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Abstract. Let Λ be a finite-dimensional, basic and connected algebra over an alge-
braically closed field, and modΛ be the category of finitely generated right Λ-modules.
We say that Λ has acceptable projectives if the indecomposable projective Λ-modules lie
either in a preprojective component without injective modules or in a standard coil, and
the standard coils containing projectives are ordered. We prove that for such an algebra Λ
the following conditions are equivalent: (a) Λ is tame, (b) the Tits form qΛ of Λ is weakly
non-negative, (c) Λ is an iterated coil enlargement.

Introduction. Let k be an algebraically closed field, and Λ be a finite-
dimensional, basic and connected k-algebra. We denote by modΛ the cate-
gory of finitely generated right Λ-modules.

The notion of admissible operations was introduced in [2]. There, a coil
is defined as a translation quiver that is obtained from a stable tube by a
sequence of admissible operations. A multicoil consists then of a finite set of
coils glued together by some directed part. An algebra Λ is called a multicoil
algebra if any cycle in modΛ belongs to one standard coil of a multicoil in
the Auslander–Reiten quiver of Λ. It is shown in [1, 1.4] that multicoil
algebras are tame, and in [2, 4.6], that they are of polynomial growth. In
fact, the class of multicoil algebras contains all the best understood examples
of algebras of polynomial growth and finite global dimension. It also seems
to be important for studying the simply connected algebras of polynomial
growth, as seen in [13], where it is shown that a strongly simply connected
algebra Λ is of polynomial growth if and only if Λ is a multicoil algebra.

In this paper, we are concerned with the study of a certain class of multi-
coil algebras, namely, those algebras obtained by an iteration of the process
given in [4] for defining the tame coil enlargements of a tame concealed
algebra. We call these algebras iterated coil enlargements, and we give a
complete description of their module categories.
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Generalizing the definition given in [10], we say that an algebra Λ has
acceptable projectives if the Auslander–Reiten quiver of Λ has components
P, C1, . . . , Cr with the following properties:

(i) Any indecomposable projective Λ-module lies in P or in some Ci.

(ii) P is a preprojective component without injective modules.

(iii) Each Ci is a standard coil.

(iv) If HomΛ(Ci, Cj) 6= 0, then i ≤ j.

An algebra Λ having acceptable projectives is triangular (that is, there
is no oriented cycle in its ordinary quiver), and consequently, by [6], the
Tits form qΛ of Λ is defined (see (2.3)). The main result of our paper is the
following generalization of [10, 3.4]:

Theorem. Let Λ be an algebra with acceptable projectives. Then the

following conditions are equivalent :

(a) Λ is an iterated coil enlargement.

(b) Λ is tame.

(c) qΛ is weakly non-negative.

The paper is organized as follows. In Section 2, we fix the notations
and recall some basic definitions. Section 3 contains the construction of the
iterated coil enlargements and the description of their module categories. In
Section 4 we prove our main theorem.

2. Preliminaries

2.1. Notation. Throughout this paper k denotes a fixed algebraically
closed field. By an algebra we mean a finite-dimensional k-algebra, which
we assume to be basic and connected. Such an algebra Λ can be written
as a bound quiver algebra Λ ∼= kQ/I, where Q is the quiver of Λ and I
is an admissible ideal of the path algebra kQ of Q. We call an algebra
triangular whenever its quiver has no oriented cycle. An algebra Λ = kQ/I
can be considered as a k-category with objects the vertices Q0 of Q, and
with the set of morphisms from x to y being the vector space kQ(x, y) of
all linear combinations of paths in Q from x to y modulo the subspace
I(x, y) = I ∩ kQ(x, y) (see [7]). A full subcategory C of Λ is called convex

in Λ if any path with source and sink in C lies entirely in C.

By a Λ-module is always meant a finitely generated right Λ-module, and
we denote their category by modΛ. We denote by ind Λ a full subcategory
of modΛ consisting of a set of representatives of the isomorphism classes of
indecomposable Λ-modules. A path in modΛ is a sequence of non-zero non-
isomorphisms M0 → M1 → . . . → Mt, where the Mi are indecomposables.
Such a path is said to be sectional if Mi−1 6∼= D tr Mi+1 for all 0 < i < t;
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and it is called a cycle if M0
∼= Mt. An indecomposable Λ-module M is

called directing if it lies in no cycle in modΛ.

For each vertex x ∈ Q0, we denote by Sx the corresponding simple
Λ-module, and by Px (respectively, Ix) the projective cover (respectively,
the injective envelope) of Sx. The dimension vector of a module M is the
vector dim M = (dimk HomΛ(Px,M))x∈Q0

. The support Supp(d) of a vector
d = (dx)x∈Q0

is the full subcategory of Λ with object class {x ∈ Q0 | dx 6= 0}.
The support Supp(M) of a module M is the support of its dimension vector
dim M . A module M is called sincere if its support is equal to Λ.

2.2. Auslander–Reiten components. For an algebra Λ we denote by ΓΛ

the Auslander–Reiten quiver of Λ, and by τΛ = D tr and τ−

Λ = tr D the
Auslander–Reiten translations. We identify the vertices of ΓΛ with the
corresponding indecomposable Λ-modules. Let C be a component of ΓΛ. We
denote by indC the full subcategory of modΛ with objects the vertices of
C, and we say that C is standard if indC is equivalent to the mesh category
k(C) of C (see [7]). We denote by add C the additive full subcategory of
modΛ consisting of the direct sums of indecomposable modules in C.

A translation quiver without multiple arrows is called a tube if it contains
a cyclic path and its underlying topological space is homeomorphic to S1 ×
R+, where S1 is the unit circle and R+ the set of non-negative real numbers
(cf. [11]).A tube has only two types of arrows: arrows pointing to infinity and
arrows pointing to the mouth. An infinite sectional path consisting of arrows
pointing to infinity (respectively, to the mouth) is called a ray (respectively,
a coray). Tubes containing no projective or injective are called stable.

Let (Γ, τ) be a connected translation quiver and X ∈ Γ0. In [3], three
operations modifying (Γ, τ) to a new translation quiver (Γ ′, τ ′) are defined
according to the shape of the support of Homk(Γ )(X,−). These three op-
erations and their duals are called admissible. The point X is called the
pivot of the operation. A translation quiver Γ is called a coil if there is a
sequence of translation quivers Γ0, Γ1, . . . , Γm = Γ such that Γ0 is a stable
tube and, for each 0 ≤ i < m, Γi+1 is obtained from Γi by an admissible
operation.

Coils share many properties with tubes, for instance, all but finitely many
points in a coil belong to a cyclic path. The set of points in a coil Γ which
are the starting or ending point of a mesh in Γ with a unique middle term
is called the mouth of Γ . A coil contains a maximal tube as a cofinite full
translation subquiver. Arrows of this tube may thus be subdivided into two
classes: arrows pointing to the mouth and arrows pointing to infinity. Amesh
in a coil has at most three middle terms. A mesh with exactly three middle
terms is called exceptional , and it must have one of its middle terms on the
mouth or projective-injective. A projective middle term of an exceptional
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mesh is called exceptional projective. Other meshes and projectives are
called ordinary . An axiomatic description of coils is given in [3, 4.2].

Finally, a translation quiver (Γ, τ) is a multicoil if it contains a full
translation subquiver Γ ′ such that Γ ′ is a disjoint union of coils and all
points in Γ\Γ ′ are directing.

2.3. The Tits and Euler forms. For a triangular algebra Λ, the Tits form

qΛ of Λ was introduced in [6] as the quadratic form qΛ : ZQ0 → Z given by

qΛ(z) =
∑

i∈Q0

z2
i −

∑

i,j∈Q0

zizj dimk Ext1Λ(Si, Sj)

+
∑

i,j∈Q0

zizj dimk Ext2Λ(Si, Sj).

We denote by (−,−)Λ the symmetric bilinear form associated with qΛ.

Assume that Q0 = {1, . . . , n}. The Cartan matrix CΛ of Λ is the n × n
matrix whose ij-entry is dimk HomΛ(Pi, Pj). If the global dimension of Λ
is finite (for instance, if Λ is triangular), then CΛ is invertible and we can
define the Euler characteristic on ZQ0 by

〈x, y〉 = xC−t
Λ yt.

It has the following homological interpretation:

〈dim X,dim Y 〉 =

∞
∑

i=0

(−1)i dimk Exti
Λ(X,Y )

for any two Λ-modules X,Y . The Euler form χΛ of Λ is defined by χΛ(z) =
〈z, z〉Λ. Since the above homological formula only depends on dimX and
dim Y , we see that qΛ = χΛ when gl dim Λ ≤ 2, and qΛ(z) ≥ χΛ(z) for any
vector z with non-negative coordinates when gl dimΛ ≤ 3.

2.4. One-point extensions. The one-point extension of the algebra Λ
by the Λ-module X is the algebra Λ[X] =

(

Λ 0
X k

)

with the usual addition
and multiplication of matrices. The quiver of Λ[X] contains that of Λ as
a full subquiver, and there is an additional vertex which is a source. The
Λ[X]-modules are usually identified with the triples (V,M, γ), where V is
a k-vector space, M is a Λ-module and γ : V → HomΛ(X,M) is a k-linear
map. A Λ[X]-homomorphism (V,M, γ) → (V ′,M ′, γ′) is thus a pair (f, g),
where f : V → V ′ is k-linear and g : M → M ′ is a Λ-homomorphism such
that γ′f = HomΛ(X, g)γ. One defines dually the one-point coextension

[X]Λ of Λ by X.

2.5. Tame algebras. Following [8], we call an algebra Λ tame if, for any
dimension d, there is a finite number of k[X]-Λ-bimodules Mi which are
finitely generated and free as left k[X]-modules, and such that every inde-



Iterated coil enlargements 255

composable Λ-module of dimension d is isomorphic to k[X]/(X−λ)⊗k[X]Mi

for some λ ∈ k and some i.
Let µΛ(d) be the least number of bimodules Mi satisfying the above

conditions. Then Λ is called of polynomial growth (respectively, domestic) if
there is a natural number n such that µΛ(d) ≤ dn (respectively, µΛ(d) ≤ n)
for all d ≥ 1 (cf. [12]).

An algebra Λ is called a multicoil algebra if, for any cycle M0 → M1 →
. . . → Mt = M0 in modΛ, the indecomposable modules Mi belong to one
standard coil of a multicoil in ΓΛ.

It is shown in [2, 4.6] that multicoil algebras are of polynomial growth.
The simplest examples of multicoil algebras are the coil enlargements of tame
concealed algebras having tame coil type (see [4]). These contain Ringel’s
domestic tubular extensions and coextensions and tubular algebras (see [11,
4.9, 5.2]).

2.6. Tame coil enlargements of tame concealed algebras. Let Λ be an
algebra and T = (Ti)i∈I be a family of components of ΓΛ. Then T is said
to be separating (respectively, weakly separating) in modΛ if the remaining
indecomposable Λ-modules split into two classes P and Q such that:

(i) The components Ti, i ∈ I, are standard and pairwise orthogonal.
(ii) HomΛ(Q,P) = HomΛ(Q,T ) = HomΛ(T ,P) = 0.
(iii) Any morphism from P to Q factors through add Ti for any i ∈ I

(respectively, add T ).

Let A be a tame concealed algebra and T = (Ti)i∈I be the stable separat-
ing tubular family of ΓA. An algebra B is called a coil enlargement of A using
modules from T if there is a sequence of algebras A = A0, A1, . . . , An = B
such that for 0 ≤ j < n,Aj+1 is obtained from Aj by an admissible opera-
tion with pivot either in a stable tube of T or in a coil of ΓAj

obtained from
a stable tube of T by means of the admissible operations done so far. If
B is a coil enlargement of a tame concealed algebra A having a separating
family T = (Ti)i∈I of stable tubes, then the coil type cB = (c−B , c+

B) of B is
the pair of functions from I to N given by

c+
B(i) = rank of Ti + number of rays inserted in Ti by the sequence of

admissible operations,
c−B(i) is defined dually.

Moreover, there are a unique maximal branch extension B+ of A and a
unique maximal branch coextension B− of A which are full convex subcat-
egories of B, c+

B is the extension type of B+ and c−B is the coextension type
of B−, (see [4, 3.5] and [11, 4.7]).

It is shown in [4, 4.2] that B is tame if and only if B− and B+ are tame,
that is, if and only if B− and B+ are either domestic or tubular. In fact, if
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indA = P∨T ∨Q, indB− = PB−

∨T B−

∨Q and indB+ = P∨T B+

∨QB+

,
then ind B = PB−

∨T ′ ∨QB+

, where T ′ = (T ′
i )i∈I is the weakly separating

family of coils obtained from T = (Ti)i∈I by the sequence of admissible
operations.

3. Construction of the iterated coil enlargements

3.1. Domestic tubular extensions and coextensions and tubular algebras
are obtained from a tame concealed algebra by performing a sequence of
admissible operations 1) or 1*) in the stable tubes of its separating tubular
family. We call these algebras 0-iterated coil enlargements.

Let Λ0 be a branch coextension of a tame concealed algebra A0, and
assume that Λ0 is domestic or tubular. Then ind Λ0 = P0 ∨ T0 ∨Q0, where
Q0 is the preinjective component of ΓΛ0

, and T0 is a separating tubular
family separating P0 from Q0. Using admissible operations 1), 2), 3), we
insert projectives in the coinserted and stable tubes of T0. We obtain a coil
enlargement Λ1 of A0 with (Λ1)

− = Λ0. If (Λ1)
+ is tame, we call Λ1 a

1-iterated coil enlargement.

By [4, 4.1], indΛ1 = P0 ∨ T ′
0 ∨ Q′

0, where T ′
0 is the weakly separating

family of coils obtained from T0, and Q′
0 consists of (Λ1)

+-modules. If (Λ1)
+

is domestic, then Q′
0 is the preinjective component of Γ(Λ1)+ and the process

stops.

If (Λ1)
+ is tubular, then (Λ1)

+ is a branch coextension of a tame con-
cealed algebra A1, and we can write

ind(Λ1)
+ = P1

0 ∨ T 1
0 ∨

∨

γ∈Q+

T 1
γ ∨ T 1

∞ ∨Q1
∞,

where Q1
∞ is the preinjective component of ΓA1

, and T 1
∞ is the separating

tubular family of mod (Λ1)
+ that is obtained from the family of stable tubes

of modA1 by coray insertions. Then Q′
0 =

∨

γ∈Q+ T 1
γ ∨ T 1

∞ ∨ Q1
∞, and

ind Λ1 = P0 ∨ T ′
0 ∨

∨

γ∈Q+

T 1
γ ∨ T 1

∞ ∨ Q1
∞.

Lemma. With the notation introduced above,

(a) T 1
∞ is a separating tubular family separating P0 ∨ T ′

0 ∨
∨

γ∈Q+ T 1
γ

from Q1
∞.

(b) For each γ ∈ Q+,T 1
γ is a separating tubular family separating P0 ∨

T ′
0 ∨

∨

δ<γ T
1

δ from
∨

δ>γ T
1

δ ∨ T 1
∞ ∨Q1

∞.

P r o o f. (a) We have to prove conditions (i), (ii) and (iii) of (2.6).

(i) follows from the fact that T 1
∞ is a separating tubular family in mod

(Λ1)
+.
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(ii) follows from the fact that T ′
0 is weakly separating in modΛ1, and

T 1
∞ is separating in mod(Λ1)

+.
(iii) Let f : M → N be a non-zero morphism with M ∈ P0 ∨ T ′

0 ∨
∨

γ∈Q+ T 1
γ and N ∈ Q1

∞. If M ∈
∨

γ∈Q+ T 1
γ , then f factors through the

additive category of any tube of T 1
∞. If M ∈ P0, then f factors through

add T ′
0 . Finally, if M ∈ T ′

0 and M is a (Λ1)
+-module, then M ∈ T 1

0 and
f factors through the additive category of any tube of T 1

∞. If M is not a
(Λ1)

+-module, then there is a commutative diagram

where M ′ is the restriction of M to (Λ1)
+; hence M ′ ∈ add T 1

0 . Since f ′

factors through the additive category of any tube of T 1
∞, so does f . Therefore

in all cases f factors through the additive category of any tube of T 1
∞.

(b) is proved similarly.

Let P1 = P0 ∨ T ′
0 ∨

∨

γ∈Q+ T 1
γ , T1 = T 1

∞ and Q1 = Q1
∞. Then we can

write ind Λ1 = P1 ∨ T1 ∨ Q1, where T1 is a separating tubular family in
modΛ1 consisting of coinserted and stable tubes, and Q1 is the preinjective
component of ΓΛ1

.

3.2. We are now able to iterate the process:
Using admissible operations 1), 2), 3), we insert projectives in the tubes

of T1. We obtain a coil enlargement Λ2 of A1 with (Λ2)− = (Λ1)
+. If (Λ2)+

is tame, we call the algebra Λ2 obtained from Λ1 by inserting projectives in
the tubes of T1 a 2-iterated coil enlargement.

As in [4, 2.7], we know that ind Λ2 = P1 ∨ T ′
1 ∨ Q′

1, where T ′
1 is the

weakly separating family of coils obtained from T1. We want to describe
Q′

1. By [4, 4.1], indΛ2 = P2 ∨ T 2 ∨ Q2, where T 2 = T ′
1 and Q2 consists of

(Λ2)+-modules.

Lemma. With the above notation, Q′
1 = Q2.

P r o o f. Let X ∈ Q2. Since the indecomposable projective Λ2-modules
lie in P2 ∨ T 2, and T 2 is weakly separating in modΛ2,HomΛ2(T 2,X) 6= 0.
Hence HomΛ2

(T ′
1 ,X) 6= 0 and X ∈ Q′

1.

Let X ∈ Q′
1. We must show first that X is a Λ2-module. Let z be a

vertex in QΛ2
but not in QΛ2 . Then z is in QΛ1

but not in Q(Λ1)+ , and
the indecomposable injective Λ2-module Iz belongs to T ′

0 ⊂ P1. Therefore
HomΛ2

(X, Iz) = 0, and X is a Λ2-module. As above, X ∈ Q2.
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Fig. 1. Λ0 bound by γδϕ = 0, εϕ = 0 Fig. 2. Λ1 bound by γδϕ = 0, εϕ = 0,
ναβ = ωδ, µψ = ναβϕ

Fig. 3. Λ2 bound by γδϕ = 0, εϕ = 0,
ναβ = ωδ, µψ = ναβϕ, τµ = 0, τω =
σγ, σγδ = ̺ηε

Fig. 4. Λ3 bound by γδϕ = 0, εϕ = 0,
ναβ = ωδ, µψ = ναβϕ, τµ = 0, τω =
σγ, σγδ = ̺ηε, χλ = ξµ, ξν = 0, ξω = 0

As before, if (Λ2)+ is domestic, Q′
1 is the preinjective component of

Γ(Λ2)+ and the process stops. If (Λ2)+ is tubular, then it is a branch coex-
tension of a tame concealed algebra A2, and we can write

ind(Λ2)+ = P2
0 ∨ T 2

0 ∨
∨

γ∈Q+

T 2
γ ∨ T 2

∞ ∨Q2
∞,

where Q2
∞ is the preinjective component of ΓA2

and T 2
∞ is the separating

tubular family of mod (Λ2)+ that is obtained from the family of stable tubes
of mod A2 by coray insertions. Then Q′

1 =
∨

γ∈Q+ T 2
γ ∨T 2

∞∨Q2
∞, and letting

P2 = P1 ∨ T ′
1 ∨

∨

γ∈Q+ T 2
γ , T2 = T 2

∞ and Q2 = Q2
∞, we can write indΛ2 =

P2 ∨ T2 ∨ Q2, where T2 is a separating tubular family in modΛ2 consisting
of coinserted and stable tubes, and Q2 is the preinjective component of ΓΛ2

.
We are now able to iterate the process once more.

We define the n-iterated coil enlargements inductively.

3.3. Let Λ be an iterated coil enlargement. From the description of
indΛ given above, we immediately obtain:

Proposition. If Λ is an iterated coil enlargement , then

(a) Λ is of polynomial growth.
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(b) qΛ is weakly non-negative.

P r o o f. (a) is [2, 4.6]. Since by [3, 3.5] Λ is triangular, (b) follows from
(a) and [9, 1.2].

3.4. In the examples of Figures 1–4, Λn is an n-iterated coil enlargement.

4. The main theorem

4.1. An algebra Λ has acceptable projectives if the Auslander–Reiten
quiver ΓΛ of Λ has components P, C1, . . . , Cr with the following properties:

(i) Any indecomposable projective Λ-module lies in P or in some Ci.
(ii) P is a preprojective component without injective modules.
(iii) Each Ci is a standard coil.
(iv) If HomΛ(Ci, Cj) 6= 0, then i ≤ j.

Iterated coil enlargements have acceptable projectives.

Lemma. If Λ has acceptable projectives, then Λ is triangular.

P r o o f. Let P, C1, . . . , Cr be as in the above definition, and assume
that Λ is not triangular. Then there exists a cycle in modΛ consisting of
indecomposable projective modules none of which lies in P, for otherwise
P would contain a cycle. Hence the indecomposable projective modules in
the cycle lie in the standard coils C1, . . . , Cr. From (iv), it follows that they
all lie in one standard coil Ci. Thus Ci contains a cycle of projectives, which
contradicts [3, 3.2 or 4.5].

4.2. Assume that Λ has acceptable projectives and let P, C1, . . . , Cr be
as in the above definition. Consider the standard coil Cr. Since by [3,
4.5] the mesh category k(Cr) has no oriented cycle of projectives, there is a
projective P = Pa in Cr such that P is a sink in the full subcategory of k(Cr)
consisting of projectives, that is, the support of Homk(Cr)(P,−) contains no
projective. We shall consider three cases.

(a) Assume first that P is ordinary. Consider the wing W (P ) determined
by P in Cr (that is, the full translation subquiver of Cr consisting of all
modules M such that there is a sectional path M → . . . → Z for some
module Z on the sectional path from P to the mouth). From the axioms
(C1), (C4) for coils in [3, 4.3], it follows that all projectives in W (P ) are
ordinary. Clearly, we may choose P so that all projectives in W (P ) lie in
the ray passing through P and pointing to infinity. Let e =

∑

Px∈W (P ) ex

and Λ = Λ/ΛeΛ. Denote by R the set of points in Cr that lie in the rays
passing through the support of Homk(Cr)(P,−).

Let C′
r be the translation quiver obtained from Cr by deleting R and

replacing the sectional paths Xi → Zi−1 → . . . → X ′
i → τ−1

Λ X ′
i−1 (if they

exist) by the respective compositions Xi → τ−1
Λ X ′

i−1 (see Fig. 5).
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Fig. 5

Fig. 6

Now assume that no sink in the full subcategory of k(Cr) consisting of
projectives is ordinary. Then P = Pa is exceptional. Let Λ = Λ/ΛeaΛ, and
denote by R the set of points in the support of Homk(Cr)(P,−).
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(b) If P is injective, then R consists of the vertices X ′
i and Zij of a

mesh-complete translation subquiver of Cr as in Fig. 6.

Let C′
r be obtained from Cr by deleting R and replacing the sectional

paths Xi → Zij → . . . → X ′
i → τ−1

Λ X ′
i−1 (if they exist) by the respective

compositions Xi → τ−1
Λ X ′

i−1.

Fig. 7

Fig. 8
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(c) Finally, if P is not injective, then, by (C1), R consists of the vertices
X ′

i and Zij of a mesh-complete translation subquiver of Cr as in Figs. 7 or 8
according as t is odd or even (see [3, 4.4 Cor.]).

Let C′′
r be obtained from Cr by deleting R and replacing the sectional

paths Xi → Zi1 → . . . → Yi+1 (1 ≤ i < t) by the respective compositions
Xi → Yi+1, the sectional paths Xi → Zi1 → . . . → X ′

i → τ−1
Λ X ′

i−1 (if they

exist) by the respective compositions Xi → τ−1
Λ X ′

i−1 and the sectional paths
Yi → Zii → Yi+1 (1 ≤ i < t) by the respective compositions Yi → Yi+1.

Proposition. With the notation introduced above, we have:

(a) If P is ordinary , then Λ = (Λ × D)[X ⊕ Y ] where D = Tt(k) is the

full t × t lower triangular matrix algebra, Y is the unique indecomposable

projective-injective D-module and X is the indecomposable direct summand

of radP that belongs to modΛ. Moreover , C′
r is a standard coil of ΓΛ̄ and

Λ has acceptable projectives.

(b) If P is exceptional and injective, then Λ = Λ[X], where X = rad P ,
C′

r is a standard coil of ΓΛ̄ and Λ has acceptable projectives.

(c) If P is exceptional and non-injective, then Λ = Λ[X], where X =
rad P , C′′

r can be completed to a standard coil C′
r of ΓΛ̄ and Λ has acceptable

projectives.

P r o o f. (a) Since P = Pa is a sink in the full subcategory of indΛ
consisting of projective objects, a is a source in QΛ. Let x ∈ (QΛ̄)0 and
assume there is an arrow x → y in QΛ. Then y ∈ (QΛ̄)0, for if this were
not the case, Py ∈ W (P ) ⊂ Cr, and as HomΛ(Py, Px) 6= 0, Px ∈ Cr. But
Px 6∈ W (P ), hence HomΛ(Py , Px) = 0, a contradiction. Therefore Λ is
convex in Λ and the bound quiver QΛ of Λ has the form shown in Fig. 9:

Fig. 9

where a, a1, . . . , at are the vertices of QΛ corresponding to the projectives
in W (P ). Let D be the full t × t lower triangular matrix algebra. Then
Λ = (Λ×D)[X⊕Y ], where Y = Pa1

is the unique indecomposable projective-
injective D-module and X is the indecomposable direct summand of radP
that belongs to modΛ.

Since Cr satisfies all the axioms for coils in [3, 4.2], so does C′
r. To prove

that C′
r is actually a standard component of ΓΛ̄, we proceed as follows.
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By [5, 3.5], if 0 → L → M → N → 0 is the almost split sequence starting
at L in modΛ, and L is a non-injective Λ-module, then the almost split
sequence starting at L in modΛ is the lower row of the exact commutative
diagram

where M ′ and N ′ are the largest quotients of M and N , respectively, to
be Λ-modules, and the morphisms K → M ′ and K → N ′ are sections.
The assertion follows by applying this statement to compute the almost
split sequences in modΛ starting at the indecomposable Λ-modules in Cr

(in particular, at the modules Xi, i ≥ 0). Note that the fact that Λ has
acceptable projectives implies that the kernels of the epimorphisms M → M ′

and N → N ′ belong to add Cr. Finally, the standardness of C′
r follows

from that of Cr. Since P, C1, . . . , Cr−1 and C′
r (if it still has projectives) are

the components of ΓΛ̄ where the projectives lie, we conclude that Λ has
acceptable projectives.

(b) As P = Pa is a sink in the full subcategory of indΛ consisting of
projectives, a is a source in QΛ. Hence Λ = Λ[X], where X = rad P is
indecomposable in modΛ. As in (a), C′

r satisfies the axioms for coils in [3,
4.2], and is in fact a standard component of ΓΛ̄. Moreover, Λ has acceptable
projectives.

(c) As in (b), Λ = Λ[X], where X = radP is indecomposable in modΛ,
and C′′

r satisfies the axioms for coils. But in this case C′′
r is not a component of

ΓΛ̄. Using [5, 3.4, 3.5] we can compute the almost split sequences starting at
the indecomposable Λ-modules in Cr obtaining thus C′′

r and also the inverse
translates τ−1

Λ̄
Yi of the modules Yi, 1 ≤ i ≤ t. Let S =

⊕t
i=1 Yi and

B = Supp(S). Using [5, 3.7, 3.8], we can also compute the translates τBYi of
the modules Yi, 1 ≤ i ≤ t. Then it is easy to show that S = {Yi | 1 ≤ i ≤ t}
is a slice in modB (see [11, 4.2(3)]). Hence B is a tilted algebra of type
An, and C′′

r can be completed to a standard coil C′
r of ΓΛ̄. As before, Λ has

acceptable projectives.

4.3. Theorem. Let Λ be an algebra with acceptable projectives. Then

the following conditions are equivalent :
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(a) Λ is an iterated coil enlargement.

(b) Λ is tame.

(c) qΛ is weakly non-negative.

P r o o f. (a)⇒(b)⇒(c) is (3.3).
(c)⇒(a). Let P, C1, . . . , Cr be the components of ΓΛ where the projec-

tives lie, with P preprojective without injective modules, and C1, . . . , Cr

standard coils such that HomΛ(Ci, Cj) 6= 0 implies i ≤ j. Let Λ, C′
r and

P = Pa be as in (4.2, Proposition). Then Λ has acceptable projectives,
and P, C1, . . . , Cr−1, and C′

r (if it still has projectives) are the components
of ΓΛ̄ where the projectives lie. We proceed by induction on the number p
of projectives in the standard coils C1, . . . , Cr.

If p = 0, then P is a complete preprojective component. By [10, 1.3],
Λ is a domestic tubular coextension of a tame concealed algebra, that is, a
0-iterated coil enlargement.

Now let p > 0. Since Λ is convex in Λ, qΛ̄ is weakly non-negative. By
induction hypothesis, Λ is an n-iterated coil enlargement. Thus, Λ = Λn,
where Λn is obtained from an (n − 1)-iterated coil enlargement Λn−1 by
inserting projectives using admissible operations 1), 2), or 3) in the last
separating tubular family Tn−1 of modΛn−1 (we may assume n ≥ 1).

Using the notation introduced in Section 3, we see that if modΛn−1 =
Pn−1 ∨ Tn−1 ∨ Qn−1, then modΛn = Pn−1 ∨ T ′

n−1 ∨ Q′
n−1, where T ′

n−1 is
the last weakly separating family of coils containing projectives in modΛn.
Hence C′

r belongs to T ′
n−1 ∨Q′

n−1. Also, there is a coil enlargement Λn of a
tame concealed algebra An−1 such that modΛn = Pn ∨ T ′

n−1 ∨ Q′
n−1, and

the branch extension (Λn)+ of An−1 is either domestic or tubular.
If (Λn)+ is domestic, then Q′

n−1 is a preinjective component and C′
r

belongs to T ′
n−1. By performing the admissible operation on C′

r to obtain Λ

from Λ, we get another coil enlargement of An−1 which, being convex in Λ,
has weakly non-negative Tits form. By [4, 4.2], it is tame and therefore Λ
is also an n-iterated coil enlargement.

If (Λn)+ is a tubular algebra, then it is a branch coextension of a tame
concealed algebra An, and

Q′
n−1 =

∨

γ∈Q+

T n
γ ∨ T n

∞ ∨ Qn
∞,

where Qn
∞ is the preinjective component of ΓAn

and T n
∞ is obtained from the

separating tubular family of modAn by coray insertions. Then mod Λn =
Pn∨Tn∨Qn, where Pn = Pn−1∨T

′
n−1∨

∨

γ∈Q+ T n
γ ,Tn = T n

∞ and Qn = Qn
∞.

In this case C′
r must belong to Tn, otherwise we can construct a vector z

with non-negative coordinates such that qΛ(z) < 0.
Indeed, if X is the indecomposable direct summand of rad P that lies in

modΛ and X ∈ T ′
n−1, then Λn[X] is also a coil enlargement of An−1 which,
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being convex in Λ, has weakly non-negative Tits form and, by [4, 4.2], is
tame. This contradicts the fact that (Λn)+ is tubular. Therefore X ∈ Q′

n−1.
If X 6∈ Tn, then by (2.1, Lemma), there exist γ ∈ Q+ and a module E ∈ T n

γ

such that q(Λn)+(dim E) = 0 and Hom(Λn)+(X,E) 6= 0. Since (Λn)+[X] is
convex in Λ and gl dim (Λn)+[X] ≤ 3, we get

qΛ(2 dim E + ea) = q(Λn)+[X](2 dim E + ea)

= 2(dim E, ea)(Λn)+[X] + 1 < 0

for

(dim E, ea)(Λn)+[X] ≥ 〈dim E, ea〉 + 〈ea,dim E〉

= 〈dim E,dim Ia〉 + 〈dim Pa − dimX,dim E〉

= − 〈dim X,dim E〉 = − dim Hom(Λn)+(X,E) < 0.

Hence we obtain a coil enlargement Λn+1 of An which, being convex in Λ,
has weakly non-negative Tits form. By [4, 4.2], Λn+1 is tame. Therefore Λ
is an (n + 1)-iterated coil enlargement.

Corollary. Let Λ be a sincere algebra with acceptable projectives. Then

the following conditions are equivalent :

(a) Λ is either a 0-iterated or a 1-iterated coil enlargement.

(b) Λ is tame.

(c) qΛ is weakly non-negative.

P r o o f. The assertion follows from the theorem and the fact that only
0-iterated and 1-iterated coil enlargements can have sincere modules.

Following [1], an algebra Λ is called cycle-finite if, for any cycle in mod Λ,
no morphism on the cycle lies in the infinite power of the radical of modΛ.

Corollary. Let Λ be an algebra with acceptable projectives. Then the

following conditions are equivalent :

(a) Λ is an iterated coil enlargement.

(b) Λ is a multicoil algebra.

(c) Λ is cycle-finite.

(d) Λ is of polynomial growth.

(e) qΛ is weakly non-negative.

P r o o f. (a)⇒(b)⇒(c) and (d)⇒(e)⇒(a) are clear. (c)⇒(d) is [14, 4.3].
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