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Rotation sets for subshifts of finite type

by

Krystyna Z i e m i a n (Indianapolis, Ind.)

Abstract. For a dynamical system (X, f) and a function ϕ : X → RN the rotation
set is defined. The case when (X, f) is a transitive subshift of finite type and ϕ depends
on the cylinders of length 2 is studied. Then the rotation set is a convex polyhedron. The
rotation vectors of periodic points are dense in the rotation set. Every interior point of
the rotation set is a rotation vector of an ergodic measure.

1. Introduction. In some dynamical systems, an important role is
played by rotation numbers, vectors and sets. The classical example and the
source of the name is the notion of the rotation number of an orientation
preserving homeomorphism of a circle. It has been introduced by Poincaré
[P] and has been used extensively since then. It has numerous applications,
see e.g. [A].

The notion of rotation numbers has been generalized to the case of an-
nulus homeomorphisms homotopic to the identity ([Bi]), the case of circle
maps of degree one ([NPT]) and the case of N -dimensional torus maps ho-
motopic to the identity ([KMG]). Those notions also have many applications
(see e.g. [Ch], [NPT], [KMG]). In those generalizations we get more than
one rotation number (vector) for a given system, so we think rather about
the rotation set.

Quite recently, rotation sets have been introduced for interval maps
([Bl1], [Bl2]). In many other situations, for example for the systems con-
sidered in [MT], rotation sets can be defined in a natural way.

To understand the idea of the rotation set, let us consider a continuous
map f of the N -dimensional torus TN into itself, homotopic to the identity.
We take a lifting F : RN → RN of f and study the limits of the expressions
(Fn(x)−x)/n as n goes to infinity (sometimes we allow x to vary, too). Those
limits form the rotation set. The expression (Fn(x)−x)/n can be rewritten
as n−1∑n−1

i=0 ϕ(f i(y)), where y = π(x) (here π : RN → TN = RN/ZN is the
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natural projection), and ϕ(π(z)) = F (z) − z for z ∈ RN . Notice that the
condition that f is homotopic to the identity makes ϕ(π(z)) depend really
on π(z), not on z itself.

Thus, studying rotation sets boils down to studying limits of ergodic
averages of the displacement function ϕ. In view of the ergodic theorem, the
sets {∫ ϕdµ : µ is an f -invariant probability measure} ([He]) and {∫ ϕdµ : µ
is an f -invariant ergodic probability measure} ([MZ1]) are closely related to
the rotation set.

It is a quite natural idea to generalize the notion of the rotation set
to the abstract situation when f : X → X is an arbitrary dynamical sys-
tem and ϕ : X → RN an arbitrary function (a very similar approach has
been developed independently by A. Blokh in [Bl2]). The set of limits of
convergent sequences (n−1

i

∑ni−1
i=0 ϕ(f i(xi)))∞i=1, where limi→∞ ni =∞ and

xi ∈ X, will be called the general rotation set of ϕ (or of (f, ϕ)). If for some
x ∈ X the limit limn→∞ n−1∑n−1

i=0 ϕ(f i(x)) exists then we shall call it the
ϕ-rotation vector of x (or simply the rotation vector of x if it is clear which
ϕ we use) and denote it by %ϕ(x). If N = 1 then instead of “vector” we can
say “number”. The set %(ϕ) = {%ϕ(x) : x ∈ X} will be called the point-
wise rotation set of ϕ (or of (f, ϕ)). For an invariant probability measure µ
on X we shall call the integral

∫
ϕdµ the rotation vector of µ and denote

it by %ϕ(µ).
In this general situation clearly the pointwise rotation set is contained in

the general rotation set. Moreover, since for every ergodic measure there are
generic points, the set of rotation vectors of ergodic measures is contained in
the pointwise rotation set (when we speak of an ergodic measure, we mean an
ergodic invariant probability measure). By the Krylov–Bogolyubov theorem,
there exists an invariant probability measure for f , and since the closed
convex hull of the set of ergodic measures is equal to the set of all invariant
probability measures, there exists an ergodic measure for f . Therefore the
pointwise and general rotation sets of ϕ are nonempty.

In the situation we shall consider throughout the main part of the paper,
the general and pointwise rotation sets are equal. For historical reasons, and
since it is slightly easier to use it, we will choose the pointwise rotation set
to be more equal (see [O]). When using it, we will call it simply the rotation
set of ϕ.

In this paper we want to show that to a great extent the properties of
rotation sets and their relation to the underlying dynamics are independent
of the concrete situation. Therefore we forget about the fact that the function
ϕ has anything to do with displacement.

Since usually quite general results are few and weak, we have to make
additional assumptions. Namely, we assume that our system is a transitive
subshift of finite type and the function ϕ is constant on the cylinders of
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length 2. Those assumptions seem to be very strong, even stronger than
assuming that the space is a torus and ϕ is displacement, but in fact they
are not. Namely, they allow us to use symbolic dynamics, which is a natural
and widely used tool. For circle maps it can be done by considering P -
monotone maps (see e.g. [ALM]), and for homeomorphisms of surfaces by
using Thurston’s theory (see e.g. [LM]). In Section 2 we show why in those
cases our assumptions on ϕ are not restrictive.

The main results of the paper are that under our assumptions the rota-
tion set is a convex polyhedron (Theorem 3.4; here by polyhedron we mean
the convex hull of a finite set), the rotation vectors of periodic points are
dense in the rotation set (Theorem 3.5), and every interior point of the
rotation set is the rotation vector of an ergodic measure (Theorem 4.6).

A reader interested in the properties of the rotation set and rotation
vectors for non-transitive subshifts of finite type can easily derive them from
the results of this paper.

The results of this paper can be used to reprove many known theorems
on rotation sets for circle or torus maps. What is more important, they show
which parts of the theory of rotation sets for those maps are independent of
a specific situation. Next, the results of this paper are being used in further
development of the theory of rotation sets for interval maps, started in [Bl1]
and [Bl2]. Finally, in the situation considered in [MaT], by our Theorem 3.5
the weight-per-symbol polytope of [MaT] is equal to the rotation set, so
Proposition 3.2 of [MaT] is a particular case of our results.

2. Using symbolic dynamics. Suppose that we are investigating a
circle map of degree one or a 2-torus (or annulus) homeomorphism isotopic
to the identity. We shall denote our space by X and our map by f . Let X̃ be
the universal cover of X, π : X̃ → X the natural projection, and F : X̃ → X̃
a lifting of f . To investigate the rotation set of f (or more precisely, of F ),
we have to look at the ergodic averages of the displacement function, as
described in the preceding section. By standard methods—choosing one or
more periodic orbits, calling their union P and then looking at the simplest
map homotopic (isotopic in 2 dimensions) rel. P to f—we can often get a
new map g : X → X that is easier to investigate. Namely, there is a Markov
partition for g, and we can use coding to pass to a subshift of finite type.
With a suitable choice of P , our new map g is really “simpler” than f . This
happens if f is P -adjusted (see e.g. [MN]) in the one-dimensional case or
pseudo-Anosov (see e.g. [LM]) in the two-dimensional case. Then every orbit
of g has its counterpart for f . In particular, the rotation set of g is contained
in the rotation set of f .

After coding, we get some subshift of finite type (Σ, σ). We also have a
function ϕ : Σ → RN which is the composition of the projection fromΣ toX
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with the displacement function of g. Here N = 1 for a circle and an annulus
and N = 2 for a torus. The rotation set of g is the same as the rotation set
of (σ, ϕ). To be able to use the results of the next sections, we have to know
that σ is transitive, and we have to have a function constant on the cylinders
of length 2 that gives the same rotation set as ϕ. By a cylinder of length 2
we mean a set of the form CAB = {(xi) ∈ Σ : x0 = A and x1 = B}.

Suppose that we replace ϕ by another function ψ such that ϕ − ψ =
ξ ◦ σ − ξ for some bounded function ξ (that is, ψ is cohomologous to ϕ).
Then

1
n

n−1∑

i=0

ϕ ◦ σi − 1
n

n−1∑

i=0

ψ ◦ σi =
1
n

n−1∑

i=0

(ξ ◦ σ − ξ) ◦ σi =
1
n

(ξ ◦ σn − ξ).

Thus,
∥∥∥∥

1
n

n−1∑

i=0

ϕ ◦ σi − 1
n

n−1∑

i=0

ψ ◦ σi
∥∥∥∥ ≤

2
n
‖ξ‖,

where ‖ · ‖ denotes the sup norm. Therefore the rotation sets of ϕ and ψ
are the same. Hence, we want to show that ϕ is cohomologous to a function
constant on cylinders of length 2.

Let {A1, . . . , As} be our Markov partition of X. Choose one component
Bi of every π−1(Ai) and set B =

⋃s
i=1Bi. Then (after removing from B a

part of its boundary) we have π(B) = X and B ∩ d(B) = ∅ for every deck
transformation d : X̃ → X̃ other than the identity. Therefore x ∈ dx(B)
for each x ∈ X̃, where the deck transformation dx is uniquely determined
by x. In our concrete situations, the deck transformations are translations
by elements of ZN . In particular, dx is translation by some kx ∈ ZN .

Set ψ̃(x) = kF (y)−ky for x ∈ X, where y ∈ π−1(x). Since f is homotopic
to the identity, ψ̃(x) does not depend on the choice of y, i.e. ψ̃ is well defined.
We may assume that our Markov partition is so fine that for each i and
j the set F (Bi) intersects at most one component of π−1(Aj). Then the
composition ψ : Σ → RN of the projection from Σ to X with ψ̃ is constant
on cylinders of length 2. Moreover, ψ has values in ZN .

Set ξ(x) = y − ky for x ∈ X, where y ∈ π−1(x). By the same reasons as
for ψ̃, the function ξ̃ is well defined. Since the set B is bounded, ξ̃ is also
bounded. If ϕ̃ is the displacement function and π(y) = x then

ϕ̃(x)− ψ̃(x) = (F (y)− y)− (kF (y) − ky)

= (F (y)− kF (y))− (y − ky) = ξ̃(f(x))− ξ̃(x).

Therefore we get ϕ − ψ = ξ ◦ σ − ξ, where ξ is the composition of the
projection from Σ to X with ξ̃.
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This is the result we wanted to prove. It means that in the cases described
here one can use the techniques and results of the next sections. Moreover,
the function ψ that we got has values in ZN , so even the results obtained
under this additional assumption can be applied.

3. Rotation set is a polyhedron. In the remaining part of this paper
(Σ, σ) will be a transitive subshift of finite type and ϕ : Σ → RN a function
constant on cylinders of length 2. The subshift may be one-sided or two-
sided—that will make no difference.

We can look at our system in the following way. There is a finite oriented
graph G (a Markov graph of Σ) and elements of Σ are infinite paths in G
(doubly infinite paths if we think of a two-sided subshift). Then we can think
of ϕ as of a function on arrows of G. Transitivity of σ means that for any
vertices A and B of G there is a finite path in G from A to B.

Notice that ϕ attains only finitely many values, and therefore it is
bounded by some constant B (in the space RN we use the Euclidean norm).

Let us look at finite paths in G. They correspond to cylinders in Σ.
Denote by %ϕ(τ) the average of the values of ϕ on the arrows of such a
path τ . A path τ with consecutive vertices A0, A1, . . . , An (written τ =
(A0, A1, . . . , An)) is called a loop ifAn = A0. To every loop there corresponds
a periodic point of σ. Clearly, if τ is a loop then %ϕ(τ) is the rotation vector
of this periodic point. Usually we think of a loop without specifying its
beginning. Then we get a periodic orbit rather than just a periodic point.
Of course, the rotation vectors of all elements of a given periodic orbit are
the same.

We will say that a loop is elementary if it is not a concatenation of two
shorter loops. Clearly, each loop that is not elementary can be written as a
concatenation of two loops, at least one of which is elementary.

By the length of a path τ we will mean the number of arrows in τ . We
will denote it by |τ |. Thus, if τ = (A0, A1, . . . , An) then |τ | = n.

Now we start studying properties of the rotation set %(ϕ) of ϕ. Let
τ1, . . . , τk be all the elementary loops in the graph G, and let %1, . . . , %k be
their rotation vectors.

Lemma 3.1. For each loop in the graph G its rotation vector belongs to
Conv(%1, . . . , %k).

P r o o f. We shall prove this lemma by induction. Assume that L is
a loop of length n in G and that for every loop in G of length smaller
than n its rotation vector belongs to Conv(%1, . . . , %k). If L is elementary
then clearly %ϕ(L) ∈ Conv(%1, . . . , %k). If L is not elementary then it is
the concatenation of two loops τ and L′, where τ is elementary. There-
fore %ϕ(τ) ∈ Conv(%1, . . . , %k), and also %ϕ(L′) ∈ Conv(%1, . . . , %k) since
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|L′| < |L|. Since %ϕ(L) is a convex combination of %ϕ(τ) and %ϕ(L′), we get
%ϕ(L) ∈ Conv(%1, . . . , %k).

Lemma 3.2. Let P = (A0, A1, . . . , An) be a path in G. Then there is a
vector v ∈ Conv(%1, . . . , %k) such that ‖%ϕ(P ) − v‖ ≤ 2Bs(s + 1)/n, where
s is the number of vertices of G.

P r o o f. If all A0, A1, . . . , An are different, we do nothing. Otherwise we
take the smallest i such that there exists j > i such that Ai = Aj . Then
we take the largest j with those properties. In such a way we can write P
as the concatenation of three paths: (A0, . . . , Ai) of length smaller than s,
a loop (Ai, . . . , Aj), and a path (Aj , . . . , An). Notice that in the last path the
vertex Ai only appears in the first place. Then we repeat the same procedure
starting from the last path, etc. Each time in the last path there is a new
symbol that only appears in the first place. Therefore we can repeat our
procedure at most s times. In such a way we write P as the concatenation
of a path, a loop, a path, a loop, . . . , a path (the first and the last paths
perhaps are not there). In this decomposition there are at most s+ 1 paths,
each of them of length at most s (we could give better estimates, but we do
not need them). If we call those paths P1, . . . , Pp and the loops L1, . . . , Lq
then we have

%ϕ(P ) =
l

n

p∑

i=1

|Pi|
l
%ϕ(Pi) +

t

n

q∑

i=1

|Li|
t
%ϕ(Li),

where l =
∑p
i=1 |Pi| and t =

∑q
i=1 |Li| (we have l + t = n). The vector

v =
q∑

i=1

|Li|
t
%ϕ(Li)

belongs to Conv(%1, . . . , %k) by Lemma 3.1. If there is no loop in our decom-
position, then we take any v ∈ Conv(%1, . . . , %k). The norm of each vector
%ϕ(Pi) is bounded by B, so the norm of the vector

u =
p∑

i=1

|Pi|
l
%ϕ(Pi)

is also bounded by B. Similarly, ‖v‖ ≤ B. Moreover, l ≤ s(s+ 1). Therefore

‖%ϕ(P )− v‖ ≤ l

n
(‖u‖+ ‖v‖) ≤ 2Bs(s+ 1)

n
.

Lemma 3.3. For every v ∈ Conv(%1, . . . , %k), ε > 0, and every vertex A
of G there is a loop L in G passing through A such that ‖%ϕ(L)− v‖ ≤ ε.

P r o o f. We have v = t1%1 + . . . + tk%k for some t1, . . . , tk ≥ 0 such
that t1 + . . . + tk = 1. We approximate ti’s by rational numbers. There
exist a positive integer m and non-negative integers s1, . . . , sk such that
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s1 + . . . + sk = m and |si/m − ti| ≤ ε/(2kB) for i = 1, . . . , k. Then we
construct loops passing through A with rotation vectors close to %i. For
each i we choose a vertex Bi through which τi passes. By transitivity of σ
there exist paths Pi from A to Bi and Ri from Bi to A. Now we define a loop
Li as the concatenation of the path Pi, li repetitions of the loop τi (with the
beginning and end at Bi) and the path Ri. By taking li sufficiently large,
we can make the rotation vector of Li as close to the rotation vector of τi
as we want. For our purposes it suffices to have ‖%ϕ(Li)− %i‖ ≤ ε/(2k), so
we take li large enough to get this inequality.

We take a natural number r divisible by the lengths of all loops Li and
set ri = r/|Li| for i = 1, . . . , k. Then we define L as the concatenation of
r1s1 copies of L1, r2s2 copies of L2, . . . , rksk copies of Lk. Let us estimate
the difference between v and the rotation vector of L. We have

|L| =
k∑

i=1

risi|Li| =
k∑

i=1

rsi = rm,

and therefore

%ϕ(L) =
1
rm

k∑

i=1

risi|Li|%ϕ(Li) =
k∑

i=1

si
m
%ϕ(Li).

Moreover,
∥∥∥∥
si
m
%ϕ(Li)− ti%i

∥∥∥∥ ≤
∥∥∥∥
si
m
%ϕ(Li)− si

m
%i

∥∥∥∥+
∥∥∥∥
si
m
%i − ti%i

∥∥∥∥

≤ ‖%ϕ(Li)− %i‖+B

∥∥∥∥
si
m
− ti

∥∥∥∥ ≤
ε

2k
+

ε

2k
=
ε

k
.

Hence

‖%ϕ(L)−v‖ =
∥∥∥∥

k∑

i=1

si
m
%ϕ(Li)−

k∑

i=1

ti%i

∥∥∥∥ ≤
k∑

i=1

∥∥∥∥
si
m
%ϕ(Li)−ti%i

∥∥∥∥ ≤ k
ε

k
= ε.

Now we can prove the main result of this section.

Theorem 3.4. Both the general rotation set and the pointwise rotation
set of (σ, ϕ) are equal to Conv(%1, . . . , %k).

P r o o f. From Lemma 3.2 and the definition of the general rotation set
it follows immediately that the general rotation set of (σ, ϕ) is contained in
Conv(%1, . . . , %k). As we noticed in the introduction, the pointwise rotation
set is contained in the general rotation set. Therefore it remains to prove
that Conv(%1, . . . , %k) is contained in the pointwise rotation set. That is, we
have to prove that for every v ∈ Conv(%1, . . . , %k) there is an infinite path η
in G with rotation vector v.
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We apply Lemma 3.3. Fix some vertex A of G. For each positive integer
m there exists a loop Lm in G beginning and ending at A, and such that
‖%ϕ(Lm)− v‖ ≤ B/m. Using induction we can find a sequence (qm)∞m=1 of
positive integers such that for each m we have

(3.1)
|Lm+1|
qm|Lm| ≤

1
m

and
m−1∑

i=1

qi|Li|
qm|Lm| ≤

1
m
.

We define the path η as the concatenation of q1 copies of L1, then q2

copies of L2, etc. Let ηn be the finite path consisting of the first n arrows
of η. Assume that n > q1|L1|. Observe that ηn is the concatenation of the
loops Li repeated qi times for i = 1, . . . ,m (for some m), then possibly the
loop Lm+1 repeated q′m+1 times (for some q′m+1 < qm+1), and then possibly
a path L′m+1 consisting of first few arrows of Lm+1. We have

(3.2) n =
m∑

i=1

qi|Li|+ q′m+1|Lm+1|+ |L′m+1|

and

%ϕ(ηn) =
1
n

( m∑

i=1

qi|Li|%ϕ(Li)(3.3)

+ q′m+1|Lm+1|%ϕ(Lm+1) + |L′m+1|%ϕ(L′m+1)
)
.

By (3.1) we get

(3.4)
∥∥∥∥

1
n
|L′m+1|%ϕ(L′m+1)

∥∥∥∥ ≤
|Lm+1|B
qm|Lm| ≤

B

m

and

(3.5)
∥∥∥∥

1
n

m−1∑

i=1

qi|Li|%ϕ(Li)
∥∥∥∥ ≤

m−1∑

i=1

qi|Li|B
qm|Lm| ≤

B

m
.

Since ‖%ϕ(Lm) − v‖ ≤ B/m and ‖%ϕ(Lm+1) − v‖ ≤ B/(m + 1) < B/m,
taking into account (3.1) and (3.2) we get

∥∥∥∥
1
n

(qm|Lm|%ϕ(Lm) + q′m+1|Lm+1|%ϕ(Lm+1))− v
∥∥∥∥(3.6)

≤
∥∥∥∥

1
n

(qm|Lm|%ϕ(Lm) + q′m+1|Lm+1|%ϕ(Lm+1))

− 1
n

(qm|Lm|+ q′m+1|Lm+1|)v
∥∥∥∥

+
∥∥∥∥

1
n

(qm|Lm|+ q′m+1|Lm+1|)v − v
∥∥∥∥
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≤ B

mn
(qm|Lm|+ q′m+1|Lm+1|) +

1
n

(n− qm|Lm| − q′m+1|Lm+1|)‖v‖

≤ B

m
+

1
n

(m−1∑

i=1

qi|Li|+ |L′m+1|
)
B ≤ B

m
+

2qm|Lm|B
mn

≤ 3B
m

.

From (3.3)–(3.6) we obtain ‖%ϕ(ηn)− v‖ ≤ 5B/m. As n goes to infinity,
so does m, and therefore limn→∞ ‖%ϕ(ηn) − v‖ = 0. This proves that the
rotation vector of η is v.

From Lemma 3.3 and Theorem 3.4 we get immediately the following
corollary.

Theorem 3.5. The set of the rotation vectors of periodic points of σ is
dense in %(ϕ).

R e m a r k. In the case when ϕ(X) ⊂ ZN all the rotation vectors of
periodic points are rational (i.e. belong to QN ). In particular, the vertices
of the polyhedron %(ϕ) are rational in this case.

4. Interior vectors of the rotation set. In this section we investigate
the properties of the vectors from int(%(ϕ)), the topological interior of %(ϕ)
as a subset of RN .

Lemma 4.1. Let v ∈ int(%(ϕ)) and let A be a vertex of G. Then there
exist loops L1, . . . , Lk in G passing through A such that |L1| = . . . = |Lk|
and v ∈ int(Conv(%ϕ(L1), . . . , %ϕ(Lk))).

P r o o f. By Lemma 3.3 for every i ∈ {1, . . . , k} and ε > 0 there exists
a loop L′i in G passing through A such that ‖%ϕ(L′i) − %i‖ ≤ ε. Since v ∈
int(%(ϕ)), if ε is sufficiently small then v ∈ int(Conv(%ϕ(L′1), . . . , %ϕ(L′k))).
Let m be a common multiple of |L′1|, . . . , |L′k| and let Li be the loop L′i
repeated m/|L′i| times, i = 1, . . . , k. Then clearly L1, . . . , Lk satisfy the
conditions of the lemma.

We start with rotation vectors from int(%(ϕ)) that are rational.

Theorem 4.2. If ϕ(X) ⊂ ZN , then for every v ∈ QN ∩ int(%(ϕ)) there
exists a periodic point x ∈ Σ with rotation vector v.

P r o o f. Let v ∈ QN∩int(%(ϕ)) and let A be a vertex of G. By Lemma 4.1
there exist loops L1, . . . , Lk in G passing through A such that |L1| = . . . =
|Lk| and v ∈ Conv(%ϕ(L1), . . . , %ϕ(Lk)). Since v and %ϕ(L1), . . . , %ϕ(Lk) are
rational, there exist rational nonnegative numbers r1, . . . , rk such that

(4.1)
k∑

i=1

ri = 1 and
k∑

i=1

ri%ϕ(Li) = v.
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Now we construct a loop L in G with rotation vector v. There is a positive
integer q such that all qri are integers. We define L as the concatenation of
qr1 copies of L1, qr2 copies of L2, . . . , qrk copies of Lk (each of those loops
begins and ends at A, so we can do it). Since the lengths of all the loops Li
are equal, the rotation vector of L is

∑k
i=1 qri|Li|%ϕ(Li)∑k

i=1 qri|Li|
=
∑k
i=1 ri%ϕ(Li)∑k

i=1 ri
.

By (4.1) this is equal to v.
Now the point x of Σ corresponding to L is periodic and its rotation

vector is the same as the rotation vector of L.

R e m a r k. As we already know, the vertices of the polyhedron %(ϕ) are
the rotation vectors of periodic points. Therefore in the case N = 1 in
Theorem 4.2 the assumption v ∈ QN ∩ int(%(ϕ)) can be replaced by v ∈
Q ∩ %(ϕ).

To study arbitrary rotation vectors from int(%(ϕ)) we will need the fol-
lowing geometrical lemma. It is a generalization to N dimensions of a weak
version of Lemma 1 from [MZ2].

Lemma 4.3. Let w1, . . . , wk ∈ RN and assume that 0 ∈ int(Conv(w1, . . .
. . . , wk)). Then there exists R > 0 such that if z ∈ RN and ‖z‖ ≤ R then
there exists j ∈ {1, . . . , k} such that ‖z + wj‖ ≤ R.

P r o o f. If there is i such that wi = 0 then we choose j = i and we are
done. Assume that wi 6= 0 for every i.

For every unit vector u ∈ RN and i ∈ {1, . . . , k} we define αi(u) as the
measure of the angle between the vectors u and wi. Let α(u) = mini αi(u).
Since 0 belongs to the interior of Conv(w1, . . . , wk), we have α(u) < π/2 for
every unit vector u. The functions αi are continuous, so α is also continuous.
Therefore it assumes its maximum α0 on the unit sphere, and α0 < π/2.

Set
R = max

i
‖wi‖ ·max(2, 1/cosα0).

Take z ∈ RN such that ‖z‖ ≤ R. If ‖z‖ ≤ R/2 then we choose any j and we
get ‖z + wj‖ ≤ ‖z‖+ ‖wj‖ ≤ R/2 +R/2 = R.

Assume that ‖z‖ > R/2. There exists j such that the measure of the angle
between −z and wj is smaller than or equal to α0. Then

−z · wj ≥ ‖z‖ ‖wj‖ cosα0 ≥ ‖z‖ ‖wj‖‖wj‖
R

>
1
2
‖wj‖2.

Therefore

‖z + wj‖2 = ‖z‖2 + 2z · wj + ‖wj‖2 < ‖z‖2 − ‖wj‖2 + ‖wj‖2 = ‖z‖2 ≤ R2,

so ‖z + wj‖ < R. This completes the proof.
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Lemma 4.4. If v ∈ int(%(ϕ)) then there exist x ∈ Σ and M > 0 such
that

(4.2)
∥∥∥
m−1∑

i=0

ϕ(σi(x))−mv
∥∥∥ ≤M

for all m ≥ 0.

P r o o f. Choose a vertex A of G. By Lemma 4.1 there exist loops L1, . . .
. . . , Lk in G passing through A such that |L1| = . . . = |Lk| and v ∈
int(Conv(%ϕ(L1), . . . , %ϕ(Lk))). Let K be the common length of Li. For
i = 1, . . . , k set wi = K%ϕ(Li) − Kv. Then 0 ∈ int(Conv(w1, . . . , wk)).
Let R be the constant from Lemma 4.3.

We define a sequence (jn)∞n=1 in {1, . . . , k} and a sequence (zn)∞n=0 of
vectors such that ‖zn‖ ≤ R by induction as follows. Set z0 = 0. If zn−1

is defined and ‖zn−1‖ ≤ R then by Lemma 4.3 we choose jn such that
‖zn−1 + wjn‖ ≤ R. Next we set zn = zn−1 + wjn . This completes the
induction step.

Now we define an infinite path η in G as the concatenation of Lj1 , Lj2 , . . .
Let ηm be the finite path consisting of the first m arrows of η. Observe that
ηm is the concatenation of the loops Lji for i = 1, . . . , n (for some n) and
then possibly a path L′ consisting of first few arrows of Ljn+1 . If x is the
point of Σ corresponding to the path η then

nK−1∑

i=0

ϕ(σi(x))− nKv =
n∑

i=1

(K%ϕ(Lji)−Kv) =
n∑

i=1

wji = zn.

Therefore
∥∥∥
m−1∑

i=0

ϕ(σi(x))− nv
∥∥∥ = ‖zn + |L′|%ϕ(L′)− |L′|v‖ ≤ R+ 2KB.

Thus, (4.2) holds with M = R+ 2KB.

Using Lemma 4.4 we can prove the next of the main results of the paper.

Theorem 4.5. If v ∈ int(%(ϕ)) then there exists a compact invariant set
Y ⊂ Σ such that %ϕ(y) = v for every y ∈ Y .

P r o o f. Let v ∈ int(%(ϕ)) and let x and M be as in Lemma 4.4. Let Y be
the closure of the orbit of x (that is, of the set Z = {σi(x) : i = 0, 1, 2, . . .}).
Clearly, Y is compact and invariant. We will show that %ϕ(y) = v for every
y ∈ Y .

Fix m ≥ 0. If y ∈ Z then y = σn(x) for some n. Then by (4.2) we have

∥∥∥
m−1∑

i=0

ϕ(σi(z))−mv
∥∥∥ =

∥∥∥
n+m−1∑

i=n

ϕ(σi(x))−mv
∥∥∥
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=
∥∥∥
n+m−1∑

i=0

ϕ(σi(x))−
n−1∑

i=0

ϕ(σi(x))− (n+m)v + nv
∥∥∥

≤
∥∥∥
n+m−1∑

i=0

ϕ(σi(x))− (n+m)v
∥∥∥+

∥∥∥
n−1∑

i=0

ϕ(σi(x))− nv
∥∥∥ ≤ 2M.

Since σ and ϕ are continuous, we get

∥∥∥
m−1∑

i=0

ϕ(σi(y))−mv
∥∥∥ ≤ 2M

for every y from the closure of Z, i.e. from Y . This holds for every m ≥ 0,
and therefore we get %ϕ(y) = v for every y ∈ Y .

As a simple corollary to the above theorem we get the following result.

Theorem 4.6. If v ∈ int(%(ϕ)) then there exists an ergodic invariant
probability measure µ on Σ such that %ϕ(µ) = v.

P r o o f. Let v ∈ int(%(ϕ)) and let Y be as in Theorem 4.5. Since Y is
compact and invariant, there exists an ergodic invariant probability measure
µ on Y . It can be considered as an ergodic invariant probability measure µ
on Σ with support contained in Y . By the Ergodic Theorem, every generic
point of µ has rotation vector %ϕ(µ). Since there are generic points of µ
in Y , we get %ϕ(µ) = v.
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vres complètes, Vol. 1, Gauthier-Villars, Paris, 1952, 137–158.

DEPARTMENT OF MATHEMATICAL SCIENCES

INDIANA UNIVERSITY–PURDUE UNIVERSITY INDIANAPOLIS

INDIANAPOLIS, INDIANA 46202

U.S.A.

E-mail: KZIEMIAN@MATH.IUPUI.EDU

Received 10 May 1994


