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Borel partitions of unity and
lower Carathéodory multifunctions

by

S. M. S r i v a s t a v a (Calcutta)

Abstract. We prove the existence of Carathéodory selections and representations of
a closed convex valued, lower Carathéodory multifunction from a set A in A(E ⊗ B(X))
into a separable Banach space Y , where E is a sub-σ-field of the Borel σ-field B(E) of
a Polish space E, X is a Polish space and A is the Suslin operation. As applications we
obtain random versions of results on extensions of continuous functions and fixed points
of multifunctions. Such results are useful in the study of random differential equations
and inclusions and in mathematical economics.

As a key tool we prove that if A is an analytic subset of E ×X and if {Un : n ∈ ω}
is a sequence of Borel sets in A such that A =

⋃
n
Un and the section Un(e) is open

in A(e), e ∈ E, n ∈ ω, then there exist Borel functions pn : A → [0, 1], n ∈ ω, such that
for every e ∈ E, {pn(e, ·) : n ∈ ω} is a locally Lipschitz partition of unity subordinate to
{Un(e) : n ∈ ω}.

1. Introduction. In [F, J, Kuc, KPY, Ri, Ry etc.] the following problem
has been considered: if E is a measurable space, X Polish, Y a separable Ba-
nach space and F : E×X → Y a closed convex valued, lower Carathéodory
multifunction then does there exist a Carathéodory selection f : E×X → Y
of F? (Definitions and notation are given in the next section.) In these pa-
pers it is shown that if E is a complete measure space then such a selection
f of F exists. Though we do not have a counterexample the result is proba-
bly false for a general measurable space. In Section 4 we prove the following
selection theorem.

Theorem 1.1. Let E, X be Polish spaces, Y a separable Banach space,
E a sub-σ-field of the Borel σ-field B(E) and A ∈ A(E ⊗B(X)), where A(C)
is the set of all sets obtained as the result of the Suslin operation on a system
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{C(α) : α ∈ ω<ω} of sets in C, C a family of sets. If F : A → Y is a lower
Carathéodory multifunction then F admits a Carathéodory selection.

To prove our main selection theorem we follow the approach of Kim–
Prikry–Yannelis [KPY] and Rybiński [Ry]. As a main tool they prove the
following interesting theorem.

Theorem 1.2. Let (E, E , µ) be a complete measure space, X a Polish
space and {Un : n ∈ ω} a sequence of sets in E ⊗ B(X) such that E ×X =⋃∞
n=0 Un and Un(e) is open for every n ∈ ω and e ∈ E. Then there exists a

sequence {pn : n ∈ ω} of E ⊗ B(X)-measurable maps from E × X to [0, 1]
such that for every e ∈ E, {pn(e, ·) : n ∈ ω} is a locally Lipschitz partition
of unity subordinate to {Un(e) : n ∈ ω}.

It turns out that this is a key result to the study of Carathéodory mul-
tifunctions (see also [S2]). In Section 3, we study the existence of random
partitions of unity (in the sense of Theorem 1.2) and prove the following
theorem.

Theorem 1.3. Let E and (X, d) be Polish spaces and A an analytic
subset of E×X. If {Un : n ∈ ω} is a sequence of subsets of A such that for
n ∈ ω and e ∈ E,

(i) Un is Borel in A,
(ii) Un(e) is open in A(e) and

(iii)
⋃∞
n=0 Un = A

then there exist Borel measurable functions pn : A → [0, 1] such that for
every e ∈ E, {pn(e, ·) : n ∈ ω} is a locally Lipschitz partition of unity
subordinate to {Un(e) : n ∈ ω}.

As a simple consequence of Theorem 1.3, we obtain

Corollary 1.4. Let E and X be Polish spaces, E a sub-σ-field
of B(E), A ∈ A(E ⊗ B(X)) and {Un : n ∈ ω} a sequence in (E ⊗ B(X))|A
satisfying conditions (ii) and (iii) of Theorem 1.3. Then there exist (E ⊗
B(X))|A-measurable functions pn : A → [0, 1] such that for every e ∈ E,
{pn(e, ·) : n ∈ ω} is a locally Lipschitz partition of unity subordinate to
{Un(e) : n ∈ ω}.

To prove Theorem 1.2 the main fact used is that if C ∈ E⊗B(X) then the
map (e, x) → dist(x,C(e)), (e, x) ∈ E ×X, where dist(·, ·) is with respect
to a fixed complete metric on X, is E ⊗ B(X)-measurable.

However, this is not necessarily true if E is not complete.

Example 1.1 [SS1]. Fix a complete metric d on ωω and let α, β ∈ ωω
and α 6= β. Let U be a clopen subset of ωω contained in S(β, 1

2d(α, β)).
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Take a closed set B in [0, 1]× U such that π(B) is non-Borel and put C =
B ∪ ([0, 1]× {α}). Then

e ∈ π(B)⇔ dist(β,C(e)) ≤ 1
2d(α, β).

In Section 4 we also prove the following representation theorem for a
multifunction satisfying the hypothesis of Theorem 1.2. This result gener-
alizes a representation theorem of S. Łojasiewicz, Jr. [Łoj] (see also [AF,
Theorem 9.6.2]).

Theorem 1.5. Under the hypothesis of Theorem 1.1, there exists an
E ⊗ B(X × ωω)-measurable function f : A× ωω → Y such that

(i) f(e, x, ωω) = F (e, x) for every (e, x) ∈ A, and
(ii) for every e ∈ E, f(e, ·, ·) : A(e)× ωω → Y is continuous.

In Section 5, we give some random versions of results on extensions of
continuous functions and a random fixed point theorem for multifunctions.

Results of the kind proved in this paper are useful in game theory and
economics, random differential equations and inclusions etc. [AF, KPY, Y].

2. Definitions and preliminaries. For standard concepts and re-
sults in descriptive set theory we refer the reader to Kuratowski [Kur] or
Moschovakis [Mo]. The set of natural numbers 0, 1, 2, . . . will be denoted by
ω and ω<ω will denote the set of all finite sequences of elements of ω of
positive length.

If s ∈ ω<ω and k ∈ ω then sk will denote the concatenation of s and k.
The set ωω of all sequences of natural numbers is equipped with the product
of discrete topologies on ω. Then ωω is a Polish space (a completely metriz-
able second countable topological space). For α = (α(0), α(1), . . .) ∈ ωω

and k ∈ ω, a|k = (α(0), α(1), . . . , α(k)). For s ∈ ω<ω, ωω(s) = {α ∈ ωω :
α extends s}.

If (X, d) is a metric space, x ∈ X and r a positive real then S(x, r)
denotes the open sphere in X with centre x and radius r. For A ⊆ X,
d(x,A) = inf{d(x, y) : y ∈ A}. Unless otherwise specified , a metric space is
equipped with its Borel σ-field B(X).

A multifunction F : E → X is a map with domain E and values non-
empty subsets of X. For U ⊆ X,

F−1(U) = {e ∈ E : F (e) ∩ U 6= ∅}.
Also, the graph of F , denoted by G(F ), is the set

{(e, x) ∈ E ×X : x ∈ F (e)}.
A map f : E → X is called a selector of F if f(e) ∈ F (e) for every e ∈ E.
If X is a topological space then a sequence {fi : i ∈ ω} of selectors of F is



242 S. M. Srivastava

called a dense sequence of selectors of F if F (e) = {fi(e) : i ∈ ω} for every
e ∈ E.

If (E, E) is a measurable space andX a topological space then F : E → X
is called E-measurable or simply measurable if F−1(U) ∈ E for every open set
U in X. It is well known that if X is Polish and F : E → X a closed valued
E-measurable multifunction then F admits a dense sequence of measurable
selectors [MR]. We shall use the following result which is stated here for
easy reference.

Lemma 2.1 [S1]. If (E, E) is a measurable space, F : E → X a closed
valued , measurable multifunction, f : E → X a measurable function and
ε > 0 then the multifunction

e→ F (e) ∩ S(f(e), ε)

is measurable.

If E and X are topological spaces then F : E → X is called lower
semicontinuous (l.s.c.) if F−1(U) is open in E for every open subset U
of X. We have

Lemma 2.2 [Mic]. Let E and X be metrizable spaces, F : E → X a
l.s.c. multifunction, f : E → X a continuous map and ε a positive real
such that F (e) ∩ S(f(e), ε) 6= ∅ for every e. Then the multifunction e →
F (e) ∩ S(f(e), ε) is l.s.c.

If E and X are sets, A ⊆ E×X, e ∈ E then π(A) denotes the projection
of A onto E and A(e) the section {x ∈ X : (e, x) ∈ A}.

Now assume that (E, E) is a measurable space, and X, Y Polish spaces,
and let A ⊆ E ×X be equipped with the σ-field E ⊗ B(X)|A. A point map
f : A → Y is called Carathéodory if f is measurable and for every e ∈ E,
F (e, ·) : A(e) → Y is continuous. A multifunction F : A → Y is lower
Carathéodory if F is measurable and F (e, ·) : A(e) → Y is l.s.c. for every
e ∈ E.

We close this section by stating some known results for easy reference.

Lemma 2.3. Let G be a collection of subsets of a set E and let A belong
to the σ-field σ(G) generated by G. Then there exists a countable collection
G′ ⊆ G such that a ∈ σ(G′).

Lemma 2.4 [RR]. Let E be a countably generated σ-field of subsets of E
and {En : n ∈ ω} a generator of E. Let I : E → [0, 1] be the map

I(e) =
∞∑
n=0

2
3n+1 IEn(e), e ∈ E,

where IA(·) is the indicator function of A ⊆ E. If T = I(E) then I :
(E, E)→ (T,B(T )) is bimeasurable.
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Lemma 2.5. Let (T, T ) be a metrizable space and {Bn : n ∈ ω} a sequence
of Borel subsets of T . Then there exists a metrizable topology T ′ on T such
that

(i) T ′ is finer than T ,
(ii) Bn ∈ T ′, n ∈ ω, and

(iii) σ(T ) = σ(T ′).
P r o o f. Define a map h : T → T × {0, 1}ω by

h(t) = (t, IB0(t), IB1(t), . . .), t ∈ T,
and put T ′ = {h−1(U) : U is open in h(T )}.

R e m a r k. If (T, T ) is Polish then we can choose T ′ such that (T, T ′) is,
moreover, Polish [Mil].

Lemma 2.6 [Lou]. Let E and X be Polish spaces, and A and B analytic
subsets of E×X such that for every e ∈ E there exists an open subset U of
X such that

A(e) ⊆ U and B(e) ∩ U = ∅.
Then there exist a sequence {Bn : n ∈ ω} of Borel subsets of E and a
sequence {Un : n ∈ ω} of open subsets of X such that

A ⊆
∞⋃
n=0

(Bn × Un) and B ∩
∞⋃
n=0

(Bn × Un) = ∅.

Lemma 2.7. Let E and X be Polish spaces, E a sub-σ-field of B(E) and
B ∈ E ⊗ B(X) with non-empty compact sections. Then π(B) ∈ E and there
exists an E-measurable map s : E → X such that s(e) ∈ B(e) for all e.

This is an easy generalization of Novikov’s uniformization theorem [Mo,
Theorem 4F.12] and the proof is omitted.

3. Borel partitions of unity

P r o o f o f T h e o r e m 1.3. Fix n ∈ ω. By Lemma 2.6, we get a sequence
{Bnk : k ∈ ω} of Borel subsets of E and a sequence {Unk : k ∈ ω} of open
subsets of X such that

Un ⊆
∞⋃

k=0

(Bnk × Unk) and (A \ Un) ∩
∞⋃

k=0

(Bnk × Unk) = ∅.

By Lemma 2.5, we get a finer second countable metrizable topology T on
E such that

(i) Bnk ∈ T , n, k ∈ ω, and
(ii) σ(T ) = B(E).
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Let d′ be a metric on E inducing T and % be the metric on E×X defined
by

%((e, x), (e′, x′)) = max{d′(e, e′), d(x, x′)}.
Now note that {Un : n ∈ ω} is an open cover of the metric space (A, %).
Therefore, by [AC, Theorem 2, pp. 10–12] there exist locally Lipschitz maps
pn : (A, %)→ [0, 1], n ∈ ω, such that {pn(e, ·) : n ∈ ω} is a partition of unity
subordinate to {Un(e) : n ∈ ω}. It is clear that {pn : n ∈ ω} has all the
desired properties.

P r o o f o f C o r o l l a r y 1.4. By Lemma 2.3, we can assume that E is
countably generated. Fix a countable generator {En : n ∈ ω} of E and let
I : E → [0, 1] be the map defined by

I(e) =
∞∑
n=0

2
3n+1 IEn(e), e ∈ E.

Further, let I ′ : E ×X → [0, 1]×X be the map

I ′(e, x) = (I(e), x), (e, x) ∈ E ×X,
and set A′ = I ′(A) and U ′n = I ′(Un). By Lemma 2.4 and Theorem 1.3,
we get Carathéodory maps p′n : A′ → [0, 1] such that for every e ∈ E,
{p′n(e, ·) : n ∈ ω} is a locally Lipschitz partition of unity subordinate to
{U ′n(e) : n ∈ ω}. Put pn = p′n ◦ I ′, n ∈ ω. The proof is complete.

4. Selection and representation of lower Carathéodory multi-
functions. Throughout this section we assume that E, E , X and A are as
in Theorem 1.1.

Lemma 4.1. Let Y be a separable normed linear space, F : A → Y a
convex valued , lower Carathéodory multifunction and ε > 0. Then there
exists a Carathéodory map fε : A → Y such that for every (e, x) ∈ A,
F (e, x) ∩ S(fε(e, x), ε) 6= ∅.

P r o o f. Fix a countable dense set {yn : n ∈ ω} in Y and n ∈ ω, let

Un = {(e, x) ∈ A : F (e, x) ∩ S(yn, ε) 6= ∅}.
By Corollary 1.4, we get Carathéodory maps pn : A → [0, 1], n ∈ ω, such
that for every e ∈ ω, {pn(e, ·) : n ∈ ω} is a partition of unity subordinate to
{Un(e) : n ∈ ω}. Put

fε(e, x) =
∞∑
n=0

ynpn(e, x), (e, x) ∈ A.

The proof is complete.

P r o o f o f T h e o r e m 1.1. For each n ∈ ω, we define a Carathéodory
map fn : A→ Y such that for every (e, x) ∈ A and n ∈ ω,
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(i) F (e, x) ∩ S(fn(e, x), 1/2n+1) 6= ∅, and
(ii) ‖fn(e, x)− fn+1(e, x)‖ ≤ 1/2n.

We proceed by induction on n. By Lemma 4.1, we get f0 : A → Y
satisfying (i). Suppose f0, . . . , fn satisfying (i) and (ii) have been defined.
By Lemmas 2.1 and 2.2, the multifunction

Fn(e, x) = F (e, x) ∩ S(fn(e, x), 1/2n+1)

defined on A is lower Carathéodory. Apply Lemma 4.1 to the multifunction
Fn with ε = 1/2n+1 to get fn+1 satisfying (i) and (ii). Now, put

f(e, x) = lim
n
fn(e, x), (e, x) ∈ A.

The proof of Theorem 1.1 is complete.

A relevant example here is the following.

Example 4.1. Let E = X = [0, 1] and y = R. Let {fα : α < c} be an
enumeration of all Borel maps from E ×X into [0, 1] ⊆ Y and {tα : α < c}
be an enumeration of [0, 1]. For each α < c, choose yα ∈ [0, 1] \ {fα(tα, tα)}.
Now define a multifunction F : E ×X → Y by

F (e, x) =
{ {yα} if (e, x) = (tα, tα) for some α < c,

[0, 1] otherwise.

Then for every e and every x, F (e, ·) and F (·, x) are l.s.c. but F does not
admit even a Borel selection.

Proposition 4.2. Under the hypothesis of Theorem 1.1, F admits a
dense sequence of Carathéodory selections.

P r o o f. Fix a countable base {Wn : n ∈ ω} for Y and n ∈ ω. Let

Un = {(e, x) ∈ A : F (e, x) ∩Wn 6= ∅}.
Using Lemma 2.6 and the idea contained in the proof of Corollary 1.4 we
get sets Bnk ∈ E and open sets Unk in X, k ∈ ω, such that

Un ⊆
∞⋃

k=0

(Bnk × Unk) and (A \ Un) ∩
∞⋃

k=0

(Bnk × Unk) = ∅.

Let Unk =
⋃∞
l=0 Cnkl, where Cnkl are closed in X, l ∈ ω. Now define the

multifunction Fnkl : A→ Y by

Fnkl(e, x) =
{
F (e, x) ∩Wn if (e, x) ∈ A ∩ (Bnk × Cnkl),
F (e, x) otherwise.

Clearly Fnkl : A→ Y is a closed convex valued, lower Carathéodory multi-
function. By Theorem 1.1, we get a Carathéodory selector fnkl of Fnkl. It
is obvious that {fnkl : n, k, l ∈ ω} is a dense sequence of selectors of F .
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R e m a r k. If we adapt the proof of [KPY, Theorem 3.2] we have: If E,
E , X, A and Y are as in Theorem 1.1 and if F : A→ Y is a convex valued,
lower Carathéodory multifunction then either F admits a Carathéodory
selection if Y is finite-dimensional, or F (e, x) has non-empty interior for
every (e, x) ∈ A.

P r o o f o f T h e o r e m 1.5. For every s ∈ ω<ω, we define Carathéodory
selectors fs : A→ Y of F such that

(i) {fn : n ∈ ω} is a dense sequence of selectors of F , and
(ii) if s is of length k, then {fsm : m ∈ ω} is a dense sequence of selectors

of the multifunction

Fs(e, x) = F (e, x) ∩ S(fs(e, x), 1/2k), (e, x) ∈ A.
We proceed by induction on the length of s. By Proposition 4.2, we get

a dense sequence {fn : n ∈ ω} of Carathéodory selections of F . Let ft be
defined for all t ∈ ω<ω of length ≤ k and s ∈ ω<ω be of length k. By Lem-
mas 2.1, 2.2 and Proposition 4.2, we get a dense sequence of Carathéodory
selectors {fsm : m ∈ ω} of the multifunction Fs as defined in condition (ii).

Now put

f(e, x, α) = lim
k
fα|k(e, x), (e, x, α) ∈ A× ωω.

It is easy to check that f(e, x, ωω) = F (e, x) for every (e, x) ∈ A. To show
that f satisfies the rest of the conclusion, fix an open set U in Y and write⋃∞
k=0 Uk where Uk is a non-decreasing sequence of open sets such that Uk
⊆ U . Further, for k, l ∈ ω, let

Ukl = {y ∈ Y : d(x,X \ Uk) > 1/2l}.
For (e, x, α) ∈ A× ωω, note that

f(e, x, α) ∈ U ⇔ ∃k ∃l ∃m > l (fα|m(e, x) ∈ Ukl).
The proof is complete.

5. Extensions of Carathéodory maps and random fixed points
of multifunctions. In this section we prove results on extensions of
Carathéodory maps which substantially generalize the results proved in [SS1,
SS2].

Theorem 5.1. Let E, E , X and Y be as in Theorem 1.1 and let B ∈
E ⊗B(X) with sections B(e) closed in X for every e ∈ E. Further , suppose
H : E → Y is a closed convex valued , E-measurable multifunction. If f :
B → Y is a Carathéodory map such that f(e,B(e)) ⊆ H(e) for every e ∈ E
then there exists a Carathéodory extension g : E × X → Y of f such that
g(e,X) ⊆ H(e) for all e.
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P r o o f. Consider the multifunction G : E ×X → Y defined by

G(e, x) =
{ {f(e, x)} if (e, x) ∈ B,
H(e) otherwise.

By Theorem 1.1, we get a Carathéodory selection g : E×X → Y of G. The
map g has all the desired properties.

Theorem 5.2. Let E, X, Y and E be as in Theorem 4.1 and B the graph
of an E-measurable closed valued multifunction from E to X. If f : B → Y
is a Carathéodory map then there exists a Carathéodory extension g : E×X
→ Y of f such that g(e,X) ⊆ co(f(e,B(e))) for every e ∈ E, where co(A)
is the convex hull of A ⊆ Y . Moreover , if Y is finite-dimensional then we
can get the Carathéodory extension g to satisfy g(e,X) ⊆ co(f(e,B(e))) for
every e ∈ E.

P r o o f. Consider the multifunction H : E → Y defined by

H(e) = co(f(e,B(e))), e ∈ E.
Then H is E-measurable. To see this fix a dense sequence of measurable
selectors {sn : n ∈ ω} of B. For any open set U in Y ,

H(e) ∩ U 6= ∅ ⇔ there exist positive rational numbers t0, . . . , tk with∑k
i=0 ti = 1 and natural numbers n0, . . . , nk such that∑k
i=0 tif(e, sni(e)) ∈ U .

This shows that the multifunctions H and e → H(e) are measurable.
The result follows by Theorem 4.1. Moreover, if Y is finite-dimensional, we
get g such that g(e,X) ⊆ co(f(e,B(e))), e ∈ E, by using the observation
made in the remark following the proof of Proposition 4.2 in the proof of
Theorem 5.1.

Theorem 5.3. Let E be a Polish space, E a sub-σ-field of B(E), X a
separable Banach space and B ∈ E ⊗ B(X) with sections B(e) compact ,
non-empty and convex. Suppose F : B → X is a convex valued , lower
Carathéodory map such that F (e, x) ⊆ B(e) for every (e, x) ∈ B. If either
X is finite-dimensional or F (e, x) is closed for all (e, x) then there exists an
E-measurable s : E → X such that s(e) ∈ F (e, s(e)) for all e.

P r o o f. By Theorem 1.1 or the remark following the proof of Proposi-
tion 4.2, we get a Carathéodory selection f : B → X of F . Let

S = {(e, x) ∈ B : f(e, x) = x}.
Clearly S ∈ E ⊗B(X), S(e) is compact and by Schauder’s fixed point theo-
rem, S(e) 6= ∅ for all e. Hence, by Lemma 2.7, there is an E-measurable map
s : E → X such that s(e) ∈ S(e) for all e. Then s(e) ∈ F (e, s(e)) for all e.
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[J] J. Janus, A remark on Carathéodory type selections, Le Matematiche 25 (1986),

3–13.
[Kuc] A. Kucia, On the existence of Carathéodory selectors, Bull. Polish Acad. Sci.
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