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Products of completion regular measures

by

D. H. F r e m l i n (Colchester) and S. G r e k a s (Athens)

Abstract. We investigate the products of topological measure spaces, discussing con-
ditions under which all open sets will be measurable for the simple completed product
measure, and under which the product of completion regular measures will be completion
regular. In passing, we describe a new class of spaces on which all completion regular Borel
probability measures are τ -additive, and which have other interesting properties.

1. Introduction. Suppose that (X,T, Σ, µ) and (Y,S, T, ν) are topo-
logical probability spaces, that is, probability spaces with topologies such
that every open set is measurable. We can form product measures on X×Y
in various ways. First, we have the ordinary completed product measure λ
derived by Carathéodory’s method from the outer measure λ∗, where

λ∗C = inf
{∑

i∈N
µEiνFi : Ei ∈ Σ, Fi ∈ T ∀i ∈ N, C ⊆

⋃

i∈N
Ei × Fi

}
.

It can happen that λ is again a topological measure in that every open set in
X × Y , for the product topology, is λ-measurable, but even for apparently
well-behaved spaces (e.g., completion regular compact Radon probability
spaces) this is not necessarily true (see [4]); the conditions under which it
occurs are not well understood.

For a wide variety of important cases, it is known that λ does at least have
an extension to a topological measure. Recall that a topological probability
space (X,T, Σ, µ) is τ -additive if µ(

⋃G) = supG∈G µG for every non-empty
upwards-directed family G of open sets. If (X,T, Σ, µ) is a topological prob-
ability space, and (Y,S, T, ν) is a τ -additive topological probability space,
then we have a topological measure λR on X × Y , given by setting

λRC =
∫
νCx µ(dx)

for Borel sets C ⊆ X × Y , writing Cx = {y : (x, y) ∈ C} for C ⊆ X × Y ,
x ∈ X; for consistency with other constructions, we will take it that λR is
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to be the completion of its restriction to the Borel sets of X × Y . If now µ
is also τ -additive then we have a similar measure λ′R given by

λ′RC =
∫
µCy ν(dy)

for Borel C ⊆ X × Y , writing Cy = {x : (x, y) ∈ C}, and under these
circumstances λR and λ′R are both τ -additive, therefore equal (since they
agree on open rectangles). (See [18]. We remark that if µ and ν are both
Radon measures, then so is λR = λ′R.) On Borel sets in the domain of λ, λ
agrees with λR and λ′R if these are defined (using Fubini’s theorem on λ);
so if µ and ν are inner regular for the Borel sets—for instance, if they are
completions of Borel measures—then λR, if it is defined, will extend λ, and
λ will be a topological measure iff it is equal to λR.

Yet another aspect of the problem concerns the algebra Σ ⊗̂σ T , the
σ-algebra of subsets of X × Y generated by {E × F : E ∈ Σ, F ∈ T}. λ is
the completion of its restriction to Σ ⊗̂σ T—that is, it is inner regular for
Σ ⊗̂σ T—so (if ν is τ -additive and µ, ν are inner regular for the Borel sets)
λ = λR iff λR is inner regular for Σ ⊗̂σ T .

While the original impulse to study such questions arose from a simple
desire to understand the nature of product Radon measures, there are im-
portant problems in functional analysis which depend on the analysis here;
see, for instance, the distinction between “stable” and “R-stable” set which
is necessary in [20], §9.

An allied question refers to “completion regular” spaces. Let us say that
a topological measure space (X,T, Σ, µ) is completion regular if µ is inner
regular for the zero sets (that is, sets of the form f−1[{0}] for some continu-
ous f : X → R). Note that if B0 = B0(X) is the Baire σ-algebra of X, that
is, the σ-algebra generated by the zero sets in X, then µ¹B0 is necessarily in-
ner regular for the zero sets ([6], Theorem 4.2), so (X,T, Σ, µ) is completion
regular iff µ is inner regular for B0. Many important spaces are completion
regular; in particular, if X is a locally compact topological group and µ is
(left or right) Haar measure on X, then µ is completion regular ([13], or [10],
§64, Theorem I), and if X is a product of compact metric spaces, and µ is
a product of strictly positive Radon probabilities on the factors, then µ is
completion regular ([12], Theorem 3, or [1], Theorem 3). Now the question
is, when is the product of completion regular measures again completion
regular? Because B0(X × Y ) always includes B0(X) ⊗̂σ B0(Y ) (and these
are equal if X and Y are compact), the “product” in this question should
be taken to be a topological product measure; normally, of course, the prod-
uct measure λR discussed above. If (X,T, Σ, µ) and (Y,S, T, ν) are com-
pact completion regular topological probability spaces, with ν τ -additive,
then we see that λR is completion regular precisely when all open sets are
λ-measurable.
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A variety of conditions have been found which are sufficient to ensure
that open sets are λ-measurable, or that λR is completion regular. Most of
those with which we are acquainted amount to special cases of the main
result of the present paper, which is based on a particular topological con-
dition on one of the factors. Recall that a Hausdorff space is dyadic if it is
a continuous image of {0, 1}I for some set I. For the elementary properties
of dyadic spaces see [3], 3.12.12 and 4.5.9–11; the essential ones relevant to
us here are that

(i) compact metric spaces are dyadic,
(ii) finite unions of dyadic spaces are dyadic,

(iii) zero sets in dyadic spaces are dyadic,
(iv) all products of dyadic spaces are dyadic,
(v) compact Hausdorff topological groups are dyadic

([16]; see also [21] and [2], pp. 93–94). We generalise this concept by say-
ing that a topological space is quasi-dyadic if it is the continuous image
of a product of separable metrizable spaces. Now our first result is that if
(X,T, Σ, µ) and (Y,S, T, ν) are τ -additive topological probability spaces,
and one of them is quasi-dyadic and completion regular, then every open
set in X × Y is λ-measurable (Theorem 5). It follows that if both factors
are completion regular, so is λR. The argument of Theorem 5 depends on
both factors having τ -additive measures. As it happens, however, this as-
sumption can be omitted in the case of the quasi-dyadic factor, because
any completion regular topological probability on a quasi-dyadic space is
τ -additive (Theorem 4).

Of course, these results have consequences for the product of many fac-
tors. If we have finitely many completion regular quasi-dyadic topological
probability spaces (Xα,Tα, Σα, µα), then every open set in Z =

∏
αXα is

measurable for the simple product measure on Z; if we have infinitely many
such spaces, and all but countably many of the µα are strictly positive (that
is, give non-zero measure to every non-empty open set), the same will be
true on the infinite product (Corollary 6).

We should mention the following known special cases of these results.

(i) Kakutani’s theorem on the products of measures on compact metric
spaces, already discussed, is of course the fundamental version of Corollary 6.

(ii) [1], Theorem 3, allows one factor to be non-metrizable, and intro-
duces the asymmetry to be found in the hypotheses of our Theorem 5.

(iii) [9], Theorem 3.1, covers the case in which the quasi-dyadic factor is
actually a product of separable metric spaces; it strengthens Theorem 2 of
[7] and the main theorem of [8].

(iv) Concerning our Theorem 4, the case in which X is itself a product
of separable metric spaces is given in [9], Theorem 3.1.
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For simplicity, we express our results in terms of probability measures. Of
course, everything we say about finite products applies at least to all totally
finite measures, and much of it can be extended to non-σ-finite measures if
care is taken over the definitions of the product measures.

2. Lemma. If 〈Sα〉α∈I is a family of separable metric spaces, then every
member E of the Baire σ-algebra of S =

∏
α∈I Sα depends on a countable

subset J of I, that is, E = π−1
J [F ] for some F ⊆ ∏α∈J Sα, writing πJ :∏

α∈I Sα →
∏
α∈J Sα for the canonical map.

P r o o f. See [19], or [3], 2.7.12.

3. To help give meaning to the concept of “quasi-dyadic” space, we give
some elementary properties of these spaces.

Proposition. (a) A continuous image of a quasi-dyadic space is quasi-
dyadic. Any product of quasi-dyadic spaces is quasi-dyadic.

(b) A space with countable network is quasi-dyadic.
(c) If X is a quasi-dyadic space and Y belongs to the Baire σ-algebra of

X, then Y is quasi-dyadic.
(d) A countable union of quasi-dyadic subspaces of a given topological

space is quasi-dyadic.

P r o o f. (a) Immediate from the definition.
(b) (See [3], 3.1.J and elsewhere, for basic facts concerning countable

networks.) Let D be a countable network for the topology of X. On X let
∼ be the equivalence relation in which x ∼ y if they belong to just the
same members of D; let Y be the space X/∼ of equivalence classes, and
θ : X → Y the canonical map. Y has a separable metrizable topology with
base {θ[D] : D ∈ D} ∪ {θ[X \ D] : D ∈ D}. Let I be any set such that
#({0, 1}I) ≥ #(X), and for each y ∈ Y let fy : {0, 1}I → y be a surjection.
Then we have a continuous surjection f : Y × {0, 1}I → X given by saying
that f(y, z) = fy(z) for y ∈ Y , z ∈ {0, 1}I .

(c) Let 〈Sα〉α∈I be a family of separable metric spaces with product S
and f : S → X a continuous surjection. Let A be the family of subsets of
S which factor through countable sub-products, and E the set {E : E ⊆ X,
f−1[E] ∈ A}. Then A and E are σ-algebras. By Lemma 2, every zero set
in S belongs to A; consequently, every zero set in X belongs to E and E
includes the Baire σ-algebra of X. But if E ∈ E , there is a countable J ⊆ I
such that E = f [F ×∏α∈I\J Sα] for some F ⊆ ∏α∈J Sα; and F , being a
subset of a countable product of separable metric spaces, is separable and
metrizable, so E is quasi-dyadic.

(d) If En ⊆ X is quasi-dyadic for each n ∈ N, then Z = N ×∏n∈NEn
is quasi-dyadic, and f : Z → ⋃

n∈NEn is a continuous surjection, where
f(n, 〈xi〉i∈N) = xn.
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R e m a r k. We include (b) to emphasize that the ideas here may be ap-
plied to non-Hausdorff spaces. Any continuous image of a product of spaces
with countable networks will be quasi-dyadic.

4. Theorem. Let (X,T, Σ, µ) be a quasi-dyadic completion regular topo-
logical probability space. Then µ is τ -additive.

P r o o f. Suppose, if possible, otherwise.
(a) The first step is the standard reduction to the case in which X

is covered by open sets of zero measure. In detail: suppose that X0 is a
quasi-dyadic space and µ0 is a completion regular topological probability
measure on X0 which is not τ -additive. Let G be an upwards-directed family
of open sets in X0 such that µ0(

⋃G) > supG∈G µ0G. Set µ1E = µ0E −
supG∈G µ0(E ∩ G) for every Borel set E ⊆ X0; then µ1 is a completion
regular Borel measure on X0, µ1G = 0 for every G ∈ G, and µ1(

⋃G) > 0.
Let X ⊆ ⋃G be a Baire set such that µ1X > 0. Then X is quasi-dyadic
(3c). For Borel sets E ⊆ X, set µE = µ1E/µ1X; then µ is a completion
regular Borel probability measure on X, and {X ∩G : G ∈ G} is a cover of
X by open negligible sets.

(b) Now let 〈Sα〉α∈I be a family of separable metric spaces such that
there is a continuous surjection f : S → X, where S =

∏
α∈I Sα. For each

α ∈ I let Bα be a countable base for the topology of Sα. For J ⊆ I let C(J)
be the family of all subsets of S expressible in the form

{s : s(α) ∈ Bα ∀α ∈ K},
where K is a finite subset of J and Bα ∈ Bα for each α ∈ K; thus C(I) is
a base for the topology of S. Set C0(J) = {U : U ∈ C(J), µ∗f [U ] = 0} for
each J ⊆ I.

For each negligible set E ⊆ X, let 〈Fn(E)〉n∈N be a family of zero subsets
of X \E such that supn∈N µFn = 1. Then each f−1[Fn(E)] is a zero subset
of S, so there is a countable set M(E) ⊆ I such that all the sets f−1[Fn(E)]
depend on M(E) (Lemma 2). Let J be the family of countable subsets J of
I such that M(f [U ]) ⊆ J for every U ∈ C0(J); then J is cofinal with [I]≤ω,
that is, every countable subset of I is included in some member of J . (If we
start from any countable subset J0 of I and set

Jn+1 = J0 ∪
⋃
{M(f [U ]) : U ∈ C0(Jn)}

for each n ∈ N, then
⋃
n∈N Jn ∈ J .)

(c) For each J ∈ J , set

QJ =
⋂{ ⋃

n∈N
Fn(f [U ]) : U ∈ C0(J)

}
.

Then µQJ = 1 and f−1[QJ ] depends on J .
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If G ⊆ X is a negligible open set, then G ∩ QJ = ∅ whenever J ∈ J
and there is a negligible Baire set Q ⊇ G such that f−1[Q] depends on J .
For set H = π−1

J [πJ [f−1[G]]], where πJ : S → ∏
α∈J Sα is the canonical

map; then H is a union of members of C(J), because f−1[G] is open. Also,
because f−1[Q] depends on J , H ⊆ f−1[Q], so f [H] ⊆ Q and µ∗f [H] = 0;
thus all the members of C(J) included in H actually belong to C0(J), and
H∩f−1[QJ ] = ∅. But this means that f−1[G]∩f−1[QJ ] = ∅ and G∩QJ = ∅,
as claimed.

In particular, if G is a negligible open set in X, then G∩QJ = ∅ whenever
J ∈ J and J ⊇M(G).

(d) If J ∈ J , there are s, s′ ∈ f−1[QJ ] such that s¹J = s′¹J and f(s),
f(s′) can be separated by open sets in X. To see this, start from any x ∈ QJ
and take a negligible open set G including x (recall that our hypothesis is
that X is covered by negligible open sets). For each n ∈ N let hn : X → R be
a continuous function such that Fn(G)=h−1

n [{0}]. We know that G∩QJ 6=∅,
while G ⊆ X \ (

⋃
n∈N Fn(G) ∩ QJ), which is a negligible Baire set; by (c),

f−1[X \ (
⋃
n∈N Fn(G)∩QJ)] does not depend on J , and there must be some

n such that f−1[Fn(G)∩QJ ] does not depend on J . Accordingly, there must
be s, s′ ∈ S such that s¹J = s′¹J , s ∈ f−1[Fn(G)∩QJ ] and s′ 6∈ f−1[Fn(G)
∩ QJ ]. Now s and s′ both belong to f−1[QJ ], because f−1[QJ ] depends
on J ; while f(s) ∈ Fn(G) and f(s′) 6∈ Fn(G), so hn(f(s)) 6= hn(f(s′)) and
f(s), f(s′) can be separated by open sets.

(e) We are now ready to embark on the central construction of the argu-
ment. We may choose inductively, for ordinals ξ < ω1, sets Jξ ∈ J , negligible
open sets Gξ, G′ξ ⊆ X, points sξ, s′ξ ∈ S, sets Uξ, Vξ, V ′ξ ∈ C(I) such that

• Jη ⊆ Jξ, Uη, Vη, V ′η all belong to C(Jξ), Gη ∩ QJξ = ∅ whenever η <
ξ < ω1 (using the results of (b) and (c) to choose Jξ);
• sξ¹Jξ = s′ξ¹Jξ, sξ ∈ f−1[QJξ ], f(sξ) and f(s′ξ) can be separated by

open sets in X (using (d) to choose sξ, s′ξ);
• Gξ, G′ξ are disjoint negligible open sets containing f(sξ), f(s′ξ) respec-

tively (choosing Gξ, G′ξ);
• Uξ ∈ C(Jξ), Vξ, V ′ξ ∈ C(I \ Jξ), sξ ∈ Uξ ∩ Vξ ⊆ f−1[Gξ], s′ξ ∈ Uξ ∩ V ′ξ ⊆

f−1[G′ξ] (choosing Uξ, Vξ, V ′ξ , using the fact that sξ¹Jξ = s′ξ¹Jξ).
On completing this construction, take for each ξ < ω1 a finite set Kξ ⊆

Jξ+1 such that Uξ, Vξ and V ′ξ all belong to C(Kξ). By the ∆-system lemma
([14], II.1.5), there is an uncountable A ⊆ ω1 such that 〈Kξ〉ξ∈A is a ∆-
system with root K say, that is, Kξ ∩ Kη = K for all distinct ξ, η ∈ A.
For ξ ∈ A, express Uξ as Ũξ ∩ U ′ξ where Ũξ ∈ C(K), U ′ξ ∈ C(Kξ \K). Then

there are only countably many possibilities for Ũξ, so there is an uncountable
B ⊆ A such that Ũξ is constant for ξ ∈ B; write Ũ for the constant value.
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Let C ⊆ B be an uncountable set, not containing minA, such that Kξ \K
does not meet Jη whenever ξ, η ∈ C and η < ξ. Let D ⊆ C be such that D
and C \D are both uncountable.

Note that K ⊆ Kη ⊆ Jξ whenever η, ξ ∈ A and η < ξ, so that K ⊆ Jξ
for every ξ ∈ C. Consequently, U ′ξ, Vξ and V ′ξ all belong to C(Kξ \ K) for
every ξ ∈ C.

(f) Consider the open set

G =
⋃

ξ∈D
Gξ ⊆ X.

At this point the argument divides.

C a s e 1. Suppose µ∗(G ∩ f [Ũ ]) > 0. Then there is a Baire set Q ⊆ G

such that µ∗(Q ∩ f [Ũ ]) > 0. Let J ⊆ I be a countable set such that f−1[Q]
depends on J . Let γ ∈ C \ D be so large that Kξ \ K does not meet
J for any ξ ∈ A with ξ ≥ γ. Then Q ∩ QJγ ∩ f [Ũ ] is not empty; take
s ∈ Ũ ∩ f−1[Q ∩ QJγ ]. Because the Kξ \ K are disjoint from each other
and from J ∪ Jγ for ξ ∈ D, ξ > γ, we may modify s to form s′ such that
s′¹J ∪ Jγ = s¹J ∪ Jγ and s′ ∈ U ′ξ ∩ V ′ξ for every ξ ∈ D, ξ > γ; now s′ ∈ Ũ
(because K ⊆ Jγ), so s′ ∈ Ũ ∩ U ′ξ ∩ V ′ξ ⊆ f−1[G′ξ] and f(s′) 6∈ Gξ whenever
ξ ∈ D, ξ > γ. On the other hand, if ξ ∈ D and ξ < γ, Gξ ∩QJγ = ∅, while
s′ ∈ f−1[QJγ ] (because f−1[QJγ ] depends on Jγ), so again f(s′) 6∈ Gξ.

Thus f(s′) 6∈ G. But s′¹J = s¹J so f(s) ∈ Q ⊆ G, which is impossible.
This contradiction disposes of the possibility that µ∗(G ∩ f [Ũ ]) > 0.

C a s e 2. Suppose that µ∗(G∩f [Ũ ]) = 0. In this case there is a negligible
Baire set Q ⊇ G ∩ f [Ũ ]. Let J ⊆ I be a countable set such that f−1[Q]
depends on J . Let ξ ∈ D be such that Kξ \K does not meet J . Then

Ũ ∩ U ′ξ ∩ Vξ ⊆ f−1[Gξ] ∩ Ũ ⊆ f−1[G ∩ f [Ũ ]] ⊆ f−1[Q],

so Ũ ⊆ f−1[Q], because U ′ξ ∩ Vξ is a non-empty member of C(I \ J). But

this means that µ∗f [Ũ ] = 0 and µ∗f [Uξ] = 0. On the other hand, we have
sξ ∈ Uξ ∩ f−1[QJξ ], so Uξ 6∈ C0(Jξ) and µ∗f [Uξ] > 0.

Thus this route is also blocked and we must abandon the original hypoth-
esis that there is a quasi-dyadic space with a completion regular topological
probability measure which is not τ -additive.

5. Theorem. Let (X,T, Σ, µ) and (Y,S, T, ν) be topological probability
spaces; suppose that (X,T, Σ, µ) is completion regular and quasi-dyadic, and
that (Y,S, T, ν) is τ -additive. Then every open set in X × Y is measurable
for the ordinary completed product measure λ on X × Y .
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P r o o f. Suppose, if possible, otherwise. By Theorem 4, we know that
µ is τ -additive. We may suppose that the domain T of ν is precisely the
algebra of Borel subsets of Y , since restricting the domain of ν will tend to
decrease the domain of λ.

(a) There must be a closed set C ⊆ X × Y which is not λ-measurable.
Because λR is τ -additive, λR((X × Y ) \ C) ≤ λ∗((X × Y ) \ C); but also
λRC ≤ λ∗C, so in fact we must have λRC = λ∗C.

We are supposing that X is quasi-dyadic; take a family 〈Sα〉α∈I of
separable metric spaces and a continuous surjection f : S → X, where
S =

∏
α∈I Sα. Choose Bα and define C(J), for J ⊆ I, as in part (b) of the

proof of Theorem 4.
(b) If J ⊆ I is countable, there are G, U , V such that G ⊆ Y is open, U ∈

C(J), V ∈ C(I\J), V 6= ∅, C∩(f [U∩V ]×G) = ∅ and λ∗(C∩(f [U ]×G)) > 0.
To see this, write

GU = {G : G ⊆ Y is open,

∃V ∈ C(I \ J), V 6= ∅, C ∩ (f [U ∩ V ]×G)) = ∅},
GU =

⋃
GU ,

and choose FU ⊇ f [U ] such that FU ∈ Σ and µFU = µ∗(f [U ]), for each
U ∈ C(J). We have GU ∈ T for every U , and C(J) is countable, so

C1 = (X × Y ) \
⋃

U∈C(J)

FU ×GU ∈ Σ ⊗̂σ T ;

also C1 ⊆ C because C is closed and

{f [U ∩ V ]×G : G ⊆ Y is open, U ∈ C(J), V ∈ C(I \ J)}
is a network for the topology of X × Y . So λR(C \ C1) = λRC − λRC1 =
λ∗(C \ C1) > 0, because C is not λ-measurable. Accordingly, there is a
U ∈ C(J) such that λR(C ∩ (FU ×GU )) > 0. Next, because ν is τ -additive,
there is a countable G ⊆ GU such that ν(GU \

⋃G) = 0, and now λR(C ∩
(FU ×

⋃G)) = λR(C ∩ (FU × GU )) > 0, so there is a G ∈ G such that
λR(C ∩ (FU ×G)) > 0, that is,∫

FU

ν(Cx ∩G)µ(dx) > 0.

But this means that µ{x : x ∈ FU , ν(Cx ∩G) > 0} > 0, so that µ∗{x : x ∈
f [U ], ν(Cx ∩ G) > 0} > 0, and λ∗(C ∩ (f [U ] × G)) > 0. Finally, because
G ∈ GU , there is a V ∈ C(I \ J) such that C ∩ (f [U ∩ V ]×G) = ∅.

(c) We may therefore choose inductively families 〈Jξ〉ξ<ω1 , 〈Gξ〉ξ<ω1 ,
〈Uξ〉ξ<ω1 , 〈Vξ〉ξ<ω1 in such a way that, for every ξ < ω1,
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• Jξ is a countable subset of I,
• Gξ is an open subset of Y ,
• Uξ ∈ C(Jξ), Vξ ∈ C(I \ Jξ), Vξ 6= ∅,
• C ∩ (f [Uξ ∩ Vξ]×Gξ) = ∅,
• λ∗(C ∩ (f [Uξ]×Gξ)) > 0,
• ⋃η<ξ Jη ⊆ Jξ,
• Vξ ∈ C(Jξ+1).

For each ξ < ω1, let Kξ be a finite subset of I such that Uξ, Vξ both belong
to C(Kξ). By the ∆-system lemma, there is an uncountable set A ⊆ ω1 such
that 〈Kξ〉ξ∈A is a ∆-system with root K say. Express each Uξ as Ũξ ∩ U ′ξ
where Ũξ ∈ C(K) and U ′ξ ∈ C(Kξ \K); because C(K) is countable, there is

a Ũ such that B = {ξ : ξ ∈ A, ξ 6= minA, Ũξ = Ũ} is uncountable. Note
that µ∗(f [Ũ ]) ≥ µ∗(f [Uξ]) > 0 for any ξ ∈ B. Also, K ⊆ KminA ⊆ Jξ for
each ξ ∈ B, so Vξ ∈ C(Kξ \ Jξ) ⊆ C(Kξ \K) for each ξ ∈ B.

(e) Set Hζ =
⋃
ξ∈B, ξ≥ζ Gξ for each ζ < ω1. The family 〈νHζ〉ζ<ω1 is

non-increasing in R, so there must be a δ < ω1 such that νHζ = νHδ

whenever δ ≤ ζ < ω1. Now consider

D = C ∩ (X ×Hδ).

Because D ⊇ C ∩ (f [Uξ]×Gξ) for any ξ ∈ B \ δ, λRD > 0. Set

F = {x : ν(Cx ∩Hδ) > 0} ⊆ X;

because Fubini’s theorem applies to λR, µF > 0. At this point we use the
hypothesis that µ is completion regular to see that there is a zero set F0 ⊆ F
with µF0 > µF − µ∗(f [Ũ ]). Now W = Ũ ∩ f−1[F0] is non-empty because
F0 ∩ f [Ũ ] is non-empty. Let J ⊆ I be a countable set such that K ⊆ J and
W depends on J (see §§2–3 above). Let ζ < ω1 be such that ζ ≥ δ and
Kξ \K = ∅ for every ξ ∈ B \ ζ; this exists because 〈Kξ \K〉ξ∈B is disjoint.

Take any w ∈W , and modify it to obtain w′ ∈ S such that

w′¹J = w¹J and w′ ∈ U ′ξ ∩ Vξ for every ξ ∈ B \ ζ;

this is possible because U ′ξ∩Vξ ∈ C(Kξ\K) for each ξ ∈ B\ζ, and 〈Kξ\K〉ξ∈B
is disjoint. Set x = f(w′); then x ∈ F0 ⊆ F , so νDx > 0.

If ξ ∈ B \ ζ, then x ∈ f [Ũ ∩ U ′ξ ∩ Vξ] = f [Uξ ∩ Vξ], so (x, y) 6∈ C for
y ∈ Gξ and Cx ∩Gξ = ∅. Thus

Dx ⊆ Hδ \Hζ ,

and µHζ < µHδ, contrary to the choice of δ.
This contradiction proves the theorem.

6. Corollary. Let 〈(Xα,Tα, Σα, µα)〉α∈I be a family of quasi-dyadic
completion regular topological probability spaces, and suppose that all but
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countably many of the µα are strictly positive. Then the simple (completed)
product measure on Z =

∏
α∈I Xα is also a completion regular topological

measure.

P r o o f. For finite I, this is a simple induction on #(I), using Theo-
rems 4 and 5. For infinite I, use Theorem 2.9 of [9], which says that if all
the τ -additive topological product measures on finite subproducts are com-
pletion regular, and all but countably many of the factor measures µα are
strictly positive, the τ -additive topological product measure on Z will also
be completion regular, and therefore will coincide with the simple completed
product measure.

7. R e m a r k s. In Theorems 4 and 5 it is not of course necessary that
X itself should be quasi-dyadic. If (X,T, Σ, µ) is a completion regular τ -
additive topological probability space in which µ is inner regular for the
quasi-dyadic subsets of X, this will do just as well. This will be so, for
instance, if X is an open subset of a dyadic space and µ is a completion
regular Radon measure on X.

In the same way, it will be enough, in Corollary 6, if every µα is inner
regular for the quasi-dyadic subsets of Xα.

Theorem 4 can be generalized as follows: Let X be a quasi-dyadic space
and I a proper σ-ideal of subsets of X such that for every open G ⊆ X there
are Baire subsets E, F of X such that E ⊆ G ⊆ F and F \E ∈ I. Then X
cannot be covered by the open sets belonging to I; indeed,

⋃{G : G ∈ I, G
is open} ∈ I.

We do not know of a ZFC example of a completion regular measure on
a completely regular Hausdorff space which is not τ -additive. (We note that
there is a probability measure on the Baire σ-algebra of Rc which is not
τ -additive, in the strong sense that Rc is covered by the negligible cozero
sets; see [17], or [6], 15.4; but this measure is not completion regular.)
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