusion induced map
π1(F ′)→ π1(Λ× I) is injective, and so that no component of F ∩ (∂Λ× I)
is a circle.

By Lemma 6(2) and the minimality of a, it follows that g(∂Λ × I) ⊂
X1−Fr(X1). By Lemma 6(3) and the minimality of b, it follows that F is a
single annulus with F ∩ (Λ× i) a single circle that is noncontractible in Λ× i
for i ∈ ∂I. Therefore g|F is a homotopy in Fr(X1) between P ∩ Fr(X1) and
Q1 ∩Fr(X1), which are both single circles. Therefore P ∩Fr(X1) is isotopic
in Fr(X1) to Q1 ∩ Fr(X1). Without loss of generality, we may assume that
P ∩ Fr(X1) is parallel to Q1 ∩ Fr(X1) in Fr(X1) by applying an isotopy of
W that is fixed off a product neighborhood of Fr(X1).

Let V2 be a compact, connected 3-manifold that contains V ′1 and the
support of h. We may choose V2 so that P ∩ V2 is a single disk, so that
Fr(V2) contains no 2-spheres, and so that V2 contains any prechosen compact
subset of W . As before, we may construct a plane Q2 that is isotopic to Q1

by an isotopy of compact support fixed on V2 and a compact, connected
3-manifold X2 such that Q2 ∩Fr(X2) and P ∩Fr(X2) are single circles that
are parallel in Fr(X2).

Continuing in this fashion, we may construct an exhaustion X and a
plane Q′ isotopic to Q so that, for n ∈ N, P∩Fr(Xn) and Q′∩Fr(Xn) are sin-
gle circles that are parallel to one another in Fr(Xn). Let h′t : W →W be the
isotopy that takes Q to Q′. Define f ′ : R2× I →W by f ′(x, t) = h′t(f(x, t)).
To conserve notation, put f = f ′ and Q = Q′.

For n ∈ N, let Mn = cl(Xn+1 −Xn), let An = P ∩Mn and Bn = Q∩Mn.
By standard arguments, there is an isotopy of Mn fixed on ∂Mn that takes
Bn to an annulus B′n such that each component of An ∩ B′n is a circle in
Mn−Fr(Mn) that is noncontractible in Mn. We may compose these isotopies
for each n ∈ N so that we may assume that each component of An ∩ Bn is
a circle that is noncontractible in Mn.

We may construct another exhaustion Y for W as follows. Let Y1 = X1.
By Lemma 4, there is a compact, connected 3-manifold Y2 that contains X2,
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meets P and Q in single disks whose boundaries are parallel in Fr(Y2), and
can be compressed in W − Y1 to a compact 3-manifold Z ′1 by removing
1-handles that miss both P and Q. Let Z1 be the component of Z ′1 that
contains Y1. Since P ∩ Fr(Y2) is noncontractible in W − Y1, it follows that
none of the compressing 1-handles removed from Y2 to obtain Z ′1 intersected
the parallelism in Fr(Y2) between P ∩ Fr(Y2) and Q ∩ Fr(Y2).

Continuing in the obvious way, we may construct an exhaustion Y for
W such that for n ∈ N,

(1) Yn is connected,
(2) P ∩Yn and Q∩Yn are disks whose boundaries are parallel in Fr(Yn),
(3) Yn+1 can be compressed in W − Y1 by removing 1-handles that miss

P and Q to obtain Z ′n, and
(4) if Zn is the component of Z ′n that contains Y1, we may assume that

Zn ⊂ Zn+1−Fr(Zn+1). (This is because Fr(Zn) is incompressible in W−Y1.)

Note that properties (1)–(4) are preserved under the taking of subse-
quences.

Let ∆ ⊂ R2 be a disk and let Λ = cl(R2 −∆). Choose ∆ so that
f(Λ × I) ⊂ W − Y1. By taking a subsequence of Y and the correspond-
ing subsequence of Z, we may assume that f(∆× I) ⊂ Y2 − Fr(Y2).

Let n ≥ 1 be an integer. By Lemma 5, there is a map g : Λ×I →W −Y1

that agrees with f |Λ× I on ∂(Λ× I) such that if Fn = g−1(Fr(Zn)) and if
F ′ is a component of Fn, then F ′ is not a 2-sphere and π1(F ′)→ π1(Λ× I)
is injective. By parts (1) and (2) of Lemma 6, it follows that Fn is a single
annulus.

It is not difficult to see that we may warp the product structure of Λ× I
so that Fn = J × I for some circle J ⊂ Λ. Let Λ′ be the closure of the
component of Λ− J that has noncompact closure. Arguing as before, there
is a map g′ : Λ′×I → cl(W − Zn) that agrees with g|Λ′×I on ∂(Λ′×I) such
that (g′)−1(Fr(Zn+1)) is a single annulus Fn+1. We may warp the product
structure of Λ′× I off ∂Λ′× I so that Fn+1 = J ′× I for some circle J ′ ⊂ Λ′
that is parallel in Λ to J . Let A ⊂ Λ be the annulus with ∂A = J ∪ J ′. Put
Nn = cl(Zn+1 − Zn) andMn = cl(Zn+1 − Yn+1). Then g′|A×I : A×I → Nn
is a homotopy from P ∩Nn to Q ∩Nn.

By an isotopy of W fixed off a product neighborhood of
⋃
n∈N Fr(Yn),

we may assume that P ∩ Fr(Yn) = Q ∩ Fr(Yn). By composing this isotopy
with the appropriate homotopies, we retain that P ∩Fr(Yn) is homotopic to
Q∩Nn in Nn for every n ∈ N. By Lemma 2, it follows that P ∩Nn is isotopic
in Mn by an isotopy fixed on ∂Mn. By piecing together these isotopies, we
may assume that P ∩ cl(W − Z1) = Q ∩ cl(W − Z1) and that P ∩ Z1 and
Q ∩ Z1 are disks that share a common boundary. Since W is irreducible,
(P ∩Q) ∩ Z1 bounds a ball B. Use B to finish isotoping Q onto P .
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