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Linear orders and MA + ¬wKH

by

Zoran S p a s o j e v i ć (Madison, Wisc.)

Abstract. I prove that the statement that “every linear order of size 2ω can be
embedded in (ωω ,�)” is consistent with MA + ¬wKH.

Let ϕκ denote the statement that every linear order of size κ can be
embedded in (ωω,�) for regular κ ≤ 2ω = c where ωω denotes the set of all
functions from ω to ω and � is a partial order on ωω defined as follows: for
f, g ∈ ωω let f � g if and only if ∃n < ω ∀i ≥ n (f(i) ≤ g(i)) and f(i) < g(i)
on an infinite set. Under CH, ∀κ ≤ c (ϕκ), which basically follows from the
fact that there are no (ω, ω)-gaps in (ωω,�). If CH fails then (ωω,�) may
not even contain a well order of type ω2 regardless of what c is. On the
other hand, MA + ¬CH → ∀κ < c (ϕκ). Kunen constructed a model for
MA + ¬CH + ¬ϕc and Laver [L] constructed a model for ¬CH + ϕc. For a
while, the question was whether MA + ¬CH is strong enough to decide ϕc.
Woodin [W] constructed a model for MA + c = ω2 + ϕc, therefore, together
with Kunen’s result, showing that ϕc is independent of MA + ¬CH.

On the other hand, PFA→ MA + ¬wKH→ MA + ¬CH and neither of
the implications is reversible. Therefore MA + ¬wKH is in strength some-
where between PFA and MA + ¬CH. But also PFA → c = ω2 + ¬ϕc.
Therefore, it is reasonable to ask whether MA + ¬wKH is strong enough to
decide ϕc. This question is the main consideration of this paper. The main
result is Theorem 3.2 which states that if M is a countable transitive model
(c.t.m.) for ZFC + V=L and κ is the first inaccessible cardinal in M then
there is an extension N[J] of M which is a model for ZFC + MA + ¬wKH
+ c = ω2 + ϕc. The existence of an inaccessible cardinal is necessary to
show the consistency of ¬wKH, as shown by Mitchell [M]. Todorčević [T]
constructed a model for MA + ¬wKH + c = ω2, and I will use this result
together with the result of Laver to construct the model N[J]. Therefore,
when combined with PFA → MA + ¬wKH + c = ω2 + ¬ϕc, it shows that
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MA + ¬wKH is still not strong enough to decide ϕc. Woodin’s construc-
tion cannot easily be modified to fit the additional arguments required in
showing ¬wKH because his construction is completed in ω2 · ω2 stages. In
order to show that ¬wKH holds in the final model the construction here has
to be finished in ω2 steps. However, the treatment of stages of cofinality ω1

resembles those in Woodin’s construction. Consequently, the construction
here can be regarded as an amalgamation of the constructions mentioned
above.

To construct a model N[J], I start with a c.t.m. M for ZFC + V=L in
which κ is the first inaccessible cardinal. Then, as in [M], extend M with a
partial order to obtain a model N such that N |= “¬wKH + c = κ = ω2 ”.
In N, I perform an iterated ccc forcing construction with finite supports of
length ω2. In the process I construct a c-saturated linearly ordered subset
(L,�) of (ωω,�). At the successor stages I alternate between ccc partial
orders to make MA true and splitting partial orders for pregaps in L. A
difficulty occurs in splitting (ω1, ω1)-gaps. However, the construction is ar-
ranged in such a way that these gaps appear in L only at the limit stages of
cofinality ω1; at these stages I split all such gaps, all at once. The elements
of ωω obtained at these stages will not be used directly, but they are needed
to ensure that the splitting orders for all the pregaps in L continue to have
the ccc until they are filled, one by one, at the later successor stages. The
partial orders at these limit stages have cardinality ω2, which causes some
difficulty in the proof of ¬wKH. This difficulty is overcome by reducing the
argument to suborders of size ω1 of these partial orders.

Since trees and gaps play a central role in the construction, I begin with
some notions and results on trees and gaps that are needed here. Many
results included here are already known, however I present a different view
point. Notation and terminology are adapted from [K], especially the part
on iterated forcing.

1. Trees. A tree is a partial order in the strict sense, 〈T,≤〉, such that
for each x ∈ T, x̂ = {y ∈ T : y < x} is well ordered by <. If x ∈ T, the
height of x in T, ht(x,T), is the ordinal α which is the order type of x̂ and
Tx = {y ∈ T : y ≤ x ∨ x < y}. For each ordinal α, the αth level of T,
Levα(T), is the set {x ∈ T : ht(x,T) = α}. The height of T, ht(T), is the
least α such that Levα(T) = ∅. A chain in T is a set C ⊆ T which is totally
ordered by <. If C intersects every level of T then C is called a path through
T. A ⊆ T is an antichain iff ∀x, y ∈ A (x 6= y → (x 6≤ y∧ y 6≤ x)). I will only
consider well pruned trees. A well pruned tree is a tree T such that

(i) |Lev0(T)| = 1,
(ii) ∀α < β < ht(T) ∀x ∈ Levα(T) ∃y1, y2 ∈ Levβ(T) (y1 6= y2 ∧ x ≤

y1, y2),
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(iii) ∀α < ht(T) ∀x, y ∈ Levα(T) (lim(α)→ (x = y ↔ x̂ = ŷ)).

From now on any mention of a tree T will automatically mean that T
is a well pruned tree. An ω1-tree is a tree T such that ht(T) = |T| = ω1.
An ω1-tree is a weak Kurepa tree if it has at least ω2 paths. The assertion
that there is a weak Kurepa tree is denoted by wKH and ¬wKH denotes
its negation. An Aronszajn tree is an ω1-tree T without any paths such that
∀α < ω1 (|Levα(T)| ≤ ω). A Suslin tree is an Aronszajn tree with no un-
countable antichains. If T is an ω1-tree and ∃(f : T → ω) (∀x, y ∈ T (x < y
→ f(x) 6= f(y))) then T is called a special ω1-tree and f a specializing
function for T. It follows that if T is a special Aronszajn tree with a special-
izing function f then for some n ∈ ω, f−1(n) is uncountable and as such an
uncountable antichain in T. Therefore neither T nor any subtree of T can
be Suslin. Next, I define a partial order ST, due to Baumgartner, which is
intended to add a specializing function for T.

Definition 1.1. Let T be an ω1-tree. Then

ST = {p : ∃x ∈ [T]<ω (p : x→ ω) ∧ ∀s, t ∈ x (s < t→ p(s) 6= p(t))}
with p1 ≤ p2 iff p1 ⊇ p2.

The symbol “⊥” denotes incompatibility in any partial order P and “Y”
will be used to denote incompatibility in a tree T, i.e.

∀x, y ∈ T (x Y y ↔ (x 6≤ y ∧ y 6≤ x)).

Then Y extends to incompatibility in [T]<ω as follows:

∀a, b ∈ [T]<ω (a Y b↔ (a ∩ b = ∅ ∧ ∀x ∈ a ∀y ∈ b (x Y y))).

Also note that if p, q ∈ ST and dom(p)Ydom(q) then p and q are compatible
in ST.

Lemma 1.2. If T is an Aronszajn tree then (ST,≤) has the ccc.

P r o o f. By way of contradiction assume that A = {pα : α < ω1} ⊆ ST
is an uncountable antichain. Without loss of generality I may assume

(1) ∀α < ω1 (|dom(pα)| = n) for some n < ω,
(2) ∀α, β < ω1 (α 6= β → (dom(pα) ∩ dom(pβ) = ∅)).

To see that I may assume (2), first assume, by the ∆-system lemma, that
{dom(pα) : α < ω1} forms a ∆-system with root r. Then, since ωr is count-
able, I may assume that ∀α, β < ω1 (pα¹r = pβ¹r). Then (2) is implied at
once by the claim below.

Claim. If eα = dom(pα) \ r then (pα¹eα ⊥ pβ¹eβ)↔ (pα ⊥ pβ).
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P r o o f o f C l a i m. Let pα ⊥ pβ . Then

∃x ∈ dom(pα) ∃y ∈ dom(pβ)

((x < y ∧ pα(x) = pβ(y)) ∨ (y < x ∧ pβ(y) = pα(x))).

It cannot happen that x, y ∈ dom(pα) since pα ∈ ST, and it cannot happen
that x, y ∈ dom(pβ) for the same reason. Therefore x, y 6∈ r so that x ∈ eα
and y ∈ eβ . This basically proves the claim since the implication in the other
direction is trivial.

Now let dom(pα) = {sα0 , sα1 , . . . , sαn−1}. Finally I may assume that if
α < β < ω1, pα(sαi ) = pβ(sβj ), and sαi and sβj are comparable (which must

happen for some i and j since pα ⊥ pβ) then sαi < sβj . Therefore for each α

there must be i(α), j(α) < n such that {β : sαi(α) < sβj(α)} is uncountable.
Furthermore, there must be i and j such that B = {α : i(α) = i∧ j(α) = j}
is also uncountable. But now if α1, α2 ∈ B there is β > α1, α2 such that
sα1
i , sα2

i < sβj . And since T is a tree, sα1
i and sα2

i are comparable. Therefore
{sαi : α ∈ B} may be extended to a path through T, contradicting the fact
that T has no paths. Therefore A cannot be an uncountable antichain.

From the proof above immediately follow the two corollaries below.

Corollary 1.3. Let M be a c.t.m. for ZFC and , in M, suppose that
T is an Aronszajn tree and P a ccc partial order with G P-generic over M.
Then ST fails to have the ccc in M[G] iff a new path has been added through
T in M[G].

Corollary 1.4. Let M be a c.t.m. for ZFC, T an Aronszajn tree in M,
and G ST-generic over M. Then

M[G] |= “T is a special Aronszajn tree ”.

Definition 1.5. Let P be a partial order. Then P has the property K iff

∀A ∈ [P]ω1 ∃B ∈ [A]ω1 ∀x, y ∈ B (x 6⊥ y).

Lemma 1.6. If T is a special Aronszajn tree then ST has the property K.

P r o o f. Let {pα : α < ω1} ⊆ ST. Then, as in the proof of Lemma 1.2,
I may assume

(1) ∀α < ω1 (|dom(pα)| = n) for some n < ω,
(2) ∀α, β < ω1 (α 6= β → dom(pα) ∩ dom(pβ) = ∅).

Let dom(pα) = eα. To get pα and pβ compatible it suffices to get eα Y eβ .
Therefore the proof follows immediately from the following

Claim. ∃A ∈ [ω1]ω1 ∀α, β ∈ A (α 6= β → eα Y eβ).

P r o o f o f C l a i m. The proof is by induction on |eα| = n. Fix n and
assume the result is true for all m < n.
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C a s e 1: Suppose ∀γ < ω1 ∃x ∈ Levγ(T) ∃α < ω1 (eα ⊆ Tx). Then for
µ < ω1 choose xµ ∈ Levγµ(T), αµ and increasing γµ such that eαµ ⊆ Txµ
with γµ > sup{ht(z) : z ∈ ⋃ν<µ eαν}. Then, by the remarks before Defini-
tion 1.1, there is an A ∈ [ω1]ω1 such that {xµ : µ ∈ A} is an uncountable
antichain in {xµ : µ < ω1}. But then ∀α, β ∈ A (α 6= β → eα Y eβ).

C a s e 2: This is just ¬Case 1. Fix γ such that ∀x ∈ Levγ(T) ∀α <
ω1 (eα 6⊆ Tx). Then, since each level of T is countable and eα are all pairwise
disjoint, it follows that n ≥ 2 and only countably many eα meet Levγ(T)
or below. Therefore without loss of generality I may throw those away and
assume that ∀α < ω1 ∀z ∈ eα (ht(z) > γ). I may also assume that ∃x ∈
Levγ(T) ∀α < ω1 (eα ∩ Tx 6= ∅) since eα ⊆

⋃{Tx : x ∈ Levγ(T)} and
|Levγ(T)| ≤ ω. So fix any such x. Then without loss of generality I may
assume that

∀α < ω1 ((|eα ∩ Tx| = i > 0) ∧ (|eα \ Tx| = j > 0))

since eα 6⊆ Tx. Then 0 < i, j < n and i + j = n. And by the induction
hypothesis I may assume that

(∗) ∀α, β < ω1 (α 6= β → (((eα ∩Tx) Y (eβ ∩Tx))∧ ((eα\Tx) Y (eβ\Tx)))).

But then eα are also pairwise incompatible in [T]<ω. Here I claim that it is
not possible to have s ∈ eα and t ∈ eβ with s < t and α 6= β. There are 4
cases to consider. If s, t ∈ Tx or s, t 6∈ Tx then I am done by (∗). The cases
s ∈ Tx ∧ t 6∈ Tx or s 6∈ Tx ∧ t ∈ Tx cannot happen since T is a tree. This
proves the claim and hence the lemma.

Lemma 1.7. Let M be a c.t.m. for ZFC and suppose that U and T
are Aronszajn trees in M. If G is ST-generic over M then M[G] |= “U
is Aronszajn ”.

P r o o f. It suffices to prove that no new paths through U are added in
M[G]. So by way of contradiction let p ∈ ST and ḃ ∈ MST with p ° “ ḃ is a
new path through Ǔ ”. Since U is Aronszajn in M, it follows that ḃG = b 6∈ M.
Let

X = {u ∈ U : ∃pu ≤ p (pu ° “ ǔ ∈ ḃ ”)}.
Let uα ∈ Levα(U) and pα ∈ ST with pα ≤ p such that pα ° “ ǔα ∈ ḃ ”.

Now

M[G] |= “ ST has the property K ”

so in M[G] let B ∈ [ω1]ω1 such that {pα : α ∈ B} are pairwise compatible.
Then there is a path, d, through U determined by B with d ∈ M[G] and
d ⊆ X.

On the other hand, b is a new path through U so for each u ∈ X there
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are s, t ∈ X such that u ≤U s, t and t and s are incomparable. Let

Y = {u ∈ X : u is ≤U-minimal with u 6∈ d}.
Then Y ∈ M[G] and for each u ∈ Y fix a pu ∈ P such that pu ≤ p ∧ pu °
“ ǔ ∈ ḃ ” and let A = {pu ∈ ST : u ∈ Y }. Then A ∈ M[G] and A is an
uncountable subset of ST and any two elements of A are incompatible. Hence
A is an uncountable antichain in ST, which contradicts the fact that ST has
the property K in M[G].

Corollary 1.8. M[G] |= “ SU has the ccc ”.

Lemma 1.9. Let M be a c.t.m. for ZFC and , in M, suppose that P is a
ccc partial order and T an ω1-tree. If G is P-generic over M with

M[G] |= “ b is a new path through T ”

then there is a Suslin tree U ⊆ T with U ∈ M such that

M[G] |= “ b is a new path through U ”.

P r o o f. Let p ∈ P with p ° “ ḃ is a new path through Ť ”. Let

U = {u ∈ T : ∃q ≤ p (q ° “ ǔ ∈ ḃ ”)}.
Clearly U ∈ M, U ⊆ T, and |U| = ω1. The fact that b is a new path through
T also implies that ht(U) = ω1. If U is not Suslin in M then there is an
A ⊆ U with A ∈ M and |A| = ω1 such that any two elements of A are
incomparable. For each u ∈ U fix a pu ∈ P such that pu ≤ p∧ pu ° “ ǔ ∈ ḃ ”
and let

AP = {pu : u ∈ A ∧ pu ≤ p ∧ (pu ° “ ǔ ∈ ḃ ”)}.
Clearly AP ∈ M. Then AP is an antichain in P. This follows since if pu, pt ∈
AP for u 6= t ∈ A and q ∈ P with q ≤ pu, pt then q ° “ ǔ ∈ ḃ ∧ ť ∈ ḃ ”
so that u and t are comparable, which is impossible by the choice of A.
Furthermore, AP is uncountable since A is. Hence AP is an uncountable
antichain in P contradicting the fact that P has the ccc in M. Therefore U
is Suslin with M[G] |= “ b ⊆ U ” so that

M[G] |= “ b is a new path through U ”.

And this is precisely what I set out to show.

Let P be a partial order and Q̇ a P-name for a partial order. Then P ∗ Q̇
denotes a two-step iteration. The following result is taken from [K] and is
needed in the proof of Lemma 1.11.

Lemma 1.10. Assume that in M, P is a ccc partial order and Q̇ a P-name
for a partial order such that 1 °P “ Q̇ has the ccc ”. Then P ∗ Q̇ has the ccc
in M.
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Lemma 1.11. Suppose M is a c.t.m. for ZFC and P and Q two ccc partial
orders in M. Then P×Q has the ccc iff 1 °P “ Q̌ has the ccc ”.

P r o o f. If 1 °P“ Q̌ has the ccc ” then by Lemma 1.10, P ∗ Q̌ has the ccc.
Then since P∗ Q̌ and P×Q are isomorphic it follows that P×Q has the ccc.

Now suppose that P×Q has the ccc and by way of contradiction assume
that

1 °P “ Ȧ is an uncountable antichain in Q̌ ”.

Let τ be a P-name and p′ ∈ P with

p′ °P “ τ : ω̌1 → Ȧ and τ is one-to-one and onto ”.

Also let pξ ≤ p′ and qξ ∈ Q with pξ °P “ τ(ξ) = q̌ξ ”. Then B = {〈pξ, q̌ξ〉 :
ξ < ω1} is an uncountable antichain in P∗Q̌. To see this suppose that 〈pα, q̌α〉
and 〈pβ , q̌β〉 are compatible for some α 6= β. Let 〈p, q̌〉 ≤ 〈pα, q̌α〉, 〈pβ , q̌β〉.
Then p ≤ pα, pβ and p °P “ q̌ ≤ q̌α, q̌β ”. But this leads to a contradiction
since also p ≤ p′ so that

p °P “ Ȧ is an antichain in Q̌ and q̌α, q̌β ∈ Ȧ ”.

Therefore 1 °P “ Q̌ has the ccc ”.

Lemma 1.12. Let M be a c.t.m. for ZFC and , in M, P a ccc partial order
and 〈Pξ : ξ ≤ α〉 an iterated ccc forcing construction with finite supports
where α is a limit ordinal. If ∀ξ < α (1 °Pξ “ P̌ has the ccc ”) then 1 °Pα
“ P̌ has the ccc ”.

P r o o f. If cf(α) = ω and

1 °Pα “ Ȧ is an uncountable antichain in P̌ ”

then since 〈Pξ : ξ ≤ α〉 has finite supports it follows that some uncountable
subset of A is constructed at some earlier stage. But any subset of A is also
an antichain in P. Therefore

∃β < α (1 °Pβ “ P̌ fails to have the ccc ”),

contradicting the hypothesis.
If cf(α) > ω1 then any subset of P of size ω1 is constructed by some

stage β < α. Therefore if

1 °Pα “ P̌ fails to have the ccc ”

then

∃β < α (1 °Pβ “ P̌ fails to have the ccc ”),

again contradicting the hypothesis.
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Finally, let cf(α) = ω1 and suppose that the conclusion of the lemma
fails. Therefore

∀β < α (1 °Pβ “ P̌ has the ccc ”)

but

1 °Pα “ P̌ fails to have the ccc ”.

Then according to Lemma 1.11, P × Pβ has the ccc for each β < α, but
P× Pα does not have the ccc. Then again by Lemma 1.11,

∀β < α (1 °P “ P̌β has the ccc ”)

but

1 °P “ P̌α fails to have the ccc ”.

Let G be P-generic over M and, working in M[G], let A = {pξ : ξ < ω1}
be an uncountable antichain in Pα. Then by the ∆-system lemma I may
assume that {supp(pξ) : ξ < ω1} forms a ∆-system with root r. Let β < α
with r ⊆ β. Then since Pβ has the ccc let ξ, η < ω1 and p ∈ Pβ be such that
p ≤ pξ¹β, pη¹β. Now define p∗ as follows:

p∗(θ) =





p(θ) if θ < β,
pξ(θ) if θ ∈ supp(pξ) ∩ (α \ β),
pη(θ) if θ ∈ supp(pη) ∩ (α \ β),
1(θ) otherwise.

Then p∗ ∈ Pα and p∗ ≤ pξ, pη, which contradicts the assumption that A
is an uncountable antichain in Pα. Therefore 1 °P “ P̌α has the ccc ” and
hence by Lemma 1.11, 1 °Pα “ P̌ has the ccc ”.

According to the lemma just proved if T is Aronszajn in the ground
model and ST fails to have the ccc then this cannot happen at a limit stage.
Equivalently, if any new paths are added through T then it can only happen
at a successor stage.

This concludes the work on trees required for the final model.

2. Gaps. In the construction of a c-saturated linear order in (ωω,�)
gaps occur naturally. This section deals with gaps and their properties that
are necessary for the construction in Section 3.

For convenience I choose to work with (Zω,�) rather than (ωω,�) and
construct a c-saturated linear order in (Zω,�) instead of (ωω,�). This
will imply the result for (ωω,�) since (Zω,�) can easily be embedded in
(ωω,�). Recall that Zω is the set of all functions that map ω into Z, the
set of integers. This set has a natural partial order , “�”, which is defined
as follows: If f, g ∈ Zω then f � g iff ∃n < ω ∀i ≥ n (f(i) ≤ g(i)) and
f(i) < g(i) on an infinite set.
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Definition 2.1. Let I, J be two linearly ordered sets and 〈f, g〉 =
〈fξ, gη : ξ ∈ I, η ∈ J〉 ⊆ Zω such that ∀ξ, η ∈ I (ξ ≤ η → fξ � fη) and
∀ζ, θ ∈ J (ζ ≤ θ → gθ � gζ) and ∀ξ ∈ I ∀η ∈ J (fξ � gη). Then 〈f, g〉 is
called an (I, J)-pregap in Zω. If ∃h ∈ Zω ∀ξ ∈ I ∀η ∈ J (fξ � h� gη) then
h splits 〈f, g〉. If no such h exists then 〈f, g〉 is called an (I, J)-gap.

Definition 2.2. Let I, J, I ′, J ′ be linearly ordered sets and 〈f, g〉 an
(I, J)-pregap and 〈f ′, g′〉 an (I ′, J ′)-pregap. Then 〈f, g〉 and 〈f ′, g′〉 are
equivalent iff ∀ξ ∈ I ∃ζ ∈ I ′ ∀η ∈ J ∃θ ∈ J ′ (fξ � f ′ζ ∧ g′θ � gη) and
∀ξ ∈ I ′ ∃ζ ∈ I ∀η ∈ J ′ ∃θ ∈ J (f ′ξ � fζ ∧ gθ � g′η).

Let 〈f, g〉 and 〈f ′, g′〉 be two equivalent gaps. Then h ∈ Zω splits 〈f, g〉 if
and only if h splits 〈f ′, g′〉. From this fact it easily follows that there is a ccc
partial order that splits 〈f, g〉 if and only if there is a ccc partial order that
splits 〈f ′, g′〉. Therefore considering splitting orders for an (I, J)-pregap is
equivalent to considering splitting orders for an (I ′, J ′)-pregap where I ′ is
a cofinal well ordered subset of I and J ′ is a cofinal well ordered subset
of J . Thus in considering splitting orders for pregaps I can use ordinals
for indexing sets and an (I, J)-pregap will also be called a (λ, κ)-pregap if
cf(I) = λ and cf(J) = κ. One such splitting order is given by the following

Definition 2.3. Let 〈f, g〉 = 〈fξ, gη : ξ < λ, η < κ〉 be a (λ, κ)-pregap
where λ, κ are ordinals. Set

S〈f,g〉 = {〈x, y, n, s〉 : x ∈ [λ]<ω ∧ y ∈ [κ]<ω ∧ n < ω

∧(s : n→ Z) ∧ ∀ξ ∈ x ∀η ∈ y ∀i ≥ n (fξ(i) ≤ gη(i))}
with 〈x2, y2, n2, s2〉 ≤ 〈x1, y1, n1, s1〉 iff

(1) x1 ⊆ x2, y1 ⊆ y2, n1 ≤ n2, s1 = s2¹n1,
(2) ∀ξ ∈ x1 ∀η ∈ y1 ∀i < ω (n1 ≤ i < n2 → (fξ(i) ≤ s2(i) ≤ gη(i))).

The splitting function h for 〈f, g〉 is given by

h =
⋃
{s : ∃x, y, n (〈x, y, n, s〉 ∈ G)}

where G is S〈f,g〉-generic. Note that if λ = κ = 0 then S〈f,g〉 is isomorphic
to the partial order that adds a generic element to Zω.

Definition 2.4. Let 〈f, g〉 = 〈fξ, gη : ξ < λ, η < κ〉 be a (λ, κ)-pregap
where λ, κ are ordinals. Then the function h is S〈f,g〉-generic if the filter

G = {〈x, y, n, s〉 ∈ S〈f,g〉 : (s = h¹n) ∧ ∀ξ ∈ x ∀η ∈ y ∀i ≥ n
(fξ(i) ≤ h(i) ≤ gη(i))}

is S〈f,g〉-generic.

Note that h is S〈f,g〉-generic if and only if −h is S〈−g,−f〉-generic where
〈−g,−f〉 = 〈−gη,−fξ : η < κ, ξ < λ〉. This fact will be used later and this is
precisely the reason why I chose to work with (Zω,�) rather than (ωω,�).
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The partial order in Definition 2.3 is due to Kunen as is the following

Lemma 2.5. Let 〈f, g〉 be a (λ, κ)-pregap.

(1) If the pregap is split then S〈f,g〉 has the property K.
(2) If cf(λ) 6= ω1 or cf(κ) 6= ω1 then S〈f,g〉 has the property K.
(3) If λ = κ = ω1 and S〈f,g〉 fails to have the ccc then there is an

m < ω and there are X,Y ∈ [ω1]ω1 with X = {ξα : α < ω1} and
Y = {ηα : α < ω1} such that

(i) ∀α < ω1 ∀i ≥ m (fξα(i) ≤ gηα(i)) and
(ii) ∀α, β < ω1 (α 6= β → ∃i ≥ m (fξα(i) 6≤ gηβ (i)∨fξβ (i) 6≤ gηα(i))).

P r o o f. (1) Let {pα : α < ω1} ⊆ S〈f,g〉 where pα = 〈xα, yα, nα, sα〉.
Suppose h splits 〈f, g〉. For each α < ω1 fix kα < ω such that

∀ξ ∈ xα ∀η ∈ yα ∀i ≥ kα (fξ(i) ≤ h(i) ≤ gη(i)).

By extending each pα if necessary I may assume that ∀α < ω1 (kα ≤ nα).
Then it is easily seen that

∃A ∈ [ω1]ω1 ∃n < ω ∃ (s : n→ Z) ∀α ∈ A (nα = n ∧ sα = s).

Now it clearly follows that ∀α, β ∈ A (pα 6⊥ pβ) so that S〈f,g〉 has the
property K.

(2) Let {pα : α < ω1} ⊆ S〈f,g〉 where pα = 〈xα, yα, nα, sα〉. First assume
that cf(λ) > ω1. Then there exists µ < λ such that ∀α < ω1 (xα ⊆ µ).
Therefore {pα : α < ω1} ⊆ S〈fξ,gη:ξ<µ,η<κ〉. Then the result follows from (1)
since fµ splits 〈fξ, gη : ξ < µ, η < κ〉. If cf(λ) < ω1 then ∃µ < λ such that
xα ⊆ µ for uncountably many α and this is sufficient to obtain the result as
above. The case cf(κ) 6= ω1 is handled in the same way.

(3) Let A = {pα = 〈xα, yα, nα, sα〉 : α < ω1} be an uncountable anti-
chain in S〈f,g〉. For each α < ω1 fix kα such that

∀ξ, ζ ∈ xα ∀i ≥ kα (ξ ≤ ζ → fξ(i) ≤ fζ(i))
and

∀η, θ ∈ yα ∀i ≥ kα (η ≤ θ → gθ(i) ≤ gη(i)).

Then without loss of generality I may make the following assumptions:

(a) ∀α < ω1 (kα = k ∧ nα = n ∧ sα = s),
(b) n ≥ k (by extending each pα if necessary),
(c) ∀α, β < ω1 (α < β → (max(xα) < max(xβ))),
(d) ∀α, β < ω1 (α < β → (max(yα) < max(yβ))).

Let m = n, ξα = max(xα) and ηα = max(yα). Now it easily follows from
the fact that A is an uncountable antichain that if X = {ξα : α < ω1} and
Y = {ηα : α < ω1} then both (i) and (ii) hold.
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In the discussion that follows I will usually work with equivalent gaps.
Therefore when referring to the lemma above I may without loss of generality
assume that X = Y = ω1 and m = 0.

Lemma 2.6. Let M be a c.t.m. for ZFC and assume that , in M, 〈f, g〉
is a (λ, κ)-pregap, for regular λ, κ, such that S〈f,g〉 has the ccc, and T is an
Aronszajn tree. If G is S〈f,g〉-generic over M then M[G] |= “ ST has the ccc ”.

P r o o f. According to Corollary 1.3 it is sufficient to show that no new
paths are added through T in M[G]. So by way of contradiction assume that
ḃ is an S〈f,g〉-name for a new path through T and p ∈ S〈f,g〉 such that

p ° “ ḃ is a new path through Ť ”.

Let

X = {t ∈ T : ∃pt ≤ p (pt ° “ ť ∈ ḃ ”)}.
Since b is a new path through T, for each s ∈ X there are t, u ∈ X such that
s ≤T t, u and t and u are incomparable in T. Working in M[G], let

Y = {t ∈ X : t is ≤T-minimal with t 6∈ b}.
Then Y ∈ M[G] and for each t ∈ Y fix a pt ≤ p with pt ° “ ť ∈ ḃ ” and let
A = {pt ∈ S〈f,g〉 : t ∈ Y }. Then A is an uncountable subset of S〈f,g〉 in M[G]
and any two elements of A are incompatible. Hence A is an uncountable
antichain in S〈f,g〉 which contradicts the fact that S〈f,g〉 has the property K
in M[G]. Therefore M[G] |= “ ST has the ccc ”.

Let L ⊆ Zω such that (L,�) is a linear order. Then I ⊆ L is an interval
in L iff

∀x, y ∈ I ∀z ∈ L (x� z � y → z ∈ I).

If 〈fξ, gη : ξ < λ, η < κ〉 ⊆ L is a (λ, κ)-pregap and I is an interval in L then
〈fξ, gη : ξ < λ, η < κ〉 ⊆ I will mean that

∃α < λ ∃β < κ (〈fξ, gη : α ≤ ξ < λ, β ≤ η < κ〉 ⊆ I).

Lemma 2.7. Let M be a c.t.m. for ZFC and suppose that , in M, P is a
ccc partial order and (L,�) a linear order in (Zω,�). If G is P-generic
over M with

M[G] |= “ 〈f, g〉 is a new (ω1, ω1)-gap in L ”

then, in M, there is a Suslin tree T and a P-name ḃ such that

M[G] |= “ b is a new path through T ”.

P r o o f. Let p0 ∈ G with

(�) p0 ° “ 〈ḟ , ġ〉 is a new (ω̌1, ω̌1)-gap in Ľ ”.
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By recursion on α < ω1 I construct sequences 〈Sα : α < ω1〉 and 〈AαI :
α < ω1, I ∈ Sα〉 where for each α < ω1 each element of Sα is a non-empty
interval in L such that

(1) ∀I, J ∈ Sα (I 6= J → I ∩ J = ∅),
(2)

⋃{AαI : I ∈ Sα} is a maximal antichain in P below p0,
(3) ∀p ∈ AαI (p ≤ p0 ∧ p ° “ 〈ḟ , ġ〉 ⊆ Ǐ ”),
(4) ∀I ∈ Sα ∀β ≥ α ∃I1, I2 ∈ Sβ+1 (I1 ∩ I2 = ∅ ∧ I1 ∪ I2 ⊆ I),
(5) ∀β > α ∀I ∈ Sβ ∃J ∈ Sα (I ⊆ J).

Let S0 = {L} and A0
L = {p0}. Fix α < ω1 and assume that ∀ξ < α,

Sξ is constructed together with AξI , for each I ∈ Sξ, such that (1)–(5) are
satisfied.

First assume α = β + 1. Note that (1)–(3) and the fact that P has the
ccc imply that |Sβ | ≤ ω. Choose I ∈ Sβ and q ∈ AβI . Then since

q ° “ 〈ḟ , ġ〉 is a new (ω̌1, ω̌1)-gap in Ľ ”

there are r1, r2 ≤ q and disjoint intervals I0, I1 ⊆ I with ri ° “ 〈ḟ , ġ〉 ⊆ Ǐi ”,
for i < 2, and I0 ∪ I1 = I. Let BIi be a maximal antichain below p0 such
that

ri ∈ BIi ∧ ∀r ∈ BIi ∃q ∈ AβI (r ≤ q ∧ r ° “ 〈ḟ , ġ〉 ⊆ Ǐi ”).

Now repeat this construction for each I ∈ Sβ . Then Sα = {Ii : I ∈ Sβ ∧
i < 2} and for each i < 2 and I ∈ Sβ let AαIi = BIi . Note that 〈Sξ : ξ ≤ α〉
and 〈AξI : ξ ≤ α, I ∈ Sξ〉 satisfy (1)–(5). This finishes the construction for
successor stages.

Now suppose cf(α) = ω. Let S be the set of all intervals in L such that
for each I ∈ S there is a p ≤ p0 and an increasing sequence 〈αn : n < ω〉
with sup{αn : n < ω} = α and for each n < ω an In ∈ Sαn such that
(m < n → In ⊆ Im) and I =

⋂
n<ω In with p ° “ 〈ḟ , ġ〉 ⊆ Ǐ ”. Note that

∀I, J ∈ S (I 6= J → I ∩ J = ∅) and ((�) → S 6= ∅). Furthermore, S is
countable since P has the ccc. Let Sα = S and for each I ∈ S let AαI be a
maximal antichain below p0 such that ∀p ∈ AαI (p ≤ p0 ∧ p ° “ 〈ḟ , ġ〉 ⊆ Ǐ ”).
Then by the definition of S, each AαI is non-empty and by maximality of
S,
⋃{AαI : I ∈ S} is a maximal antichain in P below p0. This finishes the

construction.
It is easy to see now that 〈Sα : α < ω1〉 and 〈AαI : α < ω1, I ∈ Sα〉

satisfy (1)–(5). Furthermore, (�) implies that T = 〈⋃α<ω1
Sα,⊇〉 is a Suslin

tree in M. However, in M[G], 〈f, g〉 is a new (ω1, ω1)-gap in L so that 〈f, g〉
determines a path, b, through T.

The results so far are all that is necessary for treatment of successor
stages in the construction of the final model. Now I present several results
that will enable me to go beyond the limit stages. Lemmas 1.9 and 1.12
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are used to show, as indicated earlier, that no new paths can be added
through existing ω1-trees at limit stages. For gaps the situation is slightly
different. In the construction of a c-saturated linear order L in (Zω,�), new
gaps can appear at limit stages in the portion of L constructed by that
stage. According to Lemma 2.5 there is no problem with non-(ω1, ω1)-gaps.
But (ω1, ω1)-gaps can be somewhat problematic. However, with the aid of
Lemma 2.7 the construction will be arranged in such a way that such gaps
can only occur at stages of cofinality ω1 and the splitting orders for such
gaps will have the ccc. The next sequence of results is a formalization of the
facts just stated. But first some terminology.

In the discussion that follows nice names play an important role. Let M
be a c.t.m. for ZFC and P ∈ M a partial order. If σ ∈ MP, a nice P-name for
a subset of σ is τ ∈ MP of the form

⋃{{π} ×Aπ : π ∈ dom(σ)}, where each
Aπ is an antichain in P. It is shown in [K] that if σ, µ ∈ MP then there is
a nice P-name τ ∈ MP for a subset of σ such that 1 °P “µ ⊆ σ → µ = τ ”.
Since isomorphic partial orders lead to the same generic extensions, it is
then justified to use cardinals κ for base sets of partial orders and subsets of
κ× κ for ordering relations. Therefore, the phrase “ let Q̇ be a nice P-name
. . . ” will mean that Q̇ is of the form (κ̌, σ), where κ is some cardinal and σ
is a nice P-name for a subset of (κ× κ)̌. Now, in M, let α be a limit ordinal
and 〈Pξ : ξ ≤ α〉 an iterated forcing construction with finite supports where
the limit stages are handled in the usual way and the successor stages are
obtained as follows: Let Λ = {ξ : ξ < α ∧ ξ is even ∧ cf(ξ) 6= ω1} and let P0

be the trivial partial order. Let γ+ 1 = β < α and assume that 〈Pξ : ξ < β〉
has been constructed together with the sequence 〈fξ : ξ ∈ Λ∩β〉 of functions
in Zω linearly ordered by �. For the simplicity of notation denote “ °Pξ ”
by “ °ξ ”.

If γ is an odd ordinal, let Q̇γ be a nice Pγ-name for a partial order such
that 1 °γ“ Q̇γ has the ccc ” and let Pβ = Pγ ∗ Q̇γ . At this point it is not
important how Q̇γ are selected, but in the final construction Q̇γ will be
chosen in a way that will ensure Martin’s Axiom holds in the final model.

If γ is an even ordinal and not of cofinality ω1 (i.e. γ ∈ Λ), then choose
a pregap Cγ in 〈fξ : ξ ∈ Λ ∩ β〉 and let Pβ = Pγ ∗ Ṡγ where Ṡγ is a nice
Pγ-name for the partial order that splits Cγ and let fγ be an element of
Zω obtained in such a way. The function fγ will be a part of L and only at
these stages new elements are added to L. At this point also assume that
1 °γ “Ṡγ has the ccc ”. Once again, at this point it is not important how
Cγ are selected, but in the final construction, Cγ will be chosen in a way
that will ensure L = 〈fξ : ξ ∈ Λ〉 is a c-saturated linear order. However,
the description of stages γ, where γ is a limit ordinal of cofinality ω1 (which
follows next), will imply at once that 1 °γ “ Ṡγ has the ccc ”.



228 Z. Spasojevi ć

Finally, let γ be a limit ordinal of cofinality ω1. Let Ṙγ be a nice Pξ-name
for the partial order obtained by taking the product of all the splitting orders
for (ω1, ω1)-pregaps in 〈fξ : ξ ∈ Λ ∩ β〉 which are also gaps in (Zω,�), and
let Pβ = Pγ ∗ Ṙγ . The rest of this section is devoted to precisely defining
this product and showing that 1 °γ“ Ṙγ has the ccc ” so that at the end Pα
will have the countable chain condition. No element of Zω obtained at this
stage will be a part of L. Their existence only ensures that each (ω1, ω1)-
pregap in the portion of L constructed by this stage can be split by a ccc
partial order at some later stage. Now let G be Pα-generic over M, with
Gξ = G ∩ Pξ and Mξ = M[Gξ]. Let θ < β < α with β ∈ Λ and A ⊆ θ ∩ Λ
with A ∈ Mθ. Then Cβ also defines a pregap in 〈fξ : ξ ∈ A〉. For p ∈ Sβ
let p¹A = 〈xp ∩ A, yp ∩ A,np, sp〉 and Sβ,A = {q : ∃p ∈ Sβ (q = p¹A)} and
assume that Sβ,A ∈ Mθ.

Lemma 2.8. Let M, α, 〈Pξ : ξ ≤ α〉, and G be as above with cf(α) 6= ω1

and L = 〈fξ : ξ ∈ Λ〉 the linear order in M[G] obtained by the construction.
If 〈f, g〉 is an (ω1, ω1)-pregap in L, in M[G], then there is a β < α and an
equivalent (ω1, ω1)-pregap 〈f ′, g′〉 such that 〈f ′, g′〉 is added to L at stage β.

P r o o f. If cf(α) = ω then the result follows from the fact that if A is a
set of size ω1 constructed at stage α then there is a B ∈ [A]ω1 and β < α
such that B is constructed at stage β.

If cf(α) > ω1 then the result follows from the fact that all sets of size ω1

constructed at stage α are in fact constructed at some earlier stage.

Proposition 2.9. In M, let l < ω and let 〈Pξ : ξ ≤ α〉 and G be as
before with cf(α) = ω1. In M[G], let Ai, Bi ⊆ α, with Ai ∪ Bi cofinal in α,
and let 〈fai , fbi : ai ∈ Ai, bi ∈ Bi〉 be (ω1, ω1)-gaps with the corresponding
splitting orders Si, for i < l. Then S0 × . . . × Sl−1 has the countable chain
condition in M[G].

The next two lemmas are needed in the proof of this proposition.

Lemma 2.10. fβ is Sβ,A-generic over Mθ.

P r o o f. It suffices to show that the filter obtained from fβ , in Sβ,A,
intersects each dense subset of Sβ,A in Mθ. So let D be a dense subset of
Sβ,A, in Mθ. By recursion I define a sequence of sets 〈Dξ : ξ ≤ β〉 in Mβ as
follows: Let Sβ,ξ be the partial order that fills the pregap in 〈fζ : ζ ∈ ξ ∩Λ〉
determined by Cβ . Then

D0 = {q ∈ Sβ,0 : ∃p ∈ D (q ≤ p¹0)}.
Fix ξ < β and assume Dζ has been defined for each ζ < ξ. If ξ = ζ + 1 then

Dξ = {q ∈ Sβ,ξ : ∃q1 ∈ Dζ ∃p ∈ D (q ≤ q1, p¹ξ)}.
And if ξ is a limit then Dξ =

⋃
ζ<ξDζ .
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Then by induction I show that each Dξ is dense in Sβ,ξ. Since D is dense
it follows that D0 is also dense. If ξ is a limit ordinal then the result also
follows easily from the definition of Dξ and the induction hypothesis. Now
assume that Dξ is dense and show that Dξ+1 is also dense. If ξ 6∈ Λ then
Dξ+1 = Dξ and the result follows from the induction hypothesis. So assume
ξ ∈ Λ.

C a s e 1: Cξ and Cβ define the same pregap in 〈fζ : ζ ∈ ξ ∩ Λ〉. In this
case Sβ,ξ = Sξ so that fξ is Sβ,ξ-generic over Mξ. Let p ∈ Sβ,ξ+1 and by
extending p if necessary I may assume that ξ ∈ xp ∪ yp, say ξ ∈ yp. Let
q = 〈xp, yp \ {ξ}, np, sp〉 and note that q ∈ Sξ. Now Dξ is dense in Sξ, so let
q1 ∈ Dξ and p1 ∈ D from which q1 is defined (q1 ≤ p1¹ξ) such that q1 ≤ q.
Note that Dξ may not be in Mξ, but q1 is. Now fξ is Sξ-generic over Mξ so
that f ′ξ is also Sξ-generic over Mξ where f ′ξ is just fξ modified by sq1 . So
let q2 be an element in the Sξ-generic filter over Mξ determined by f ′ξ with
q2 ≤ q1. Then it is easily seen that q3 = 〈xq2 , yq2 ∪ {ξ}, nq2 , sq2〉 ∈ Sβ,ξ+1

with q3 ≤ q1, p. But also q3 ≤ p1¹(ξ + 1) so that q3 ∈ Dξ+1, showing that
Dξ+1 is dense in Sβ,ξ+1.

C a s e 2: Cξ and Cβ do not define the same pregap in 〈fζ : ζ ∈ ξ ∩ Λ〉.
Then there is a ζ0 < ξ such that fζ0 is between the pregaps Cξ and Cβ in
〈fζ : ζ ∈ ξ∩Λ〉. I may assume Cξ is to the right of Cβ . Let p ∈ Sβ,ξ+1 and by
extending p if necessary I may assume that ξ ∈ yp. In addition I may assume
that ζ0 ∈ yp and that n0 < ω is such that ∀i ≥ n0 (fζ0(i) ≤ fξ(i)) with n0 ≤
np. Let q = 〈xp, yp \ {ξ}, np, sp〉 and choose q1 ∈ Dξ and p1 ∈ D from which
q1 is defined (q1 ≤ p1¹ξ) such that q1 ≤ q. Let q2 = 〈xq1 , yq1 ∪ {ξ}, nq1 , sq1〉.
Then it is clear that q2 ∈ Sβ,ξ+1 with q2 ≤ q1, p, p1¹(ξ+1) so that q2 ∈ Dξ+1,
showing that Dξ+1 is dense in Sβ,ξ+1.

And now I conclude that Dβ is dense in Sβ . Therefore let q be an element
in the intersection of Dβ and the Sβ-generic filter determined by fβ . By
definition of Dβ , let p ∈ D with q ≤ p. Then p is also in the filter obtained
from fβ in Sβ,A.

Lemma 2.11. Let M, 〈Pξ : ξ ≤ α〉, and G be as before with cf(α) = ω1

in M. In addition, assume that Pα has the ccc in M. Let A,B ⊆ α ∩Λ with
each A and B of order type ω1, A∪B cofinal in α and 〈fa, fb : a ∈ A, b ∈ B〉
an (ω1, ω1)-gap in 〈fξ : ξ ∈ α ∩ Λ〉, in M[G], with its splitting order SA,B.
Then SA,B has the ccc in M[G].

P r o o f. Working in M[G], let A = 〈aξ : ξ < ω1〉 and B = 〈bξ : ξ < ω1〉 be
increasing enumerations of A and B. By way of contradiction assume that
the conclusion of the lemma is false. Then by restricting the discussion to
an equivalent gap or to 〈−fb,−fa : b ∈ B, a ∈ A〉 I may assume, according
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to Lemma 2.5, that for some m < ω,

(†) ∀ξ < ω1 ∀i ≥ m (faξ(i) ≤ fbξ(i)) and

∀ξ < η < ω1 ∃i ≥ m (faξ(i) 6≤ fbη (i) ∨ faη (i) 6≤ fbξ(i)).
The rest of the argument involves only integers greater than or equal to
m, therefore, for the sake of simplicity I will assume that m = 0, which
completely eliminates any reference to m in the rest of the argument. I may
also assume that for each η < ω1 each element of {faξ , fbζ : ξ ≤ η, ζ < η}
is constructed before fbη . This makes B cofinal in α. In M, let τ be a
nice Pα-name for B and for each β < α let π(β) = min{ξ : 1 °α (∃p̌ ∈
Ġξ (p̌ °ξ β̌ ∈ τ))}. Then since Pα has the ccc and τ is a nice name there
is a closed and unbounded C ⊆ α such that 1 °α “ β̌ is a limit point of τ ”
for β ∈ C and π(ξ) < β for each ξ < β. Note that also C ⊆ closure (B)
and ∀ξ ∈ C (B ∩ ξ ∈ Mξ). By performing a similar construction for A, if
necessary, I may also assume that {aζ ∈ A : bζ ∈ B ∩ ξ} ∈ Mξ for each
ξ ∈ C. Now for each γ ∈ C let βγ = min(B \ γ). Therefore βγ = bξ for
some ξ < ω1, in which case let αγ = aξ. Let Sαγ ,βγ be the splitting order for
〈fa, fb : a ≤ αγ , b < βγ〉. Then by Lemma 2.10 and (†) it follows that for
each γ ∈ C there is a pγ , in the Sαγ ,βγ -generic filter over Mβγ determined
by fβγ , such that

(‡) pγ °βγ “ ḟαγ ≤ ḟβγ ∧ ∀ḃξ ∈ Ḃ ∩ γ̌ (ḟaξ 6≤ ḟβγ ∨ ḟαγ 6≤ ḟbξ) ”,

where f ≤ g iff ∀i < ω (f(i) ≤ g(i)). By extending pγ if necessary I may
assume that αγ ∈ xpγ . Now define ψ on C by

ψ(γ) = max(xpγ ∪ ypγ \ {αγ}).
Then ψ(γ) < γ for each γ ∈ C so that there is a D ⊆ C, cofinal in C,
hence α, and a θ such that ∀γ ∈ D (ψ(γ) = θ). Let γ0 = min(C \ θ) and, by
shrinking D if necessary, assume that

∀γ ∈ D (βγ > βγ0)

∧∀γ, δ ∈ D (xpγ \ {αγ} = xpδ \ {αδ} ∧ ypγ = ypδ ∧ npγ = npδ ∧ spγ = spδ).

For δ ∈ D let Gαδ,βδ be the Sαδ,βδ -generic filter determined by fβδ . Then
for each γ < δ ∈ D there is a q′ ∈ Gαδ,βδ such that q′ ≤ pδ with αγ ∈ xq′
and βγ ∈ yq′ . Hence, it follows that if q = 〈xpδ ∪ {αγ}, ypδ ∪ {βγ}, nq′ , sq′〉
then q ∈ Gαδ,βδ and q ≤ pδ. Therefore, since |D| = ω1 and |Z<ω| = ω there
are γ < δ ∈ D and k < ω, with npδ ≤ k, such that fβγ ¹k = fβδ¹k and
q = 〈xpδ ∪ {αγ}, ypδ ∪ {βγ}, k, fβγ ¹k〉 ∈ Gαδ,βδ with q ≤ pδ in Sαδ,βδ . But
now, since q ∈ Sαδ,βδ ∩Gαδ,βδ it follows that

(∗) q °βδ “∀ǐ ≥ ǩ (ḟαγ (̌i), ḟαδ (̌i) ≤ ḟβδ (̌i) ≤ ḟβγ (̌i)) ”.

Also, by (‡) it follows that pγ °βγ “ ḟαγ ≤ ḟβγ ” and pδ °βδ “ ḟαδ ≤ ḟβδ ”.



Linear orders and MA + ¬wKH 231

Therefore, since fβγ ¹k = fβδ¹k it follows that

(◦) q °βδ “∀ǐ < ǩ (ḟαγ (̌i), ḟαδ (̌i) ≤ ḟβδ (̌i)) ”.

Now, from (∗) and (◦) it follows that

q °βδ “∀ǐ < ω̌ (ḟαγ (̌i) ≤ ḟβδ (̌i) ∧ ḟαδ (̌i) ≤ ḟβγ (̌i)) ”.

But this clearly contradicts the part of (‡) which states that pδ °βδ
“ḟαγ 6≤ ḟβδ ∨ ḟαδ 6≤ ḟβγ”, since q ≤ pδ. Therefore SA,B has the ccc in M[G].

P r o o f o f P r o p o s i t i o n 2.9. For the sake of notational simplicity
I will present the proof of the proposition for the case when l = 2. The
proof presented below can easily be modified to prove the general case when
l is an arbitrary integer. Let Ai = {aiξ : ξ < ω1} and Bi = {biξ : ξ < ω1}
be the enumerations in the increasing order of Ai and Bi for i < 2. Define
〈fa, fb〉 = 〈faξ , f bξ : ξ < ω1〉 as follows:

faξ (n) =

{
fa0
ξ
(k) if n = 2k,

fa1
ξ
(k) if n = 2k + 1, f bξ (n) =

{
fb0
ξ
(k) if n = 2k,

fb1
ξ
(k) if n = 2k + 1.

Then 〈fa, fb〉 is an (ω1, ω1)-pregap and since S〈fa,fb〉 can be densely em-
bedded in S0 × S1 it suffices to show that S〈fa,fb〉 has the ccc in M[G]. By
way of contradiction suppose not. Then as in the previous lemma I may
assume that

∀ξ < η < ω1 (faη ≤ f bη ∧ (faξ 6≤ f bη ∨ faη 6≤ f bξ ))

and also that for each η < ω1, each element of {fai
ξ
, fbi

ζ
: ξ ≤ η, ζ < η, i < 2}

is constructed before fbiη for i < 2 and that fb0η is constructed before fb1η . Let
C0 and C1 be the corresponding closed and unbounded subsets of α as in
the previous lemma. Then C = C0 ∩ C1 is also closed and unbounded in α.
For γ ∈ C and i < 2 let βiγ = min(Bi \ γ). Then βiγ = biξ for some ξ < ω1, in
which case let αiγ = aiξ. Let Sαiγ ,βiγ be the splitting order for 〈fai , fbi : ai ≤
αiγ , b

i < βiγ〉 and Sαγ ,βγ the splitting order for 〈faξ , f bη : ξ ≤ αγ , η < βγ〉.
Then by Lemma 2.10, for each γ ∈ C and i < 2, fβiγ is Sαiγ ,βiγ -generic over
Mβ0

γ
. Therefore f bβγ is Sαγ ,βγ -generic over Mβ0

γ
. Now the rest of the proof

continues as in the previous lemma in order to get a contradiction. Therefore
S〈fa,fb〉 has the ccc in M[G].

Finally, I explain what is meant by the product of all splitting orders for
(ω1, ω1)-gaps and present some of its properties.

Definition 2.12. Let P and Q be partial orders. An i : P → Q is a
complete embedding if

(1) ∀p, p′ ∈ P (p′ ≤ p→ i(p′) ≤ i(p)),
(2) ∀p, p′ ∈ P (p′ ⊥ p↔ i(p′) ⊥ i(p)),
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(3) ∀q ∈ Q ∃p ∈ P ∀p′ ∈ P (p′ ≤ p→ i(p′) 6⊥ q).
The following lemma is taken from [K].

Lemma 2.13. Suppose i,P,Q are in M, i : P → Q and i is a complete
embedding. Let H be Q-generic over M. Then i−1(H) is P-generic over M
and M[i−1(H)] ⊆ M[H].

Definition 2.14. Let A be a set and 〈Pa : a ∈ A〉 a sequence of partial
orders. Then

∏
a∈A Pa denotes the set of all sequences 〈pa : a ∈ A〉 such

that pa ∈ Pa and pa = 1a for all but finitely many a ∈ A. If B ⊆ A then
B∏

a∈A
Pa =

{
p ∈

∏

a∈A
Pa : ∀a ∈ A \B (pa = 1a)

}
.

And let i :
∏B
a∈A Pa →

∏
a∈A Pa be the inclusion map i(p) = p.

In the final construction each Pa will be a splitting order for some
(ω1, ω1)-gap. Proposition 2.9, in conjunction with the next lemma, whose
proof is standard, is used to show that such products have the countable
chain condition.

Lemma 2.15. Let A be a set and 〈Pa : a ∈ A〉 a sequence of partial orders.

(1) If B ⊆ A then the inclusion i :
∏B
a∈A Pa →

∏
a∈A Pa is a complete

embedding.
(2)

∏
a∈A Pa has the ccc iff for every finite B ⊆ A,

∏B
a∈A Pa has the ccc.

This essentially finishes the treatment of gaps. Now I am ready for the
final construction.

3. Final model. In this section I combine the work of Todorčević and
Laver to obtain the final model. In his construction, Todorčević starts with
Mitchell’s model, in [M], for ¬wKH. Therefore I begin with a brief discussion
of that model.

Let M be a c.t.m. for ZFC + V=L and, in M, let κ be the first strongly
inaccessible cardinal. From now on inaccessible will mean strongly inacces-
sible. If A and B are sets and µ a cardinal then

Fn(A,B, µ)

= {p : (|p| < µ) ∧ (p is a function) ∧ (dom(p) ⊆ A) ∧ (ran(p) ⊆ B)}.
Let C = Fn(κ, 2, ω) and partially order C by p ≤C q iff p ⊇ q. C is the
standard partial order for adding κ generic subsets of ω. Then C has the ccc
in M and as such preserves cardinals. For γ < κ let

Cγ = {p ∈ C : dom(p) ⊆ γ} and Cγ = {p ∈ C : dom(p) ∩ γ = ∅}.
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Then C ∼= Cγ × Cγ and if G is C-generic over M then Gγ = G ∩ Cγ is
Cγ-generic over M and Gγ = G∩Cγ is Cγ-generic over M[Gγ ] with M[G] =
M[Gγ ][Gγ ]. Let B be the complete Boolean algebra of regular open subsets
of C. Then C is dense in B. For γ < κ, let Bγ be the complete Boolean
algebra of regular open subsets of Cγ and identify each Bγ with its image
in B under the normal complete embedding. Then for each γ < δ < κ it
follows that Bγ is a complete subalgebra of Bδ, which in turn is a complete
subalgebra of B.

In M, let

D = {f : f ∈ Fn(κ,B, ω1) ∧ ∀γ ∈ dom(f) (f(γ) ∈ Bγ+ω)}.
For f ∈ D define f : dom(f) → 2, in M[G], by f(γ) = 1 iff ∃p ∈ G (p ≤B
f(γ)). Also in M[G], let E = {f : f ∈ D} partially ordered by f ≤E g iff
f ⊇ g. Also partially order D, in M, by f ≤D g iff 1 °C “ f ≤E g ”. In M, let
F be a partial order with domain C× D partially ordered by

(p, f) ≤F (q, g) iff p ≤C q ∧ (p °C “ f ≤E g ”).

Now I list a few properties of the partial orders defined above and refer
the reader to [M] for proofs and further details. Let K be F-generic over M.
Then G = {p ∈ C : (p, ∅) ∈ K} is C-generic over M and H = {f ∈ E : (∅, f) ∈
K} is E-generic over M[G] and M[K]=M[G][H]. Also ωM

1 = ω
M[G]
1 = ω

M[K]
1 ,

and F has the κ-cc so that κ is a cardinal in M[K] with κ = ω
M[K]
2 .

In M, let Dγ = {f¹γ : f ∈ D}, Dγ = {f \ (f¹γ) : f ∈ D}, Fγ = Cγ × Dγ
and Fγ = Cγ ×Dγ for γ < κ. Then Kγ = K∩Fγ and Kγ = K∩Fγ . In M[G],
let Eγ = {f¹γ : f ∈ E} and Eγ = {f \ (f¹γ) : f ∈ E} for γ < κ. Partially
order Fγ , in M[Gλ], by

(p, f) ≤Fγ (q, g) iff p ≤C q ∧ ∃p′ ∈ Gλ (p ∪ p′ °C “ f ≤E g ”).

Then for each γ such that ∀γ′ < γ (γ′+ω < γ), Kγ is Fγ-generic over M and
Kγ is Fγ-generic over M[Kγ ] with M[K] = M[Kγ ][Kγ ]. Also, since |Fγ | < κ,
it follows that κ is still inaccessible in M[Kγ ]. If λ is an uncountable cardinal
in M[Kγ ] with λ < κ, then λ is collapsed onto ω1 in M[K]. In addition, in
M[K], 2ω = 2ω1 = ω2. Furthermore, if R is a ccc partial order in M[Kγ ] and
I is R-generic over M[K] then I is also R-generic over M[Kγ ] with

M[Kγ ][I][Kγ ] = M[Kγ ][Kγ ][I] = M[K][I].

The following lemma and its proof are due to Todorčević [T].

Lemma 3.1. Let ν > ωM
1 be a regular cardinal in M and R a ccc partial

order in M[Kν ]. Let I be R-generic over M[Kν ] and T an ω1-tree in M[Kν ][I].
If b is a path through T in M[K][I] then b ∈ M[Kν ][I].

Now I am ready for the construction of the main model.
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Theorem 3.2. Let M be a c.t.m. for ZFC + V=L and κ the first inac-
cessible cardinal in M. Then there is an extension of M which is a model
for

ZFC + MA + ¬wKH + c = ω2 + ϕc.

P r o o f. Let F be the partial order described above and K F-generic over
M with N=M[K]. In N I construct a finite support ccc iteration

〈〈Pξ : ξ ≤ ω2〉, 〈Qξ : ξ < ω2〉〉
of length ω2. In the process I construct a c-saturated linear order (L,�) in
(Zω,�). At the successor stages I alternate between ccc partial orders to
make MA true and partial orders which are the splitting orders for some
pregap in L. According to Lemma 2.5 only the splitting orders for (ω1, ω1)-
gaps may fail to have the ccc. However, the construction is arranged in such
a way that such gaps occur in L only at stages of cofinality ω1; at these
stages the splitting orders for all these gaps will have the ccc and at these
stages I split these gaps, all at once. The splitting functions added at these
stages will not be a part of L, but they are needed to ensure that the splitting
orders for all pregaps in L remain ccc until the pregaps are filled, one by
one, at the later successor stages. The partial orders that are used at these
limit stages of the iteration have cardinality ω2, which causes some difficulty
in the proof of ¬wKH. This difficulty is overcome by reducing the argument
to suborders of size ω1 of these partial orders. If γ is a limit ordinal then Pγ
is obtained in the usual way.

In N, let

Λ = {ξ < ω2 : ξ is an even ordinal and cf(ξ) 6= ω1}
and let g : ω2 → ω2 × ω2 such that g maps both Λ and ω2 \ Λ onto ω2 × ω2

with the property that

∀ξ, η, γ < ω2 (g(ξ) = 〈η, γ〉 → η ≤ ξ).
The function g will be used in deciding how to choose each Qξ.

Let P0 be the trivial partial order. Suppose ξ < ω2 and that Pξ has been
constructed and let Lξ = {fζ : ζ ∈ ξ ∩ Λ} be the portion of L constructed
by stage ξ and Nξ the extension of N by Pξ. First consider the case when ξ
is an odd ordinal. At these stages no new elements are added to L so that
Lξ+1 = Lξ. In N, let 〈〈λξγ , σξγ〉 : γ < ω2〉 be an enumeration of all pairs 〈λ, σ〉
such that λ < ω2, λ is a cardinal and σ is a nice Pξ-name for a subset of
(λ× λ)̌ . Let g(ξ) = 〈η, γ〉. Since η ≤ ξ, the Pη-name, σηγ , has been defined.
Let σ be the corresponding Pξ-name and λ = ληγ . There are three cases to
consider.

C a s e 1. If it is not the case that 1 °ξ “ 〈λ̌, σ〉 has the ccc ” then let Qξ
be a nice Pξ-name for the trivial partial order and Pξ+1 = Pξ ∗Qξ.
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C a s e 2. If 1 °ξ “ 〈λ̌, σ〉 has the ccc ” and it is not the case that extending
by 〈λ̌, σ〉 adds any new paths through an ω1-tree, in Nξ, then by Lemmas 1.9
and 2.7 it is not the case that a new (ω1, ω1)-gap is added in Lξ. Then let
Qξ be 〈λ̌, σ〉 and Pξ+1 = Pξ ∗Qξ.

C a s e 3. If 1 °ξ “ 〈λ̌, σ〉 has the ccc ” and extending by 〈λ̌, σ〉 adds a
new path through an ω1-tree T in Nξ, or extending by 〈λ̌, σ〉 adds a new
(ω1, ω1)-gap in Lξ then by Lemma 1.9 or Lemma 2.7, respectively, there is a
Suslin tree U, in Nξ, such that a new path is added through U. Therefore in
the extension by 〈λ̌, σ〉 the specializing partial order SU for U fails to have
the ccc. Then by Lemma 1.11 there is an element p in SU such that, in Nξ,

p °SU “ 〈λ̌, σ〉 fails to have the ccc ”.

Let Qξ be a nice Pξ-name for the suborder of SU below p. Then 1 °ξ
“Qξ has the ccc ” and let Pξ+1 = Pξ ∗Qξ. Note that

1 °ξ+1 “ 〈λ̌, σ〉 fails to have the ccc ”,

and once a partial order fails to have the ccc it fails to have the ccc in all
further extensions. Also note that no new paths are added through ω1-trees
and hence no new (ω1, ω1)-gaps in Lξ in the extension by Qξ.

This finishes the treatment of odd successor stages. Now assume ξ is an
even ordinal with cf(ξ) = ω1. In Nξ, let 〈Cξζ : ζ < ω2〉 be an enumeration
of all pregaps in Lξ represented by (ω1, ω1)-gaps constructed in Lξ at stage
ξ, with the corresponding splitting orders Sξζ . Then by Proposition 2.9 and

Lemma 2.15,
∏
ζ<ω2

Sξζ has the ccc. Note that also |∏ζ<ω2
Sξζ | ≤ ω2 and

for all γ < ω2, |∏γ
ζ<ω2

Sξζ | ≤ ω1. Let τ ξ be a Pξ-name for the partial order∏
ζ<ω2

Sξζ and τ ξγ a Pξ-name for the partial order
∏γ
ζ<ω2

Sξζ arranged in such

a way that τ ξγ ⊆ τ ξδ ⊆ τ ξ as names, for γ < δ < ω2. Let Qξ be τ ξ and
Pξ+1 = Pξ ∗ Qξ. Then Pξ+1 has the ccc and with the help of Lemmas 1.12
and 2.6 extending by Qξ does not add any new paths through ω1-trees and
hence no new (ω1, ω1)-gaps in Lξ. At this stage no new elements are added
to L so that Lξ+1 = Lξ.

Finally, I show how to treat the remaining successor stages, namely,
stages where ξ is an even ordinal and cf(ξ) 6= ω1 (i.e. ξ ∈ Λ). At these stages
I extend with a splitting order for some pregap in L. However, I make sure
that such a splitting order has the ccc so that by Lemmas 1.9 and 2.6 no
new paths are added through ω1-trees and hence by Lemma 2.7 no new
(ω1, ω1)-gaps are added in L. So fix ξ ∈ Λ and let 〈Cξγ : γ < ω2〉 be an
enumeration, in Nξ, of all pregaps in Lξ. Let g(ξ) = 〈η, γ〉. Since η ≤ ξ, the
pregap Cηγ in Lη has been defined. Let C be that Cξδ whose restriction to Lη
is equivalent to Cηγ and let Sξ be its splitting order in Nξ. By the treatment
of earlier successor stages and by Lemma 2.8, (ω1, ω1)-gaps in Lξ can only
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occur at stages of cofinality ω1. But at these stages all such gaps are filled
by a single ccc partial order and no new (ω1, ω1)-gaps are added in L by this
partial order. Therefore C cannot be an (ω1, ω1)-gap (i.e. an (ω1, ω1)-pregap
which is not split) so that by Lemma 2.5, Sξ has the ccc. Let Qξ be a nice
Pξ-name for the partial order representing Sξ and let Pξ+1 = Pξ ∗ Qξ. At
these stages no new paths are added through ω1-trees and hence no new
(ω1, ω1)-gaps are added to Lξ, as indicated earlier. Let fξ be the element of
Zω added by extending with Qξ and let Lξ+1 = Lξ ∪ {fξ}. This finishes the
treatment of the successor stages and since the limit stages are handled in
the usual way this also finishes the construction.

Let J be Pω2 -generic over N. Now I show that

N[J] |= “ MA + ¬wKH + c = ω2 + ϕc ”.

It is straightforward to show c = ω2 in N[J]. For MA, let R be a ccc partial
order of size ω1 and 〈Dζ : ζ < ω1〉 a sequence of dense subsets of R in N[J].
Then there is a ξ < ω2 such that R and 〈Dζ : ζ < ω1〉 are all in N[Jξ]. Now
at some later odd stage η, Qη was a Pη-name for R. However, since R has the
ccc in N[J], Qη must satisfy Case 2 in the treatment of stage η. Therefore,
at that stage a filter is added in R that intersects all 〈Dζ : ζ < ω1〉. This
shows that MA holds in N[J].

For ϕc, let 〈f, g〉 be a (λ, µ)-pregap in L, where λ and µ are cardinals
with λ, µ < ω2. Then there is a ξ < ω2 such that 〈f, g〉 ⊆ Lξ and 〈f, g〉 ∈ Nξ.
Note that because of Case 3 in the construction of odd stages of the iteration
either 〈f, g〉 is a non-(ω1, ω1)-gap, in which case its splitting order has the
ccc, or 〈f, g〉 is an (ω1, ω1)-gap, in which case some equivalent gap had to
be constructed at some earlier stage θ with cf(θ) = ω1. But then at that
stage its splitting order has the ccc. Therefore, at the next stage the gap
was split so that its splitting order remains to have the ccc in all further
extensions. Then at some later even stage η, an element is added to L which
splits 〈f, g〉. Therefore N[J] |= “ϕc ”.

Finally, I show N[J] |= “¬wKH ”. Let T be an ω1-tree in N[J]. I may
assume T = 〈ω1,≤T〉 where ≤T is some subset of ω1 ×ω1. Let σ =

⋃{{š}×
As : s ∈ ω1×ω1} be a nice Pω2 -name for a subset of (ω1×ω1)̌ with σJ = ≤T.
Then there is a µ < ω2 such that A =

⋃{As : s ∈ ω1 × ω1} ⊆ Pµ so that
σ is actually a nice Pµ-name. I may assume that cf(µ) = ω. Recall that
τ ξ is a nice Pξ-name for the product of the splitting partial orders of all
(ω1, ω1)-gaps in Lξ constructed by stage ξ. Then since |A| = ω1, for each
ξ < µ with cf(ξ) = ω1, only a subset of dom(τ ξ) of size ω1 is used in defining
σ and all Qη with cf(η) 6= ω1 and ξ < η < µ. With this in mind I construct,
in N, a finite support ccc iteration

〈〈Xξ : ξ ≤ µ〉, 〈Yξ : ξ < µ〉〉
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such that |Xµ| = ω1, there is a complete embedding, i, from Xµ into Pµ, and
σ is in fact a nice Xµ-name for a subset of (ω1 × ω1)̌. If cf(ξ) 6= ω1, then let
Yξ = Qξ. Otherwise let Yξ = τ ξ

γξµ
where γξµ < ω2 is large enough to make

Xµ have the properties indicated in the previous sentence.
The construction is fairly straightforward. For each ξ < µ with cf(ξ) = ω1

let

Bξ = {(p)ξ : ∃s ∈ ω1 × ω1 (p ∈ As)},
where (p)ξ denotes the ξth component of p. Choose γξµ < ω2 so large that
Bξ ⊆ dom(τ ξ

γξµ
) and if Yξ = τ ξ

γξµ
for each ξ < µ with cf(ξ) = ω1 and Yξ = Qξ

for all the other ξ < µ with cf(ξ) 6= ω1 then the sequence

〈〈Xξ : ξ ≤ µ〉, 〈Yξ : ξ < µ〉〉
obtained in such a way is in fact a finite support ccc iteration.

Clearly |Xµ| = ω1 and note that in view of Lemma 2.15 there is a com-
plete embedding i : Xµ → Pµ. Furthermore, σ is actually an Xµ-name. Then
i−1(Jµ) is Xµ-generic over N and ≤T∈ N[i−1(Jµ)] so that T is an ω1-tree in
N[i−1(Jµ)].

Now since |Xµ| = ω1 there is a regular cardinal ν in M, with ω1 < ν <
κ, such that Xµ ∈ M[Kν ] and i−1(Jµ) is Xµ-generic over M[Kν ]. Now, in
M[Kν ][i−1(Jµ)], κ is still an inaccessible cardinal and T is an ω1-tree so
that T has less than κ paths, say λ many. But in M[Kν ][i−1(Jµ)][Kν ], λ is
collapsed onto a cardinal less than ω2 = κ. However,

M[Kν ][i−1(Jµ)][Kν ] = M[Kν ][Kν ][i−1(Jµ)] = M[K][i−1(Jµ)] = N[i−1(Jµ)].

Hence, by Lemma 3.1, in going from M[Kν ][i−1(Jµ)] to M[Kν ][i−1(Jµ)][Kν ],
no new paths are added through T. Hence T has at most ω1 paths in
N[i−1(Jµ)], since λ is collapsed onto ω1.

Now I show that T has at most ω1 paths in N[J]. Let {δζ : ζ ≤ ε} be an
enumeration in the increasing order of all ordinals δ < µ with cf(δ) = ω1.
I construct, in N, a sequence of partial orders 〈Zξ : ξ ≤ ω2 · ε〉, where ω2 · ε
denotes a product of ordinals, together with complete embeddings iξη : Zξ →
Zη, for 0 ≤ ξ ≤ η ≤ ω2 · ε, such that Z0 = Xµ and Zω2·ε = Pµ. In addition,
because of the complete embeddings, iξη, the sequence 〈Zξ : ξ ≤ ω2 · ε〉 can
be viewed as a finite support ccc iteration where Zξ+1 is obtained from Zξ
by extending Zξ with a ccc splitting order for some pregap. Therefore, by
Lemma 1.9 as well as 2.6, no new paths are added through T in going from
Zξ to Zξ+1. And since by Lemma 1.12 no new paths can be added through
T at limit stages, it follows that T has as many paths in N[Jµ] as it does in
N[i−1(Jµ)], namely at most ω1.

The construction of the sequence 〈Zξ : ξ ≤ ω2 · ε〉 is fairly easy, so I only
give an outline. Start with Z0 = Xµ. For any ζ ≤ ε, α ≤ ω2 let θ = γ

δζ
µ + α.
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In order to get Zω2·ζ+α, in the definition of Xµ replace all Yδη , for η < ζ,

by τ δη , Yδζ by τ δζθ and keep all the other Yξ the same. Then Zω2·ζ+α is the
partial order obtained in such a way. Then clearly Z0 = Xµ and Zω2·ε = Pµ.
By Lemma 2.15 it is clear that for each 0 ≤ ξ < η ≤ ω2 ·ε there is a complete
embedding iξη : Zξ → Zη.

Thus the sequence 〈Zξ : ξ ≤ ω2 · ε〉 can be viewed as a finite support
ccc iteration with splitting orders for some pregaps. Then by Lemma 1.9
as well as 2.6 no new paths are added through ω1-trees at successor stages.
And since, by the remark following Lemma 1.12, no new paths are added
through ω1-trees at limit stages, it follows that T still has at most ω1 paths
in N[Jµ]. But now, in the construction of the iteration

〈〈Pξ : ξ ≤ ω2〉, 〈Qξ : ξ < ω2〉〉
the partial orders Qξ were chosen in such a way that no new paths were
added through ω1-trees in extensions by Qξ. And since by Lemma 1.12 no
new paths were added at limit stages, it follows that T has at most ω1

paths in N[J]. Therefore T cannot be a weak Kurepa tree in N[J]. Hence,
N[J] |= “¬wKH ”, which completes the proof that N[J] is a model for

ZFC + MA + ¬wKH + c = ω2 + ϕc,

which in turn proves the theorem.
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