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Parametrized Cichoń’s diagram and small sets
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Abstract. We parametrize Cichoń’s diagram and show how cardinals from Cichoń’s
diagram yield classes of small sets of reals. For instance, we show that there exist subsets
N and M of ωω × 2ω and continuous functions e, f : ωω → ωω such that

• N is Gδ and {Nx : x ∈ ωω}, the collection of all vertical sections of N, is a basis
for the ideal of measure zero subsets of 2ω ;
• M is Fσ and {Mx : x ∈ ωω} is a basis for the ideal of meager subsets of 2ω ;
• ∀x, y Ne(x) ⊆ Ny ⇒ Mx ⊆ Mf(y).

From this we derive that for a separable metric space X,

• if for all Borel (resp. Gδ) sets B ⊆ X×2ω with all vertical sections null,
⋃
x∈X Bx

is null, then for all Borel (resp. Fσ) sets B ⊆ X × 2ω with all vertical sections
meager,

⋃
x∈X Bx is meager;

• if there exists a Borel (resp. a “nice” Gδ) set B ⊆ X×2ω such that {Bx : x ∈ X}
is a basis for measure zero sets, then there exists a Borel (resp. Fσ) set B ⊆ X×2ω

such that {Bx : x ∈ X} is a basis for meager sets.

0. Introduction. Let S be a family of subsets of the Cantor set 2ω. The
covering number of S is (by convention, min(∅) =∞)

cov(S) = min
{
|A| : A ⊆ S &

⋃
A = 2ω

}
.

We can say that an abstract set X is “cov(S)-small”, in a cardinal sense, iff
for every choice {Sx : x ∈ X} of sets from S,

⋃
x∈X Sx does not cover 2ω.

Similarly, we can say that a separable metric space X is “cov(S)-small”, in
a continuous (resp. Borel) sense, iff this holds for every “continuous” (resp.
“Borel”) choice.
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The additivity number of S is defined by

add(S) = min
{
|A| : A ⊆ S &

⋃
A 6∈ S

}
.

As with cov(S) we can talk about “add(S)-small” spaces.
A study of such “small” spaces may give new insight, as shown by the

following results.

(1) Recław [R1] proved that every Lusin set is undetermined in the Point-
Open Game, which solved a problem of Galvin [G]. The proof relied
on the facts that

• if X ⊆ 2ω is a Lusin set, then for every closed set D ⊆ X×ωω with
all vertical sections Dx (x ∈ X) meager,

⋃
x∈X Dx 6= ωω;

• X ⊆ 2ω is undetermined in the Point-Open Game iff for every
closed set D ⊆ X × ωω with all vertical sections Dx (x ∈ X)
meager,

⋃
x∈X Dx 6= ωω.

(2) Pawlikowski’s [P2] proof that every Sierpiński set is strongly meager
(another problem of Galvin, see [Mi3]) shows, in fact, that if X is a
Sierpiński set and B ⊆ X×2ω is a Borel set with all vertical sections
null, then

⋃
x∈X Bx 6= 2ω (see [P3]).

(3) A crucial step in Raisonnier’s [Ra] proof of Shelah’s theorem that
Lebesgue measurability of all sets of reals is equiconsistent with the
existence of inaccessible cardinals is a construction of a rapid filter.
The filter is obtained from a set X ⊆ 2ω such that for all Gδ sets
G ⊆ 2ω × 2ω with all vertical sections null,

⋃
x∈X Gx is null.

Let N andM be the σ-ideals of null (measure zero) and meager subsets
of 2ω. To have a uniform treatment of cardinal characteristics associated
with N and M we proceed as follows (see also [F2] and [V]).

For a binary relation % let

B(%) = {A ⊆ dom(%) : ∃y ∈ rng(%) ∀a ∈ A a%y},
D(%) = {A ⊆ rng(%) : ¬∀x ∈ dom(%) ∃a ∈ A x%a}.

Note that D(%) = B(¬%−1). Let b(%) (resp. d(%)) be the minimal cardinality
of a subset of dom(%) (resp. rng(%)) which is not in B(%) (resp. D(%)).

If S is a family of subsets of X, let

add(S) = b(⊆ ∩(S × S)), cof(S) = d(⊆ ∩(S × S)),

non(S) = b(∈ ∩(X × S)), cov(S) = d(∈ ∩(X × S)).

Let also, as usual,
b = b(�), d = d(�),

where for x, y ∈ ωω, x � y iff ∀∞n x(n) ≤ y(n). (We write “∀∞” for “for all
but finitely many” and “∃∞” for “there exist infinitely many”.)
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The following diagram is called Cichoń’s diagram (see [F2], [V]) (→
means that inequality ≤ is provable in ZFC):

cov(N ) → non(M) → cof(M) → cof(N )

↑ ↑
↑ b → d ↑

↑ ↑
add(N ) → add(M) → cov(M) → non(N )

The diagram is complete in the sense that no arrow which is not obtained
by composing the old ones can be added to it (see [BJ] for a summary of
the necessary consistency results). The proofs of the inequalities in Cichoń’s
diagram are highly constructive. To show that add(M) ≤ b Miller [Mi2]
takes A ⊆ ωω, A 6∈ B(�), constructs for each a ∈ A a meager set Ma

and shows that should
⋃
a∈AMa be meager, one could construct a function

b ∈ ωω with ∀a ∈ A a � b, thus violating A 6∈ B(�). Fremlin [F2] rephrased
this as follows: there exist functions e : ωω →M and f :M→ ωω such that
∀x, y e(x) ⊆ y ⇒ x � f(y). Clearly, the existence of such functions implies
that add(M) ≤ b and d ≤ cof(M).

The most difficult inequality in Cichoń’s diagram is add(N ) ≤ add(M),
proved by Bartoszyński [B1] (independently by Raisonnier and Stern
[RaSt]). Fremlin [F1] noted that the arguments of [B1] and [RaSt] lead to
functions e : ωω → N and f : N → ∏

n[ω]≤n such that ∀x, y e(x) ⊆ y ⇒
x ∈∗ f(y) (where x ∈∗ z iff ∀∞n x(n) ∈ z(n)). He also noted that Paw-
likowski [P1], in a proof that the Lebesgue measurability of all Σ1

2 (light-
face!) sets implies the Baire property for all such sets, constructed functions
e :M→ ωω and f :

∏
n[ω]≤n →M such that ∀x, y e(x) ∈∗ y ⇒ x ⊆ f(y).

Putting this together (see [F2]) we get functions e :M→N and f : N →M
such that ∀x, y e(x) ⊆ y ⇒ x ⊆ f(y). Again, the existence of such functions
yields inequalities add(N ) ≤ add(M) and cof(M) ≤ cof(N ).

The picture was completed by Vojtáš [V], who wrote explicitly the re-
maining inequalities (and some others) in the “e-f” language.

In the present paper we shall show that all the “e-f” functions involved in
Cichoń’s diagram can be defined so that they are “continuous”. This would
enable us to convert the inequalities into inclusions of the classes of the
corresponding “small” spaces. For instance, we shall prove that “add(N )-
small” spaces are “add(M)-small” and “cof(M)-small” spaces are “cof(N )-
small”. More precisely, we shall show that for a separable metric space X,
if for all Borel (resp. Gδ) sets B ⊆ X × 2ω with all vertical sections null,⋃
x∈X Bx is null, then for all Borel (resp. Fσ) sets B ⊆ X × 2ω with all

vertical sections meager,
⋃
x∈X Bx is meager. We shall also prove that if X

is “cof(N )-big” in the sense that there exists a Borel set B ⊆ X × 2ω all of
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whose vertical sections constitute a basis of N (i.e. all Bx have measure zero
and every measure zero set is covered by some Bx), then X is “cof(M)-big’
in a similar sense.

This paper is an expanded version of [R2]. Recław [R1] undertook a
systematic study of small sets defined by “definable” choices of sections.
Presenting [R1] at a seminar talk in March 1992, he advocated for Cichoń’s
diagram for such sets. He gave a mixed “Borel-continuous” version [R2] of it
at a meeting in Katowice, October 1992. Shortly after the Katowice meet-
ing Pawlikowski proved that Bartoszyński’s inequality has a “continuous”
version in the “e-f” language, which together with a folklore fact that the
remaining inequalities do have such versions, gave our parametrized dia-
gram.

1. Parametrization. For each n fix an enumeration 〈Nn
i : i ∈ ω〉 of all

clopen subsets of 2ω of measure ≤ 2−n−4 and let #(Nn
i , n) = i. Fix also an

enumeration 〈τni : i ∈ ω〉 of
⋃
m>n 2[n,m) and let #(τni ) = i. Let Mn

i = [τni ],
where [τ ] = {t ∈ 2ω : τ ⊆ t}. Note that for A ⊆ 2ω,

A ∈ N iff ∃a ∈ ωω A ⊆
⋂
m

⋃
n>m

Nn
a(n),

A ∈M iff ∃a ∈ ωω A ⊆ 2ω \
⋂
m

⋃
n>m

Mn
a(n).

This suggests the following definition.

1.1. Definition. Let X be a zero-dimensional separable metric space.
For A ⊆ X × 2ω say that A ∈ N ∗(X), resp. A ∈ M∗(X), iff there exists a
∗ function a : X → ωω with

Ax ⊆
⋂
m

⋃
n>m

Nn
a(x)(n) (x ∈ X),

resp. with

Ax ⊆ 2ω \
⋂
m

⋃
n>m

Mn
a(x)(n) (x ∈ X).

We shall consider two cases: Borel functions (∗ = ‡) and continuous
functions (∗ = †).

1.2. Lemma. Let A ⊆ X × 2ω.

(a) A ∈ N ‡(X) iff there exists a Borel set B ⊆ X × 2ω with all vertical
sections null such that A ⊆ B.

(b) A ∈M‡(X) iff there exists a Borel set B ⊆ X × 2ω with all vertical
sections meager such that A ⊆ B.

(c) A ∈ N †(X) iff for any sequence εn > 0 (n ∈ ω) there exist clopen
sets An ⊆ X × 2ω such that µ((An)x) ≤ εn (x ∈ X) and A ⊆ ⋃nAn.
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(d) A ∈ M†(X) iff there exists an Fσ set B ⊆ X × 2ω with all vertical
sections meager such that A ⊆ B.

P r o o f. The⇒ directions are easy. We concentrate on the⇐ directions.
Since (a) and (b) are folklore (see [Ke]), we pass to (c) and (d).

(c) ⇐: Suppose that for any sequence εn > 0 (n ∈ ω) there exist clopen
sets An ⊆ X × 2ω such that µ((An)x) ≤ εn (x ∈ X) and A ⊆ ⋃nAn. Then
for any sequence εn > 0 (n ∈ ω) there exist clopen sets An ⊆ X × 2ω such
that µ((An)x) ≤ εn (x ∈ X) and A ⊆ ⋂m

⋃
n>mAn (split ω into infinitely

many infinite sets). Let now An ⊆ X × 2ω (n ∈ ω) be clopen sets such that
A ⊆ ⋂m

⋃
n>mAn and ∀x µ((An)x) ≤ 2−n−4. Note that each (An)x is a

clopen subset of 2ω of measure ≤ 2−n−4. Define a : X → ωω by

a(x)(n) = #((An)x, n).

Then

Ax ⊆
⋂
m

⋃
n>m

(An)x =
⋂
m

⋃
n>m

Nn
a(x)(n).

It remains to see that a is continuous. Since 2ω is compact, the projection
of a closed subset of X × 2ω onto X is closed. Thus for any clopen U ⊆ 2ω,
the sets {x ∈ X : U ⊆ (An)x} and {x ∈ X : U ⊇ (An)x} are open (as the
complements of the projections of (X×U)\An and An \(X×U)). It follows
that for any clopen U , {x ∈ X : U = (An)x} is open.

(d) ⇐: Suppose that

B =
⋃
n

Bn ⊆ X × 2ω,

where each Bn is closed and has all vertical sections nowhere dense. For
each n fix {i(n, k) : k ∈ ω} and a cover of X by a family {Unk : k ∈ ω} of
pairwise disjoint clopen subsets of X so that

Unk × [τni(n,k)] ∩
⋃

m≤n
Bm = ∅.

Then define a : X → ωω by a(x)(n) = i(n, k)⇔ x ∈ Unk .
N o t e. It is useful to remember that for any separable metric space X

and Borel set B ⊆ X × 2ω, the sets {x ∈ X : Bx ∈ M} and {x ∈ X : Bx ∈
N} are Borel (a theorem of Novikov, see [Ke]).

1.3. Definition. Let

N =
⋂
m

⋃
n>m

⋃
x∈ωω

{x} ×Nn
x(n)

be the measure master set used above. Clearly N ∈ N †(ωω), all vertical
sections Nx are inN and A ∈ N iff ∃x A ⊆ Nx. (So, the family {Nx : x ∈ ωω}
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is a basis of the ideal N .) Also, for A ⊆ X × 2ω, A ∈ N ∗(X) iff there exists
a ∗ function a : X → ωω with Ax ⊆ Na(x) (x ∈ X).

Similar remarks are true for M and the meager master set

M = 2ω \
⋂
m

⋃
n>m

⋃
x∈ωω

Mn
x(n).

1.4. Definition. Let S, T be binary relations, whose dom’s and rng’s
are equipped with some topologies. Write S → T iff there are continuous
functions

e : dom(T )→ dom(S), f : rng(S)→ rng(T )

such that f ◦ S ◦ e ⊆ T , i.e.,

∀x, y 〈e(x), y〉 ∈ S ⇒ 〈x, f(y)〉 ∈ T
(equivalently, ∀x f [Se(x)] ⊆ Tx). Write S ↔ T iff S → T and T → S.

We shall use this notion in the following context. Suppose that we have
functions A,B,C,D and relations % ⊇ rng(A) × rng(B) and σ ⊇ rng(A) ×
rng(B). Let

%B
A = {〈x, y〉 ∈ dom(A)× dom(B) : A(x)%B(y)},
σD

C = {〈x, y〉 ∈ dom(C)× dom(D) : C(x)σD(y)}.
Then %B

A → σD
C iff there are continuous functions

e : dom(C)→ dom(A), f : dom(B)→ dom(D)

such that

A(e(x))%B(y)⇒ C(x)σD(f(y)).

If the functions e, f above are only Borel, we replace → with ⇒. In such
contexts sets like M are treated as functions x→ Mx. Let I (resp. J) be the
identity map from ωω to ωω (resp. from 2ω to 2ω).

Let Q = {t ∈ 2ω : ∀∞n t(n) = 0} and P = 2ω \Q. Since P is homeo-
morphic to ωω, we shall often identify them. In particular, we can write
I : P→ ωω, ωω ⊆ 2ω, etc.

N o t e. Note that %B
A → σD

C iff (¬σ−1)C
D → (¬%−1)A

B.

1.5. Theorem (Parametrized Cichoń’s diagram).

63J
N → ∈M

J
→⇐ ∈M

I → 6⊇M
M → 6⊇N

N

↑ ↗
↑ ↑ �I

I → 6�I
I ↑ ↑

↗ ↑
⊆N

N → ⊆M
M → 63I

M
→⇐ 63J

M → ∈N
J
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By the note following Definition 1.4, in order to prove the above theorem
we have to deal with half + one arrows (if we know that 63J

M→∈N
J then we

know that 63J
N→∈M

J ). The proof is divided into Lemmas 1.7–1.15.
First we need one more definition.

1.6. Definition. For y ∈ ωω and u ∈ ([ω]<ω)ω write y∈∗u and say
that u localizes y iff ∀∞n y(n) ∈ u(n). We extend this notion to sets in the
following obvious way: if u localizes each y from some Y ⊆ ωω we say that
u localizes Y or that Y is localizable by u; if for each y ∈ Y there is u ∈ U
that localizes y we say that U localizes Y .

For each n, let 〈Lni : i ∈ ω〉 be a fixed enumeration of of [ω]≤2n . Let
#(Lni , n) = i. Define L : ωω →∏

n[ω]≤2n by L(x) = 〈Lnx(n) : n ∈ ω〉.
N o t e. For technical reasons we use the sequence 〈2n : n ∈ ω〉, however,

any sequence a = 〈an : n ∈ ω〉 ∈ ωω with limn an =∞ will do (∈∗LaI ↔ ∈∗LI ,
where La is defined as L with 〈an : n ∈ ω〉 in place of 〈2n : n ∈ ω〉).

1.7. Lemma. ⊆N
N↔ ∈∗LI .

P r o o f. ←: We seek continuous functions e, f : ωω → ωω such that

∀∞n e(x)(n) ∈ Lny(n) ⇒ Nx ⊆ Nf(y).

Define
e(x)(n) = #(N2n+1

x(2n+1) ∪N2n+2
x(2n+2), 2n),

f(y)(n) = #
(⋃
{N2n

i : i ∈ Lny(n)}, n
)
.

→: We seek continuous functions e, f : ωω → ωω such that

Ne(x) ⊆ Ny ⇒ ∀∞n x(n) ∈ Lnf(y)(n).

Let {V ni : i, n ∈ ω} be a matrix of measure independent clopen subsets
of 2ω such that µ(V ni ) = 2−n−4. Define e by

e(x)(n) = #(V nx(n), n).

Clearly e is continuous and for each x ∈ ωω, Ne(x) =
⋂
m

⋃
n>m V

n
x(n).

The definition of f is longer. Fix an enumeration Uk (k > 0) of all clopen
subsets of 2ω. Let A∅ = ∅ and define inductively, for σ ∈ ω2k (k > 0),

Bσ = Aσ|2(k−1) ∪
⋃

n<2k

Nn
σ(n),

Wσ =
{
Uk if µ(Uk \Bσ) < 2−2k,
∅ otherwise,

Aσ = Bσ ∪Wσ.

Finally, let

A =
⋃

k

⋃

σ∈ω2k

[σ]×Aσ.
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Claim 1. (a) N ⊆ A and ∀y ∈ ωω ∀k µ(Ay \Ay|2k) < 2−2k−1.
(b) For any clopen set U , {y : U \Ay = ∅} is clopen.
(c) If Uk \Ay 6= ∅ then µ(Uk \Ay) > 2−2k−1.

P r o o f. (a) We have

Ay \Ay|2k ⊆
⋃

n≥2k

Nn
y(n) ∪

⋃

n>k

Wy|2n,

so,

µ(Ay \Ay|2k) ≤
∑

n≥2k

2−n−4 +
∑

n>k

2−2n < 2−2k−1.

(b) Let U = Uk. Fix σ ∈ ω2k. If µ(Uk \ Bσ) < 2−2k, then Uk ⊆ Aσ, so
∀y ∈ [σ] Uk ⊆ Ay. If µ(Uk\Bσ) ≥ 2−2k, then Aσ = Bσ, so µ(Uk\Aσ) ≥ 2−2k.
Since, by (a),

∀y ∈ [σ] µ(Ay \Aσ) < 2−2k−1,

we get

∀y ∈ [σ] µ(Uk \Ay) > 2−2k−1.

(c) This is already proved in (b).

For y ∈ ωω and k, n ∈ ω let

F (y, k, n) = {i : V ni ∩ (Uk \Ay) = ∅}.
Note that if Ne(x) ⊆ Ny then Ne(x) ⊆ Ay. So, by Baire’s category theorem
(applied to 2ω \Ay) there are k and m such that Uk \Ay 6= ∅ and

∀n > m V nx(n) ∩ (Uk \Ay) = ∅,
i.e.,

∀n > m x(n) ∈ F (y, k, n).

Claim 2. For every k and n there is a partition of ωω into clopen sets
such that y → F (y, k, n) is constant on each piece of the partition.

P r o o f. Let l,m ∈ ω be such that (1− 2−n−4)l < 2−2k−2 and 2−2m−1 ≤
2−2k−2/l. For τ ∈ ω2m let

G(τ, k, n) = {i : µ(V ni ∩ (Uk \Aτ )) < 2−2m−1}.
Note that if y ∈ [τ ] then F (y, k, n) ⊆ G(τ, k, n) (remember that µ(Ay \
Ay|2m) < 2−2m−1).

Subclaim. Suppose that for some y ∈ [τ ], Uk \Ay 6= ∅. Then |G(τ, k, n)|
< l.

P r o o f. Suppose that |G(τ, k, n)| ≥ l and let G consist of the first l
elements of G(τ, k, n). Note that

µ((Uk \Aτ )) ≥ µ(Uk \Ay) > 2−2k−1,
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and

Uk \Aτ ⊆
⋂

i∈G
(2ω \ V ni ) ∪

⋃

i∈G
(V ni ∩ (Uk \Aτ )).

It follows that

2−2k−1 < (1− 2−(n+4))l + 2−2m−1l < 2−2k−1,

which is a contradiction.

Now use Claim 1(b) with U = V ni ∩ Uk to see that for every i, the set
{y : i ∈ F (y, k, n)} is clopen. The conclusion of Claim 2 follows.

For y ∈ ωω and n ∈ ω let

F (y, n) ={the first 2n−1 elements from F (y, 0, n)} ∪
{the first 2n−2 elements from F (y, 1, n)} ∪ . . . ∪
{the first 2n−n elements from F (y, n− 1, n)}.

Then |F (y, n)| ≤ 2n and the function y → F (y, n) takes each of its values
on a clopen set.

Claim 3. Ne(x) ⊆ Ny ⇒ ∀∞n x(n) ∈ F (y, n).

P r o o f. Suppose that Ne(x) ⊆ Ny. Then there are k and m such that
Uk \Ay 6= ∅ and

∀n > m x(n) ∈ F (y, k, n).

Also, since V ni are independent sets of measure 2−n−4 and

i ∈ F (y, k, n)⇒ Uk \Ay ⊆ 2ω \ V ni ,
we have ∏

n>m

(1− 2−n−4)|F (y,k,n)| ≥ µ(Uk \Ay) > 0.

So ∑
n>m

|F (y, k, n)| · 2−n−4 <∞,

hence ∀∞n |F (y, k, n)| ≤ 2n−k−1. Thus ∀∞n F (y, k, n) ⊆ F (y, n).

Now define f by f(y)(n) = #(F (y, n), n).

1.8. Lemma. ∈∗LI → ⊆M
M.

P r o o f. A straightforward modification of the proof from [P1] (see also
[F2]).

1.9. Lemma. Let S be either N or M. Then ⊆S
S → 63I

S.

P r o o f. We set e = I and seek a continuous function f : ωω → P such
that ∀y f(y) 6∈ Sy.
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S = M: Fix y ∈ ωω. Let

a0 = 0, an+1 = an + |τan+1
y(an+1)|.

Then define
f(y) =

⋃
n

τan+1
y(an+1) ∪ ({an : n ∈ ω} × {1}).

The first summand guarantees f(y) 6∈ My, the second ensures f(y) ∈ P.
S = N: Let a : ωω → ωω be continuous such that ∀y Ny ∪ Q ⊆ Na(y)

(Lemma 1.2). Fix y ∈ ωω and let z = a(y). Write N(k) for N0
z(0)∪. . .∪Nk

z(k).
Define inductively t ∈ 2ω:

t(n) =
{

0 if µ([(t|n)_〈0〉] \N(2n+ 1)) ≥ µ([(t|n)_〈1〉] \N(2n+ 1)),
1 otherwise.

Claim. t 6∈ Nz.

P r o o f. Note that
µ([t|1] \N(1)) ≥ 2−1 − 2−1(2−4 + 2−5),

µ([t|2] \N(3)) ≥ 2−2 − 2−2(2−4 + 2−5)− 2−1(2−6 + 2−7),

µ([t|(n+ 1)] \N(2n+ 1))

≥ 2−(n+1) −
n∑

i=0

2i−(n+1)(2−4−2i + 2−4−(2i+1)) > 0.

Let f(y) = t. Then f : ωω → P is continuous and ∀y f(y) 6∈ Na(y) ⊇ Ny.
The proof of Lemma 1.9 is complete.

1.10. Lemma. Let S be either N or M. Then ⊆S
S → ∈S

J.

P r o o f. Let f = I and let e : 2ω → ωω be continuous such that ∀x ∈ 2ω

{x} ⊆ Se(x) (Lemma 1.2). Then Se(x) ⊆ Sy ⇒ x ∈ Sf(y).

1.11. Lemma. 63J
N → ∈M

J .

P r o o f. Let B be a Gδ subset of 2ω which is null and dense. By Lem-
ma 1.2 there exist continuous functions e, f : 2ω → ωω such that ∀x ∈ 2ω

B + x ⊆ Ne(x) and ∀y ∈ 2ω (2ω \B) + y ⊆ Mf(y) (+ here is coordinatewise
addition mod 2). Now, if y ∈ 2ω \Ne(x), then y 6∈ B+x. So, x ∈ (2ω \B)+y,
whence x ∈ Mf(y).

1.12. Lemma. (a) ∈N
J ↔ ∈N

I .
(b) ∈M

J → ∈M
I and ∈M

J ⇐ ∈M
I .

P r o o f. (a) →: Let e = f = I. Then e(x) ∈ Ny ⇒ x ∈ Nf(y).
←: Let e : 2ω → P be a homeomorphic embedding such that µ(e[B]) =

µ(B)/2 for all Borel B ⊆ 2ω (it is a standard exercise that for any Polish
space X with a nonatomic σ-finite Borel measure λ and for any 0 < α <
λ(X) there exists a continuous embedding e : 2ω → X such that λ(e[B]) =
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α · µ(B) for all Borel B ⊆ 2ω). Let f : ωω → ωω be continuous such that
Nf(y) ⊇ e−1[Ny] (Lemma 1.2). Then e(x) ∈ Ny ⇒ x ∈ Nf(y).

(b) →: Let e = f = I as in (a).
⇐: Define e : 2ω → ωω by e|P = I and e|2ω \ P ≡ 〈0, 0, . . .〉. Then

e is Borel and the preimage of a meager Fσ set is a meager Fσ set. Let
f : ωω → ωω be continuous such that Mf(y) ⊇ e−1[My] (Lemma 1.2). Then
e(x) ∈ My ⇒ x ∈ Mf(y).

N o t e. ∈M
J ←∈M

I is false. If e : 2ω → P is continuous, then e[2ω] is
meager. So, there is z with e[2ω] ⊆ Mz. It follows that if f : ωω → ωω

is any function such that e(x) ∈ My ⇒ x ∈ Mf(y), then 2ω ⊆ Mf(z), a
contradiction.

1.13. Lemma. ⊆M
M → �I

I.

P r o o f. By Lemma 1.2 there exists a continuous e : ωω → ωω such that

∀x ∈ ωω {s ∈ 2ω : ∀n s(x(n)) = 0} ⊆ Me(x),

where x(n) = n+maxm≤n x(m) (to have x strictly increasing and ∀n x(n) ≥
x(n)).

To define f : ωω → ωω proceed as follows. Fix y ∈ ωω. Let y(0) = 0 and

y(n+ 1) = y(n) + |τ ȳ(n)
y(ȳ(n))|.

Then let f(y)(n) = y(2n). Clearly f is continuous. We now show that

Me(x) ⊆ My ⇒ x � f(y).

To this end suppose that ∃∞n x(n) > f(y)(n). Then the set

W = {n : rng(x) ∩ [y(n), y(n+ 1)) = ∅}
is infinite. Let

s =
⋃

n∈W
τ
y(n)
y(y(n)) ∪

( ⋃

n 6∈W
[y(n), y(n+ 1))× {0}

)
.

Then s ∈ Me(x) \My.

1.14. Lemma. �I
I → ∈M

I .

P r o o f. Let e = I and f : ωω → ωω be continuous such that {t ∈ ωω :
t � y} ⊆ Mf(y) (Lemma 1.2). Then e(x) � y ⇒ x ∈ Mf(y).

1.15. Lemma. �I
I → 6�I

I.

P r o o f. Let e = I and define f : ωω → ωω by f(y)(n) = y(n) + 1. Then
e(x) � y implies ∃∞n x(n) < y(n), hence f(y) 6� x.

The proof of Theorem 1.5 is complete.
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Miller [Mi2] proved that in Cichoń’s diagram we also have add(M) =
min{b, cov(M)} and cof(M) = max{d, non(M)} (see also [F2]). This cor-
responds to the following theorem (cf. [V] and [Bl]).

1.16. Theorem. There exist continuous functions

e : {〈x, y〉 ∈ ωω × 2ω : y 6∈ Mx} → ωω, f : 2ω × ωω → ωω

such that e(x, y) � z ⇒ Mx ⊆ Mf(y,z).

P r o o f. Suppose that y 6∈ Mx. Then for every n there is m ≥ n with
τmx(m) ⊆ y. Let

e(x, y)(n) = m+ |τmx(m)|
for the least such m. Let

f(y, z)(n) = #(y|[n, z(n))).

We have to show that

e(x, y) � z ⇒ Mx ⊆ Mf(y,z).

Suppose that e(x, y) � z. If t ∈ 2ω \Mf(y,z), then ∃∞n y|[n, z(n)) ⊆ t. Since

∀∞n e(x, y)(n) ≤ z(n),

we have
∀∞n ∃m ≥ n τmx(m) ⊆ y|[n, z(n)).

It follows that ∃∞m τmx(m) ⊆ t, i.e., t 6∈ Mx.

2. Small sets. In this section we shall show how cardinals from Cichoń’s
diagram yield classes of small spaces. We shall restrict ourselves to zero-
dimensional separable metric spaces. Each such space is homeomorphic to
a subset of 2ω, so we are really talking about sets of reals.

2.1. Definition. For a relation % ⊆ V ω × Wω with dom(%) = V ω,
rng(%) = Wω (V,W ∈ {2, ω}) and for a zero-dimensional separable metric
space X let

X ∈ B∗(%) iff for every ∗ function a : X → V ω, a[X] ∈ B(%),

X ∈ D∗(%) iff for every ∗ function a : X →Wω, a[X] ∈ D(%).

Let also
B∗ = B∗(�) and D∗ = D∗(�).

If S is a family of subsets of 2ω with a master set S ⊆ ωω × 2ω (i.e. all
sections Sx (x ∈ ωω) are in S and every set from S is covered by some Sx),
let

Add∗(S) = B∗(⊆S
S), Cof∗(S) = D∗(⊆S

S),

Non∗(S) = B∗(∈S
J), Cov∗(S) = D∗(∈S

J),

Non∗I (S) = B∗(∈S
I ), Cov∗I (S) = D∗(∈S

I ).
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N o t e. Observe that b(%) = non(B∗(%)) and d(%) = non(D∗(%)). Hence
non(Zyx∗(S)) = zyx(S).

With the notation introduced above we have for instance (S ∈ {M,N}):
• X ∈ Add∗(S) iff ∀B ∈ S∗(X)

⋃
x∈X Bx ∈ S;

• Add‡(S) ⊆ Add†(S);
• X ∈ Add‡(S) iff every Borel image of X into ωω is in Add†(S).

Note also that the following are equivalent:

• X ∈ Cov∗(S);
• ∀B ∈ S∗(X)

⋃
x∈X Bx 6= 2ω;

• ∀B ∈ S∗(X)
⋃
x∈X Bx 6= P;

• X ∈ Cov∗I (S).

This is so because X ×Q ∈ S∗(X), and S∗(X) is an ideal (see Lemma 1.2).
(Another way to see that Cov∗(S) = Cov∗I (S) is to notice that functions f
from Lemma 1.12 are continuous.)

With Non∗(S) the situation is more complicated. We have (Lemma 1.12)
Non∗(N ) = Non∗I (N ) and Non‡(M) = Non‡I (M), but 2ω ∈ Non†I (M) \
Non†(M).

As a consequence of parametrized Cichoń’s diagram we get Cichoń’s
diagrams for small sets (→ means that ⊆ is provable in ZFC).

2.2. Theorem (Cichoń’s diagrams for small sets).

Cov‡(N ) → Non‡(M) → Cof‡(M) → Cof‡(N )
↑ ↑

↑ B‡ → D‡ ↑
↑ ↑

Add‡(N ) → Add‡(M) → Cov‡(M) → Non‡(N )

Cov†(N ) → Non†(M) → Non†I (M) → Cof†(M) → Cof†(N )
↑ ↑

↑ ↑ B† → D† ↑
↗ ↑

Add†(N ) → Add†(M) → Cov†(M) → Non†(N )

P r o o f. We indicate a proof of Add†(N ) ⊆ Add†(M). Let e and f be
the functions establishing ⊆N

N→⊆M
M. Suppose that X ∈ Add†(N ). Let a :

X → ωω be any continuous function. Then b = e ◦ a is also continuous,
so X ∈ Add†(N ) implies that there is y ∈ ωω with

⋃
x∈X Nb(x) ⊆ Ny.

Then
⋃
x∈X Ma(x) ⊆ Mf(y). Thus for any continuous function a : X → ωω,

a[X] ∈ B(⊆M
M), hence X ∈ Add†(M).
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Clearly, we could have added arrows from each Borel class to the cor-
responding continuous class (but not from Add†(N ) to Cof‡(N ), see Sec-
tion 4). It is also easy to see that no arrow which is not obtained by
composing the existing ones can be added to the above diagrams. For ex-
ample, non(Cov†(N )) = cov(N ) and non(Add‡(M)) = add(M). Since it
is consistent with ZFC that cov(N ) < add(M), we cannot in ZFC have
Add‡(M) ⊆ Cov†(N ).

However, from Theorem 1.16 we get

2.3. Theorem. (a) Add∗(M) = B∗ ∩ Cov∗(M).
(b) Y 6∈ Non∗(M) & Z 6∈ D∗ ⇒ Y × Z 6∈ Cof∗(M).

P r o o f. (a) We shall show the inclusion ⊇ (the opposite one follows
from the diagram). Suppose that X ∈ B∗ ∩ Cov∗(M). Let a : X → ωω be a
∗ function. Let e, f be the functions from Theorem 1.16. By X ∈ Cov∗(M)
there is y ∈ 2ω \⋃x∈X Ma(x). Define b : X → ωω by b(x) = e(a(x), y). Then
b is a ∗ function, so, by X ∈ B∗, there is z ∈ ωω with ∀x ∈ X b(x) � z. By
Theorem 1.16, ∀x ∈ X Ma(x) ⊆ Mf(y,z). Thus

⋃
x∈X Ma(x) is meager.

(b) Suppose that Y 6∈ Non∗(M) and Z 6∈ D∗. There are ∗ functions
a : Y → 2ω and b : Z → ωω such that a[Y ] 6∈ M and b[Z] 6∈ D. Let e, f be
the functions from Theorem 1.16. We shall show that for any x ∈ ωω there
are y ∈ Y , z ∈ Z such that Mx ⊆ Mf(a(y),b(z)).

Fix x ∈ ωω. By a[Y ] 6∈ M there is y ∈ Y with a(y) 6∈ Mx. Since
b[Z] 6∈ D there is z ∈ Z with e(x, a(y)) � b(z). Then, by Theorem 1.16,
Mx ⊆ Mf(a(y),b(z)).

3. Characterizations. Lemma 1.7 yields the following characterization.

3.1. Theorem. Add∗(N ) = B∗(∈∗) and Cof∗(N ) = D∗(∈∗).

Thus, for every Borel set B ⊆ X×2ω whose all vertical sections are null,⋃
x∈X Bx is null iff every Borel image of X into ωω is localizable.

3.2. Definition. We say that y ∈ ωω diagonalizes x ∈ ωω (in symbols:
x =∞ y) iff ∃∞n x(n) = y(n). We extend this notion to sets as we did with
“localizes”.

Bartoszyński [B2] proved that cov(M) = b(=∞) and non(M) = d(=∞).
This motivates the following theorem.

3.3. Theorem. (a) Cov∗(M) = B∗(=∞).
(b) D∗(=∞) ⊆ Non∗I (M).
(c) Y 6∈ B∗ & Z 6∈ D∗(=∞)⇒ Y × Z 6∈ Non∗I (M).

Thus, for every Borel (resp. Fσ) set B ⊆ X×2ω with all vertical sections
meager,

⋃
x∈X Bx 6= 2ω iff for every Borel (resp. continuous) function a :

X → ωω, a[X] is diagonalizable.
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For the proof we need two lemmas.

3.4. Lemma. There exist continuous functions

g : ωω → ωω,

e : {〈x, y〉 ∈ ωω × ωω : ∃∞n g(x)(n) ≤ y(n)} → ωω,

f : ωω × ωω → P

such that

e(x, y) =∞ z ⇒ f(y, z) 6∈ Mx.

P r o o f. Define g as follows. Fix x ∈ ωω. Let x′(n) = n+ |τnx(n)| (n ∈ ω)
and let x(n) = n + maxm≤n x′(m) (to have x strictly increasing with ∀n
x(n) ≥ x′(n)). Let g(x)(n) = x2n(0) (the superscript denotes the number of
iterates of x).

Now we define e. Let y ∈ ωω be such that ∃∞n g(x)(n) ≤ y(n). Let
y(n) = n + maxm≤n y(m) (n ∈ ω) (again y is strictly increasing and
∀n y(n) ≤ y(n)).

Claim. ∃∞n y(n) + |τy(n)
x(y(n))| < y(n+ 1).

P r o o f. We have to see that ∃∞n x′(y(n)) < y(n + 1). We show that
∃∞n x(y(n)) < y(n+ 1). Suppose there is k such that

∀m x(y(k +m)) ≥ y(k +m+ 1).

Let l be such that xl(0) ≥ y(k). Since x is increasing, we get for all m,

y(k +m) ≤ x(y(k + (m− 1)))

≤ x2(y(k + (m− 2))) ≤ . . .
≤ xm(y(k)) ≤ xl+m(0),

which violates ∃∞n x2n(0) ≤ y(n).

Let τn (n ∈ ω) be the (n+ 1)th sequence τy(m)
x(y(m)) for which

y(m) + |τy(m)
x(y(m))| < y(m+ 1).

Let

e(x, y)(n) = #(〈τ0, . . . , τn〉),
where # means the number in an enumeration of

{〈%0, . . . , %n〉 :

∃ m0 < m1 < . . . < mn ∀i ∃k ∈ (y(mi), y(mi + 1)] %i ∈ 2[y(mi),k)}.
(Note that y(mi + 1)− 1 6∈ dom(%i).)
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Now we define f . Let z ∈ ωω. For each n ∈ ω, find σn0 , . . . , σ
n
n so that

z(n) = #(〈σn0 , . . . , σnn〉). Let σn be the first of σni ’s whose domain is disjoint
from the domains of all σn−1

i ’s (σ0 is the first of all σ0
i ). Then the domains

of σn’s are disjoint. Let

f(y, z) =
⋃
n

σn ∪
((
ω
∖ ⋃

n

dom(σn)
)
× {1}

)
.

Note that if z(n) = e(x, y)(n) then σn is one of τi’s for which

e(x, y)(n) = #(〈τ0, . . . , τn〉).
Hence, for some m ≥ n, σn = τ

y(m)
x(y(m)). It follows that if e(x, y) =∞ z then

∃∞m τ
y(m)
x(y(m)) ⊆ f(y, z),

i.e., f(y, z) 6∈ Mx. To see that f(y, z) ∈ P note that {y(m) − 1 : m > 0} is
disjoint from

⋃
n dom(σn).

3.5. Lemma. (a) 63I
M→ =∞I

I.
(b) =∞I

I →6�I
I.

P r o o f. (a) Let e : ωω → ωω be continuous such that

{t ∈ ωω : ∀∞n x(n) 6= t(n)} ⊆ Me(x)

(Lemma 1.2). Let f = I. Then y 6∈ Me(x) ⇒ x =∞ f(y).
(b) Let e = I. Define f : ωω → ωω by f(y)(n) = y(n) + 1.

P r o o f o f 3.3. (a) ⊆: by 3.5(a). ⊇: Suppose that every ∗ image of X
into ωω is diagonalizable. Let a : X → ωω be a ∗ function. We have to show
that

⋃
x∈X Ma(x) 6= 2ω. Let e, f and g be the functions from Lemma 3.4.

Since g ◦ a is a ∗ function, (g ◦ a)[X] is diagonalizable, so there is y ∈ ωω
such that

∀x ∈ X ∃∞n g(a(x))(n) ≤ y(n).

Define b : X → ωω by b(x) = e(a(x), y). Since b is a ∗ function, b[X] is
diagonalizable, say, by z. Then ∀x ∈ X f(y, z) 6∈ Ma(x).

(b) Suppose that X 6∈ Non∗I (M). So, there exists a ∗ function a : X → P
such that a[X] 6∈ M. Let f be the function from Lemma 3.5(a). Then
f ◦a : X → ωω is a ∗ function and (f ◦a)[X] diagonalizes ωω. So, (f ◦a)[X] 6∈
D(=∞), and thus X 6∈ D∗(=∞).

(c) Suppose that Y 6∈ B∗ and Z 6∈ D∗(=∞). Fix ∗ functions a : Y → ωω

and b : Z → ωω such that a[Y ] 6∈ B and b[Z] 6∈ D(=∞). Let e, f and g be
the functions from Lemma 3.4. We show that f [a[Y ] × b[Z]] 6∈ M. Indeed,
suppose f [a[Y ] × b[Z]] ⊆ Mx. Find y ∈ Y with ∃∞n g(x)(n) ≤ a(y)(n).
Next find z ∈ Z such that e(x, y) =∞ b(z). Then f(a(y), b(z)) 6∈ Mx, a
contradiction.



Parametrized Cichoń’s diagram and small sets 151

Thus there is a ∗ image of Y × Z into P which is nonmeager, i.e.,
Y × Z 6∈ Non∗I (M).

N o t e. Let D be the ideal of nowhere-dense subsets of 2ω. Choose 2ω \⋃
n

⋃
x∈ωω M

n
x(n) as its master set. As in Lemma 1.2, we have A ∈ D†(X)

iff there is a closed set B ⊆ X × 2ω with all vertical sections nowhere-dense
such that A ⊆ B.

The following are equivalent (see [P3]):

• for every Fσ set B ⊆ X×2ω with all vertical sections meager,
⋃
x∈X Bx

6= 2ω;
• for every closed set B ⊆ X × 2ω with all vertical sections meager,⋃

x∈X Bx 6= 2ω.

This can be incorporated into our scheme as follows. Clearly Cov†(M) ⊆
Cov†(D). We shall show the opposite inclusion.

First note that if X ∈ Cov†(D), then for every continuous function a :
X → ωω there is y ∈ ωω with ∀x ∈ X ∃n a(x)(n) = y(n). (View each
t ∈ 2ω as a sequence of consecutive blocks of 0’s separated by 1’s. Let
π(t) ∈ ω≤ω be such that dom(π(t)) is equal to the number of finite blocks
and π(t)(n) is the number of 0’s in the nth block. Then π|P is a natural
homeomorphism of P and ωω. Now, given continuous a : X → ωω, look
at A = {〈x, t〉 ∈ X × 2ω : ∃n ∈ dom(π(t)) a(x)(n) = π(t)(n)}. Note that
(X × 2ω) \ A ∈ D†(X). Let t ∈ ⋂x∈X Ax. Define y ∈ ωω by y(n) = π(t)(n)
if n ∈ dom(π(t)), and y(n) = 0 otherwise.)

Next, splitting ω into infinitely many infinite sets, we deduce that for
every continuous a : X → ωω there is y ∈ ωω which diagonalizes a[X],
hence X ∈ Cov†(M).

Note, however, that a countable dense subset of P is in Non‡(M) \
Non†(D).

4. Relation to other small sets. Some of the classes introduced above
have been studied before. The definitions were usually given in the language
of covers and subcovers (see [FMi]).

4.1. Definition. Let X be a zero-dimensional separable metric space.

(a) X ∈ H iff for every family Gn (n ∈ ω) of open covers of X there exist
Fn ∈ [Gn]<ω such that X ⊆ ⋃m

⋂
n>m

⋃Fn.
(b) X ∈ M iff for every family Gn (n ∈ ω) of open covers of X there

exist Fn ∈ [Gn]<ω such that X ⊆ ⋃n
⋃Fn.

(c) X ∈ C ′′ iff for every family Gn (n ∈ ω) of open covers of X there
exist Gn ∈ Gn such that X ⊆ ⋃nGn.

(d) X ∈ T iff for every family Gn (n ∈ ω) of open covers of X there exist
Fn ∈ [Gn]≤2n such that X ⊆ ⋃m

⋂
n>m

⋃Fn.
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4.2. Theorem. (a) H = B†.
(b) M = D†.
(c) C ′′ = Cov†(M).
(d) T = Add†(N ).

P r o o f. As noted in [R1], X belongs to H, M , C ′′, T iff for every con-
tinuous function a : X → ωω, a[X] belongs to B, D, B(=∞), B(∈∗), respec-
tively.

As mentioned before, every Borel class is contained in the corresponding
continuous class. The converse fails strongly. MA (Martin’s Axiom) yields
a set X ∈ Add†(N ) \ Cof‡(N ). Recław [R3] constructed from MA a γ-set
which can be mapped onto ωω by a Borel function. A modification of his
construction gives a strong γ-set with the same property. Strong γ, on the
other hand, easily implies B†(∈∗). (See [R1] and [GMi] for definitions.)

MA also implies that there is a set of size 2ℵ0 in Add‡(N ). Todorčević
(unpublished) constructed from MA a set X of size 2ℵ0 whose Borel im-
ages are each strong γ-sets, hence also X ∈ Add‡(N ) (see [R1], for this
construction under CH). Under MA the classes Cov‡(M) \ Non†I (M) and
(Cov‡(N )∩B‡)\Non†(N ) are nonempty. All (λ, κ) Lusin sets for κ ≤ cov(M)
are in Cov‡(M) \ Non†I (M) (see [R1]), while all (λ, κ) Sierpiński sets for
κ ≤ min(cov(N ), b) are in (Cov‡(N ) ∩ B‡) \ Non†(N ) (see [P3]). Recall that
for λ ≥ κ, a subset of 2ω is a (λ, κ) Lusin (Sierpiński) set if it has size λ and
meets every meager (null) set in a set of size < κ.

The class Add†(M) \ Cov†(N ) is also nonempty under MA (see [BR] for
a construction of a γ-set which is not strongly meager; it is known that
γ ⇒ H&C ′′, see [FMi], so γ-sets are in Add†(M)).

Since any continuous image of 2ω into ωω is compact, 2ω ∈ B†. However,
consistently 2ℵ0 = ℵ2 and Non†(N )∪Non†(M)∪Cof‡(N ) ⊆ [ωω]≤ℵ1 . (Miller
[Mi1] proved that if ℵ2 Sacks reals are added iteratively to a model of CH,
then every subset of ωω of size 2ℵ0 can be continuously mapped onto 2ω,
hence in a Borel way onto ωω.)

Recall that a set X ⊆ 2ω has strong measure zero iff for every meager set
A ⊆ 2ω, A+X 6= 2ω (we take the Galvin–Mycielski–Solovay characterization
of strong measure zero sets as our official definition; see [Mi3]). A set X ⊆ 2ω

is strongly meager iff for every null set A ⊆ 2ω, A + X 6= 2ω. The Borel
Conjecture says that all strong measure zero sets are countable. The Dual
Borel Conjecture says the same about strongly meager sets. Laver [L] showed
that the Borel Conjecture is consistent. Carlson [C] did the same for the Dual
Borel Conjecture. Now, Cov†(M) ⊆ [ωω]≤ℵ0 if the Borel Conjecture is true
and Cov†(N ) ⊆ [ωω]≤ℵ0 if the Dual Borel Conjecture is true. This is so
because of the following theorem ((a) is just a rephrasing of C ′′ ⇒ strong
measure zero).
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4.3. Theorem. Let X ⊆ 2ω.

(a) X ∈ Cov†(M)⇒ X has strong measure zero.
(b) X ∈ Cov†(N )⇒ X is strongly meager.

P r o o f. (a) Suppose that X ⊆ 2ω and X ∈ Cov†(M). Let A ⊆ 2ω be
meager. Let B = {〈x, y〉 ∈ 2ω × 2ω : y ∈ A + x}. Then B ∈ M†(X). So,
there is y ∈ 2ω \⋃x∈X Bx. Then y 6∈ A+X.

(b) Similar.

Consistently B‡ ⊆ [ωω]≤ℵ0 (Miller [Mi4] showed that consistently ev-
ery σ-set is countable; easily, B‡ sets are σ-sets). We do not know whether
Cov‡(N ) ∪ Cov‡(M) ⊆ [ωω]≤ℵ0 is consistent. We also do not know whether
any of the classes Non‡(M), Non‡(N ), D† can consistently be a subclass of
[ωω]≤ℵ0 . The class Cof‡(M), however, cannot.

4.4. Theorem. Cof‡(M) contains an uncountable set.

P r o o f. Either cof(M) > ℵ1, and then [ωω]≤ℵ1 ⊆ Cof‡, or else cof(M)
= ℵ1, and then there exists a Lusin set. By [R1] all Lusin sets are in
Cov‡(M).

5. Conclusion. We can go beyond Cichoń’s diagram. There are more in-
equalities between cardinal characteristics which can be parametrized. Some
parametrizations are quite straightforward (e.g. parametrizations of inequal-
ities involving the splitting number s and the reaping number r, see Blass
[Bl]), others require two steps as in Theorems 1.16 and 3.3 (e.g. the equality
add(E ,M) = cov(M) from [BSh]).

We can also consider small sets X ⊆ 2ω defined by “total continuous”
functions and/or choices (e.g. the sets X such that f [X] ∈ B(·) for all con-
tinuous f : 2ω → ωω and/or the sets X such that

⋃
x∈X Bx ∈ B(·) for all

closed B ⊆ 2ω ×ωω whose all vertical sections are in S). This leads to some
suprising results about strong measure zero sets (see [AR], [P3]).

The reader might wish to consult Vojtáš [V] and Blass [Bl] to get a
slightly different perspective onto parametrization.

Questions. (1) Suppose that for every continuous f : ωω → ωω, f [X]
can be diagonalized. Does it follow that for every closed A ⊆ ωω × ωω with
all sections meager

⋃
x∈X Ax 6= ωω? (OK if the horizontal ωω is replaced by

a set with property M .)
(2) All the classes from Cichoń’s diagram but Cov∗(N ) are easily seen

to be σ-additive (for Cov∗(M) one can use Theorem 3.3(a)). Is Cov∗(N )
additive?
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(3) Theorem 2.3(b) cannot be strengthened to Non∗(M)∪D∗ = Cof∗(M).
A modification of a construction from [R1] gives under CH a set Y ∈
Non‡(M) \ D†. Now, if Z is a Lusin set then Z ∈ D‡ \ Non†(M), so Y ∪Z ∈
Cof‡\(Non†(M)∪D†). What about Theorem 3.3(c)? (This is connected with
the so-called “half Cohen real” problem.)
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