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by

Janusz Pawlikowski (Wroctaw)
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Abstract. We parametrize Cichoit’s diagram and show how cardinals from Cichoii’s
diagram yield classes of small sets of reals. For instance, we show that there exist subsets
N and M of w® x 2“ and continuous functions e, f : w* — w® such that

e Nis Gy and {N; : z € w*}, the collection of all vertical sections of N, is a basis
for the ideal of measure zero subsets of 2“;

e Mis Fy and {Mz : z € w¥} is a basis for the ideal of meager subsets of 2“;

L] V.’l},y Ne(m) - Ny = M, C Mf(y)

From this we derive that for a separable metric space X,

o if for all Borel (resp. Gg) sets B C X x 2% with all vertical sections null, UmeX By
is null, then for all Borel (resp. Fs) sets B C X x 2“ with all vertical sections
meager, UmGX By is meager;

o if there exists a Borel (resp. a “nice” Gg) set B C X x 2% such that {B; : z € X}
is a basis for measure zero sets, then there exists a Borel (resp. Fy) set B C X x 2%
such that {B; : £ € X} is a basis for meager sets.

0. Introduction. Let S be a family of subsets of the Cantor set 2. The
covering number of S is (by convention, min(f)) = oo)

cov(S) :min{|A| LACS & | JA= 2“}.

We can say that an abstract set X is “cov(S)-small”, in a cardinal sense, iff
for every choice {S, : x € X} of sets from S, |J,cx Sz does not cover 2.
Similarly, we can say that a separable metric space X is “cov(S)-small”, in
a continuous (resp. Borel) sense, iff this holds for every “continuous” (resp.
“Borel”) choice.

1991 Mathematics Subject Classification: 04A15, 03E50.
The first author supported by KBN grant PB 2 1017 91 01, the second by KBN grant
2P 30100804.

[135]



136 J. Pawlikowski and I. Reclaw

The additivity number of S is defined by
add(S) = min{|A| LACS & | JAd 5}.

As with cov(S) we can talk about “add(S)-small” spaces.
A study of such “small” spaces may give new insight, as shown by the
following results.

(1) Rectaw [R1] proved that every Lusin set is undetermined in the Point-
Open Game, which solved a problem of Galvin [G]. The proof relied
on the facts that

o if X C 2% is a Lusin set, then for every closed set D C X x w* with
all vertical sections D, (z € X) meager, |J, ¢y Dz 7# w*;

e X C 2% is undetermined in the Point-Open Game iff for every
closed set D C X x w® with all vertical sections D, (z € X)
meager, | J,c x Dz # w*.

(2) Pawlikowski’s [P2] proof that every Sierpinski set is strongly meager
(another problem of Galvin, see [Mi3]) shows, in fact, that if X is a
Sierpinski set and B C X x 2% is a Borel set with all vertical sections
null, then (J, oy Bz # 2% (see [P3]).

(3) A crucial step in Raisonnier’s [Ra] proof of Shelah’s theorem that
Lebesgue measurability of all sets of reals is equiconsistent with the
existence of inaccessible cardinals is a construction of a rapid filter.
The filter is obtained from a set X C 2% such that for all Gg sets
G C 2% x 2% with all vertical sections null, | J G, is null.

Let N and M be the o-ideals of null (measure zero) and meager subsets
of 2¢. To have a uniform treatment of cardinal characteristics associated
with N and M we proceed as follows (see also [F2] and [V]).

For a binary relation g let

B(p) = {A C dom(p) : Jy € rng(p) Ya € A apy},
D(p) = {A Crng(p) : “Vz € dom(p) Ja € A xpa}.
Note that D(9) = B(—o™1). Let b(p) (resp. d(p)) be the minimal cardinality

of a subset of dom(p) (resp. rng(p)) which is not in B(g) (resp. D(p)).

If § is a family of subsets of X, let
add(S) =b(C N(S x 8)), cof(S)=4d(CN(S x38)),

d
non(S) = b(e N(X x S)), cov(S) = d(€ N(X x S)).

Let also, as usual,

reX

b:b(j)7 d=d(=x),
where for x,y € w¥, x <y iff V°n x(n) < y(n). (We write “v>°” for “for all
but finitely many” and “3°°” for “there exist infinitely many”.)
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The following diagram is called Cichon’s diagram (see [F2], [V]) (—
means that inequality < is provable in ZFC):

cov(N) — non(M) — cof(M) — cof(N)

T T

b — d T
|

|
add(N) — add(M) — cov(M) — non(N)

The diagram is complete in the sense that no arrow which is not obtained
by composing the old ones can be added to it (see [BJ] for a summary of
the necessary consistency results). The proofs of the inequalities in Cichoni’s
diagram are highly constructive. To show that add(M) < b Miller [Mi2]
takes A C w¥, A ¢ B(X), constructs for each a € A a meager set M,
and shows that should | J,. 4 M, be meager, one could construct a function
b € w¥ with VYa € A a < b, thus violating A ¢ B(=). Fremlin [F2] rephrased
this as follows: there exist functions e : w* — M and f : M — w* such that
Vr,y e(z) Cy = x < f(y). Clearly, the existence of such functions implies
that add(M) < b and d < cof(M).

The most difficult inequality in Cichoft’s diagram is add(N) < add(M),
proved by Bartoszynski [Bl] (independently by Raisonnier and Stern
[RaSt]). Fremlin [F1] noted that the arguments of [B1] and [RaSt] lead to
functions e : w*¥ — N and f : N — [],[w]=" such that Vz,y e(z) C y =
x €* f(y) (where z €* z iff V*°n z(n) € z(n)). He also noted that Paw-
likowski [P1], in a proof that the Lebesgue measurability of all X3 (light-
face!) sets implies the Baire property for all such sets, constructed functions
e: M —w?and f:[[,[w]=" — M such that Vz,y e(z) €* y = z C f(y).
Putting this together (see [F2]) we get functionse : M — N and f : N — M
such that Vz,y e(z) C y = = C f(y). Again, the existence of such functions
yields inequalities add(N') < add(M) and cof(M) < cof (N).

The picture was completed by Vojtas [V], who wrote explicitly the re-
maining inequalities (and some others) in the “e-f” language.

In the present paper we shall show that all the “e- f” functions involved in
Cichon’s diagram can be defined so that they are “continuous”. This would
enable us to convert the inequalities into inclusions of the classes of the
corresponding “small” spaces. For instance, we shall prove that “add(N)-
small” spaces are “add(M)-small” and “cof(M)-small” spaces are “cof(N)-
small”. More precisely, we shall show that for a separable metric space X,
if for all Borel (resp. Gs) sets B C X x 2¢ with all vertical sections null,
U,ex Be is null, then for all Borel (resp. F,) sets B C X x 2 with all
vertical sections meager, |J, ¢y Bz is meager. We shall also prove that if X
is “cof(N)-big” in the sense that there exists a Borel set B C X x 2¢ all of
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whose vertical sections constitute a basis of A (i.e. all B, have measure zero
and every measure zero set is covered by some B,), then X is “cof(M)-big’
in a similar sense.

This paper is an expanded version of [R2]. Rectaw [R1] undertook a
systematic study of small sets defined by “definable” choices of sections.
Presenting [R1] at a seminar talk in March 1992, he advocated for Cichon’s
diagram for such sets. He gave a mixed “Borel-continuous” version [R2] of it
at a meeting in Katowice, October 1992. Shortly after the Katowice meet-
ing Pawlikowski proved that Bartoszynski’s inequality has a “continuous”
version in the “e-f” language, which together with a folklore fact that the
remaining inequalities do have such versions, gave our parametrized dia-
gram.

1. Parametrization. For each n fix an enumeration (N;* : ¢ € w) of all
clopen subsets of 2* of measure < 27"~* and let #(N/*,n) = i. Fix also an
enumeration (77" : 4 € w) of |J,,~, 2lm) and let #(7') = i. Let M = [r7],

where [7] = {t € 2¢ : 7 C t}. Note that for A C 2%,
AeN iff Jacw AC( U N,

m n>m
AeM iff aew” AC29\[) |J M,
m n>m

This suggests the following definition.

1.1. DEFINITION. Let X be a zero-dimensional separable metric space.
For A C X x 2% say that A € N*(X), resp. A € M*(X), iff there exists a
x function a : X — w" with

AU NMiow @ex),
m n>m
resp. with
A, 2\ U Miaym (@eX).
m n>m

We shall consider two cases: Borel functions (x = {) and continuous
functions (% = 7).

1.2. LEMMA. Let A C X x 2%.

(a) A € N¥(X) iff there exists a Borel set B C X x 2 with all vertical
sections null such that A C B.

(b) A € M¥(X) iff there exists a Borel set B C X x 2% with all vertical
sections meager such that A C B.

(c) A € NT(X) iff for any sequence €, > 0 (n € w) there exist clopen
sets Ap, C X x 2% such that p((An)z) <en (x € X) and A C|J,, A,.
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(d) A € MY(X) iff there exists an F, set B C X x 2% with all vertical
sections meager such that A C B.

Proof. The = directions are easy. We concentrate on the < directions.
Since (a) and (b) are folklore (see [Ke]), we pass to (c) and (d).

(c) <: Suppose that for any sequence &, > 0 (n € w) there exist clopen
sets A, C X x 2¥ such that p((Ay)z) <&, (x € X) and A C |, An. Then
for any sequence &, > 0 (n € w) there exist clopen sets A,, C X x 2¢ such
that p((An)z) < éen (z € X)and A C N, U,sm An (split w into infinitely
many infinite sets). Let now A,, C X x 2% (n € w) be clopen sets such that
A C N Upsm An and Vo pu((An)z) < 27774 Note that each (4,), is a
clopen subset of 2¢ of measure < 27"~%. Define a : X — w® by

a(z)(n) = #((An)z,n).

AcNU @A =N U N

m n>m m n>m
It remains to see that a is continuous. Since 2“ is compact, the projection
of a closed subset of X x 2% onto X is closed. Thus for any clopen U C 2%,
the sets {x € X : U C (4,),} and {z € X : U D (A,),} are open (as the
complements of the projections of (X xU)\ 4,, and A4,,\ (X xU)). It follows
that for any clopen U, {z € X : U = (A,).} is open.
(d) <: Suppose that

Then

B=|JB, <X x2,

where each B,, is closed and has all vertical sections nowhere dense. For
each n fix {i(n,k) : k € w} and a cover of X by a family {U} : k € w} of
pairwise disjoint clopen subsets of X so that

Uy x [Ti’%mk)] N U B,, = 0.
m<n
Then define a : X — w* by a(z)(n) =i(n,k) @z cU]. =
Note. It is useful to remember that for any separable metric space X

and Borel set B C X x 2¢ thesets {r € X : B, ¢ M} and {r € X : B, €
N} are Borel (a theorem of Novikov, see [Ke]).

1.3. DEFINITION. Let
N=U U {2} x N,
m n>m rewv

be the measure master set used above. Clearly N € AT (w®), all vertical
sections N, arein A" and A € N iff 3z A C N,. (So, the family {N, : z € w*}
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is a basis of the ideal N.) Also, for A C X x 2%, A € N*(X) iff there exists
a * function a : X — w* with A, C Ny, (z € X).
Similar remarks are true for M and the meager master set

M=2\(1J U M
m n>m rew

1.4. DEFINITION. Let S, T be binary relations, whose dom’s and rng’s
are equipped with some topologies. Write S — T iff there are continuous
functions

e:dom(7T) — dom(S), f:rng(S)— rng(7T)
such that foSoe C T, ie.,
Va,y (e(x),y) € S = (z, f(y) €T
(equivalently, Vo f[Se(s)] € T%). Write S <> T'iff S — T and T' — S.

We shall use this notion in the following context. Suppose that we have
functions A, B, C,D and relations ¢ 2 rng(A) x rng(B) and o D rng(A) x
rng(B). Let

ox = {(z,y) € dom(A) x dom(B) : A(z)eB(y)},
08 = {{z,y) € dom(C) x dom(D) : C(z)oD(y)}.
Then o% — o8 iff there are continuous functions
e:dom(C) — dom(A), f:dom(B) — dom(D)
such that
Ale(z))eB(y) = C(z)aD(f(y)).

If the functions e, f above are only Borel, we replace — with =-. In such
contexts sets like M are treated as functions z — M,. Let I (resp. J) be the
identity map from w* to w* (resp. from 2“ to 2“).

Let Q = {t € 2* : V*°n t(n) = 0} and P = 2 \ Q. Since P is homeo-
morphic to w*, we shall often identify them. In particular, we can write
I:P— w¥, w¥ C2¢¥, etc.

Note. Note that o§ — o8 iff (mo™1)§ — (=0~ 1)5.

1.5. THEOREM (Parametrized Cichofi’s diagram).

o o— & 2 & - 2N — A
1 /
1 1 =t - 4 1 T
/ 1

N M I — J N
N — i — v = P — €
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By the note following Definition 1.4, in order to prove the above theorem
we have to deal with half + one arrows (if we know that Z3;—€Y then we
know that ZL—€}). The proof is divided into Lemmas 1.7-1.15.

First we need one more definition.

1.6. DEFINITION. For y € w® and u € ([w]<¥)¥ write y€*u and say
that u localizes y iff V*°n y(n) € u(n). We extend this notion to sets in the
following obvious way: if u localizes each y from some Y C w* we say that
u localizes Y or that Y is localizable by u; if for each y € Y there is u € U
that localizes y we say that U localizes Y .

For each n, let (L} : i € w) be a fixed enumeration of of [w]<2". Let
#(L, n) =i. Define L : w* — [, [w]=2" by L(z) = (L3 i n € w).

Note. For technical reasons we use the sequence (2" : n € w), however,
any sequence a = {a, : n € w) € w* with lim,, a,, = co will do (€*1* « €*7,
where L, is defined as L with (a,, : n € w) in place of (2" : n € w)).

1.7. LEMMA. CN « e*F.

Proof. «—: We seek continuous functions e, f : w* — w® such that

V¥n e(x)(n) € Ly, = Nz C Ny(,).
Define

e(z)(n) = #(Niggil) U Nig{fm), 2n),

)y = #(JINE i € Ly bon).
—: We seek continuous functions e, f : w* — w* such that

Let {V;" : i,n € w} be a matrix of measure independent clopen subsets
of 2¥ such that p(V;") = 2774, Define e by

e(z)(n) = #(Viny,n)-
Clearly e is continuous and for each & € w*, Ne(y = (,, Upsm Vi)

The definition of f is longer. Fix an enumeration Uy (k > 0) of all clopen
subsets of 2. Let Ay = () and define inductively, for o € w?* (k > 0),

By = Agj2(k-1) U U Ny
n<2k

W. — Up if p(Up \ By) < 272,
7 () otherwise,

Ay, = B, UW,.

A=]J U lol x A,.

k ocw?k

Finally, let



142 J. Pawlikowski and I. Reclaw

Cram 1. (a) NC A and Yy € w* VEk p(Ay \ Ayjor) < 9—2k—1
(b) For any clopen set U, {y : U\ A, = 0} is clopen.
(¢) If U \ Ay # 0 then p(Uy \ A,) > 2721,
Proof. (a) We have
A\ Ay € Nyoy U U Wiz,
n>2k n>k
S0,

1Ay \ Ayjag) < Z 27"t 4 Z 272 < 27
n>2k n>k
(b) Let U = Uy. Fix 0 € w?k. If u(Uy \ B,) < 272, then U C A,, so
Vy € [o] Up C Ay If (Ui \By) > 27%% then A, = By, so u(Ug\A,) > 272
Since, by (a),
vy € [o] (A, \ Ag) <2727,
we get
Yy € [o] u(Ux \ 4,) > 272871,
(c) This is already proved in (b). m
For y € w* and k,n € w let
Fy,k,n) = {i: Vi" N (Ur \ 4y) = 0}.
Note that if No,) € N, then N,y € A,. So, by Baire’s category theorem
(applied to 2¢ \ A,) there are k and m such that Uy \ 4, # 0 and
Vn >m Vi, N U\ Ay) =0,
i.e.,
Vn >m z(n) € F(y,k,n).

CLAIM 2. For every k and n there is a partition of w* into clopen sets
such that y — F(y, k,n) is constant on each piece of the partition.

Proof. Let I,m € w be such that (1 —2774)l < 272k=2 apnd 272m~1 <
272k=2/] For 7 € w?™ let

Gr,kyn) = {i: p(V7 O (U \ Ay)) < 272m=11,

Note that if y € [7] then F(y,k,n) C G(7,k,n) (remember that pu(A, \
Ay|2m) < 272m71)‘

SUBCLAIM. Suppose that for some y € (1], Uy \ Ay # 0. Then |G(7,k,n)|
<.

Proof. Suppose that |G(7,k,n)| > [ and let G consist of the first [
elements of G(7,k,n). Note that

p((Uk \ Ar)) = (U \ Ay) > 272071,
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and
U\ A- € (N \ VU Wm0 (U \ Ar)).
ieG ieG
It follows that
2—2k}—1 < (1 _ 2—(n+4))l + 2—2m—ll < 2—2]6—1’
which is a contradiction. m

Now use Claim 1(b) with U = V> N Uy, to see that for every i, the set
{y:ie F(y,k,n)} is clopen. The conclusion of Claim 2 follows. m

For y € w* and n € w let
F(y,n) ={the first 2"~ elements from F(y,0,n)} U

{the first 2”2 elements from F(y,1,n)}U...U
{the first 2"~ elements from F(y,n — 1,n)}.

Then |F(y,n)| < 2™ and the function y — F(y,n) takes each of its values
on a clopen set.

CLAIM 3. Ne(z) €Ny = V®n 2(n) € F(y,n).

Proof. Suppose that N.,) € N,. Then there are k& and m such that
Ui\ Ay # 0 and

—~

~ =

Vn >m z(n) € F(y,k,n).
Also, since V" are independent sets of measure 27"~* and
i€ F(y,k,n)= U\ A, C2\ V",
we have

[T (-2 )Fehnl >y 4,) > 0.
n>m

So
S 1Py k)| 277 < oo,

n>m

hence V>°n |F(y, k,n)| < 2"~*~1. Thus ¥*°n F(y,k,n) C F(y,n). =
Now define f by f(y)(n) = #(F(y,n),n). =
1.8. LEMMA. €*F — CM.

Proof. A straightforward modification of the proof from [P1] (see also
[F2]). m

1.9. LEMMA. Let S be either N or M. Then C§ — L.

Proof. We set e = I and seek a continuous function f : w* — P such
that Yy f(y) € Sy.
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S =M: Fix y € w”. Let

an+1
ag = 07 an+1 = ap —+ ’T (a7L+1)‘

Then define
Um(nail) ({an :n € wl x {1}).

The first summand guarantees f(y) € My, the second ensures f(y) € P.

S = N: Let a : w* — w“ be continuous such that Vy N, UQ C Ny
(Lemma 1.2). Fix y € w* and let z = a(y). Write N (k) for NS(O) U.. .UNf(k)
Define inductively t € 2“:

t(n) = { 0 if p([(tln) (O] \ N(@2n +1)) = pu([(tn) (1] \ N(2n + 1)),
1 otherwise.
CLAIM. t ¢ N,.

Proof. Note that
p((t1]\ N(1)) > 27" —271(27* 4+ 277),

2
p(E2\ N@3)) > 272 - 27227  +27°) — 271 (270 + 27),
p(ft[(n + DI\ N(2n + 1))

2 2—(n+1) _ Z 2i—(n+1)(2—4—2i + 2—4—(2i+1)) > 0 -
i=0
Let f(y) =t. Then f: w* — P is continuous and Yy f(y) & Ng(y) 2 Ny.
The proof of Lemma 1.9 is complete. m
1.10. LEMMA. Let S be either N or M. Then Q% — 6?.

Proof. Let f =1 and let e : 2 — w* be continuous such that Vx € 2¢
{r} € S.(») (Lemma 1.2). Then S,y €S, = = € S¢(,). =

1.11. LEMMA. % — €}l

Proof. Let B be a Gy subset of 2% which is null and dense. By Lem-
ma 1.2 there exist continuous functions e, f : 2 — w* such that Vo € 2%
B+ 12 C N,y and Vy € 2 (2¢\ B) +y C My(,) (+ here is coordinatewise
addition mod 2). Now, if y € 2\ N,(,), then y ¢ B+x. So, x € (2*\ B) +y,
whence x € My(,). m

1.12. LEMMA. (a) €} < €.

(b) ef! — eM and €' « eM.

Proof. (a) —: Let e = f = 1. Then e(x) € N, = x € Ny(,.

«—: Let e : 2 — P be a homeomorphic embedding such that p(e[B]) =
w(B)/2 for all Borel B C 2“ (it is a standard exercise that for any Polish

space X with a nonatomic o-finite Borel measure A and for any 0 < a <
A(X) there exists a continuous embedding e : 2¢ — X such that A(e[B]) =
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a - pu(B) for all Borel B C 2¢). Let f : w¥ — w*“ be continuous such that
Nyt 2 e 'N,] (Lemma 1.2). Then e(z) € Ny, = @ € Ny ().

(b) —: Let e = f =1 as in (a).

<: Define e : 29 — w® by ¢/[P =1 and ¢|2* \ P = (0,0,...). Then
e is Borel and the preimage of a meager F, set is a meager F, set. Let
[ w* — w be continuous such that M) 2 e~ '[M,] (Lemma 1.2). Then
e(:n) € My =T € Mf(y). [ ]

Note. €}le—eM is false. If ¢ : 2 — P is continuous, then e[2*] is
meager. So, there is z with ¢[2¥] C M,. It follows that if f : w¥ — o
is any function such that e(z) € M, = x € My(,), then 2 C My(,), a
contradiction.

1.13. LEmMma. CM — <1
Proof. By Lemma 1.2 there exists a continuous e : w* — w* such that
Vo € w” {s€2¥:Vn s(x(n)) = 0} C M),

where T(n) = n+max,,<, (m) (to have T strictly increasing and ¥n z(n) >

To define f : w* — w® proceed as follows. Fix y € w*. Let 7(0) = 0 and
g(n+1) =g(n) + 7200 ).
Then let f(y)(n) =7y(2n). Clearly f is continuous. We now show that
Me(a:) - My =T f(y>
To this end suppose that 3%°n Z(n) > f(y)(n). Then the set
W = {n: me(@) N [§(n), 5n + 1) = 0}
is infinite. Let

s= U 7500, u (U @50+ 1) x {0}).

new ngWw
Then s € Me(m) \My. [ ]
1.14. LEMMA. <1 — eM.

Proof. Let e =T and f : w* — w* be continuous such that {t € w* :
t <y} € My, (Lemma 1.2). Then e(z) =y = x € Ms(,). =

1.15. LEMMA. <] — #L

Proof. Let e = I and define f : w* — w* by f(y)(n) = y(n) + 1. Then
e(z) <y implies 3°n x(n) < y(n), hence f(y) A z. =

The proof of Theorem 1.5 is complete.
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Miller [Mi2] proved that in Cichon’s diagram we also have add(M) =
min{b, cov(M)} and cof(M) = max{d,non(M)} (see also [F2]). This cor-
responds to the following theorem (cf. [V] and [BI]).

1.16. THEOREM. There exist continuous functions

e: {{r,y) ew x2¥ :y €M, } - w”, [:2¢xw’—w¥
such that e(z,y) = z = My C My, ).

Proof. Suppose that y ¢ M,. Then for every n there is m > n with
T;Zm) Cy. Let

e(z,y)(n) =m+ |77,
for the least such m. Let
fy, 2)(n) = #(ylIn, z(n))).
We have to show that
e(z,y) =z = My C My(y..).
Suppose that e(x,y) = z. If t € 29\ My(y ), then 3%°n y|[n, 2(n)) C t. Since
V*n e(x,y)(n) < z(n),
we have
V¥n Im >n 7., Cylln, z(n)).
It follows that 3°°m ngm) Ct,ie,t&€M,. mu

2. Small sets. In this section we shall show how cardinals from Cichon’s
diagram yield classes of small spaces. We shall restrict ourselves to zero-
dimensional separable metric spaces. Each such space is homeomorphic to
a subset of 2%, so we are really talking about sets of reals.

2.1. DEFINITION. For a relation ¢ C V¥ x W% with dom(p) = V¥,
rng(o) = W« (V,W € {2,w}) and for a zero-dimensional separable metric
space X let

X €B*(p) iff for every * function a: X — V¥, a[X] € B(p),
X €D*(p) iff for every x function a: X — W%, a[X] € D(p).
Let also
B* =B"(<X) and D" =D"(=X).
If S is a family of subsets of 2 with a master set S C w* x 2¢ (i.e. all

sections S, (z € w¥) are in S and every set from S is covered by some S,),
let

Add*(S) = B*(C§), Cof*(S) =D*(C3),
Non*(S) = B*(5),  Cov*(S) = D*(&9),
Nonj(S) = B*(€}), Covi(S) =D*(&}).
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Note. Observe that b(g) = non(B*(p)) and d(¢) = non(D*(g)). Hence
non(Zyx*(S)) = zyx(S).

With the notation introduced above we have for instance (S € {M,N}):

o X € Add*(S) iff VB € S*(X) U,ex Bz € S;
e Add¥(S) C AddT(S);
e X € Add*(S) iff every Borel image of X into w* is in Addf(S).
Note also that the following are equivalent:
e X € Cov*(S);
e VB € S*(X)U,ex Br # 2%
e VB € §*(X)U,ex Be # P;
e X € Covi(S).
This is so because X x Q € §*(X), and S*(X) is an ideal (see Lemma 1.2).

(Another way to see that Cov*(S) = Cov{(S) is to notice that functions f
from Lemma 1.12 are continuous.)

With Non*(S) the situation is more complicated. We have (Lemma 1.12)
Non*(N) = Noni(A) and Non!(M) = Non/(M), but 2¢ € Nonj(M) \
Non'(M).

As a consequence of parametrized Cichon’s diagram we get Cichon’s
diagrams for small sets (— means that C is provable in ZFC).

2.2. THEOREM (Cichon’s diagrams for small sets).
Covi(N) — Non*(M) — Coff(M) — Coff(N)

T T
i B — D¥ i
T T

Add*(N) — Add*(M) — Covi(M) — Non*(N)

Covi(N) — Nonf(M) — Non/(M) — Coff(M) — Coff(N)

T T
1 1 Bt — D 7
/! T
Addf(N) — Addf(M) — Covi(M) — Nonf(N)

Proof. We indicate a proof of Addf(N) C Addf(M). Let e and f be
the functions establishing CN—C3. Suppose that X € Addf(N). Let a :
X — w* be any continuous function. Then b = e o a is also continuous,
so X € Add'(N) implies that there is y € w* with ,cx Np@) € Ny
Then (U, x Ma(z) € My(y). Thus for any continuous function a : X — w®,
a[X] € B(CM), hence X € AddT(M). m
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Clearly, we could have added arrows from each Borel class to the cor-
responding continuous class (but not from Add"(N) to Cof*(N), see Sec-
tion 4). It is also easy to see that no arrow which is not obtained by
composing the existing ones can be added to the above diagrams. For ex-
ample, non(Covf(N)) = cov(N) and non(Add*(M)) = add(M). Since it
is consistent with ZFC that cov(N) < add(M), we cannot in ZFC have
Add*(M) C Covi(N).

However, from Theorem 1.16 we get

2.3. THEOREM. (a) Add*(M) = B* N Cov*(M).
(b) Y €Non*(M) & Z ¢D* =Y x Z ¢ Cof*(M).

Proof. (a) We shall show the inclusion O (the opposite one follows
from the diagram). Suppose that X € B* N Cov*(M). Let a : X — w® be a
« function. Let e, f be the functions from Theorem 1.16. By X € Cov*(M)
there is y € 29\ U, cx Ma(a)- Define b : X — w* by b(x) = e(a(z),y). Then
b is a * function, so, by X € B*, there is z € w* with Va € X b(z) = z. By
Theorem 1.16, Vo € X My ) € My, 2). Thus |, x Ma(e) is meager.

(b) Suppose that Y ¢ Non*(M) and Z ¢ D*. There are * functions
a:Y —2“and b: Z — w® such that a[Y] ¢ M and b[Z] € D. Let e, f be
the functions from Theorem 1.16. We shall show that for any z € w* there
arey €Y, z € Z such that M, C Mf(a(y),b(z))'

Fix z € w*. By a[Y] € M there is y € Y with a(y) ¢ M,. Since
b[Z] & D there is z € Z with e(z,a(y)) < b(z). Then, by Theorem 1.16,
Mz € My(a(y)bz))- ®

3. Characterizations. Lemma 1.7 yields the following characterization.
3.1. THEOREM. Add*(N) = B*(€*) and Cof*(N) = D*(€*).

Thus, for every Borel set B C X x 2“ whose all vertical sections are null,
U,ex Bz is null iff every Borel image of X into w® is localizable.

3.2. DEFINITION. We say that y € w* diagonalizes x € w* (in symbols:
T = y) iff 3%°n x(n) = y(n). We extend this notion to sets as we did with
“localizes”.

Bartoszynski [B2] proved that cov(M) = b(=4) and non(M) = d(=x).
This motivates the following theorem.

3.3. THEOREM. (a) Cov*(M) = B*(=o).

(b) D*(=wc) C Non; (M).

(c) Y ¢B* & Z ¢ D*(=x) = Y X Z & Nonj(M).

Thus, for every Borel (resp. F,,) set B C X x 2¥ with all vertical sections

meager, |J,cx Be # 2 iff for every Borel (resp. continuous) function a :
X — w¥, a[X] is diagonalizable.
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For the proof we need two lemmas.

3.4. LEMMA. There exist continuous functions
g:wY — w¥,
e: {{z,y) € w’ xw” :3%n g(z)(n) <y(n)} — w®,
frw¥ xw* =P
such that
e(r,y) =0 2= f(y,2) € Ma.
Proof. Define g as follows. Fix € w*. Let 2'(n) = n + |77 ,,| (n € w)
and let Z(n) = n + max,,<, 2’'(m) (to have T strictly increasing with Vn

Z(n) > 2'(n)). Let g(x)(n) = 72"(0) (the superscript denotes the number of
iterates of 7).

Now we define e. Let y € w® be such that 3%°n g(z)(n) < y(n). Let
y(n) = n + max,<,y(m) (n € w) (again ¥ is strictly increasing and
vn y(n) <g(n)).

Cram. 3%n G(n) + 7200 | < g(n+1).

Proof. We have to see that 3°n 2/(y(n)) < y(n + 1). We show that
3°n Z(y(n)) < y(n + 1). Suppose there is k such that

vm z(y(k +m)) > y(k+m+1).
Let [ be such that Z!(0) > (k). Since T is increasing, we get for all m,
Yk +m) <z(y(k + (m - 1))
<T@k+(m-2)))<...
<@"(g(k)) <=(0),
which violates 3%°n z2"(0) < y(n). =

Let 7, (n € w) be the (n + 1)th sequence Tg((gan)) for which

g(m) + i) 1< Hm + 1),
Let
e(x,y)(n) = #(<7—0a cee 7Tn>)a

where # means the number in an enumeration of

{<QO7"'7Qn> :
Imog <my <...<my Vi 3k e (G(ms), gimi +1)] g € 28mRY

(Note that y(m; +1) — 1 ¢ dom(p;).)
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Now we define f. Let z € w®”. For each n € w, find o,...,0] so that

z(n) = #(og,...,00)). Let o, be the first of ¢]*’s whose domain is disjoint

from the domains of all ¢/~ ’s (0 is the first of all ¢¥). Then the domains
of 0,,’s are disjoint. Let

fly,2z) = Uon U ((w\ Udom(an)> X {1})
Note that if z(n) = e(z,y)(n) then o, is one of 7;’s for which

e(z,y)(n) = #((10, .-, 7).

Hence, for some m > n, o, = TE(%?BH)). It follows that if e(z,y) =~ 2z then

3%m Tf(%?ln)) C f(y,2),

ie., f(y,z) € M. To see that f(y,z) € P note that {y(m) —1:m > 0} is
disjoint from (J,, dom(oy,). =

3.5. LEMMA. (a) Z5— =ool.

(b) =oct =71
Proof. (a) Let e : w* — w* be continuous such that
{t €w® :¥V*n x(n) # t(n)} € Mc(y)

(Lemma 1.2). Let f =L Then y & M) = = =o f(y).
(b) Let e = 1. Define f : w* — w® by f(y)(n) =y(n)+1. m

Proof of 3.3. (a) C: by 3.5(a). 2: Suppose that every * image of X
into w* is diagonalizable. Let a : X — w® be a * function. We have to show
that (J,cx Mq@z) # 29. Let e, f and g be the functions from Lemma 3.4.
Since g o a is a x function, (g o a)[X] is diagonalizable, so there is y € w*
such that

Ve € X 3%n g(a(x))(n) < y(n).
Define b : X — w* by b(z) = e(a(x),y). Since b is a * function, b[X] is
diagonalizable, say, by z. Then Vo € X f(y,2) & My(a)-

(b) Suppose that X ¢ Non{(M). So, there exists a * function a : X — P
such that a[X] ¢ M. Let f be the function from Lemma 3.5(a). Then
foa: X — w* is a« function and (foa)[X] diagonalizes w®. So, (foa)[X] &
D(=0), and thus X ¢ D*(=.).

(c) Suppose that Y ¢ B* and Z ¢ D*(=). Fix * functions a : ¥ — w*
and b : Z — w® such that a[Y] ¢ B and b[Z] € D(=«). Let e, f and g be
the functions from Lemma 3.4. We show that f[a[Y] x b[Z]] & M. Indeed,
suppose f[a[Y] x b[Z]] C M,. Find y € Y with 3*°n g(z)(n) < a(y)(n).
Next find z € Z such that e(z,y) =« b(z). Then f(a(y),b(z)) € My, a
contradiction.
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Thus there is a * image of Y x Z into P which is nonmeager, i.e.,
Y x Z ¢ Nonj(M). m

Note. Let D be the ideal of nowhere-dense subsets of 2. Choose 2\
Un Upeww My, as its master set. As in Lemma 1.2, we have A € DI(X)
iff there is a closed set B C X x 2“ with all vertical sections nowhere-dense
such that A C B.

The following are equivalent (see [P3]):

o for every F, set B C X x2¢ with all vertical sections meager, |, x Bz
7 2

e for every closed set B C X x 2“ with all vertical sections meager,
Usex Be # 2%

This can be incorporated into our scheme as follows. Clearly Cov'(M) C
Cov' (D). We shall show the opposite inclusion.

First note that if X € Cov'(D), then for every continuous function a :
X — wv there is y € w* with Vo € X 3n a(x)(n) = y(n). (View each
t € 2“ as a sequence of consecutive blocks of 0’s separated by 1’s. Let
7(t) € wS¥ be such that dom(w(¢)) is equal to the number of finite blocks
and m(t)(n) is the number of 0’s in the nth block. Then 7|P is a natural
homeomorphism of P and w“. Now, given continuous a : X — w*, look
at A = {(x,t) € X x 2% : 3In € dom(n(t)) a(x)(n) = n(t)(n)}. Note that
(X x29)\ A e DI(X). Let ¢t € (,cx Az- Define y € w* by y(n) = 7(t)(n)
if n € dom(7(t)), and y(n) = 0 otherwise.)

Next, splitting w into infinitely many infinite sets, we deduce that for
every continuous a : X — w® there is y € w* which diagonalizes a[X],
hence X € Cov'(M).

Note, however, that a countable dense subset of P is in Non*(M) \
Non' (D).

4. Relation to other small sets. Some of the classes introduced above
have been studied before. The definitions were usually given in the language
of covers and subcovers (see [FMi]).

4.1. DEFINITION. Let X be a zero-dimensional separable metric space.

(a) X € H iff for every family G,, (n € w) of open covers of X there exist
Fn € [Gn]< such that X C U, Nysm U Fn-

(b) X € M iff for every family G,, (n € w) of open covers of X there
exist F, € [G,]<“ such that X C J,,JFn.

(c) X € C" iff for every family G,, (n € w) of open covers of X there
exist G,, € G,, such that X C |, G,.

(d) X € T iff for every family G,, (n € w) of open covers of X there exist
Fo € [Ga]=?" such that X C U, Nysm UFn.
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4.2. THEOREM. (a) H = BT.
(b) M =Df.

(c) C" = Covt (M),

(d) T = Adaf(N).

Proof. As noted in [R1], X belongs to H, M, C", T iff for every con-
tinuous function a : X — w®, a[X] belongs to B, D, B(=«), B(€*), respec-
tively. m

As mentioned before, every Borel class is contained in the corresponding
continuous class. The converse fails strongly. MA (Martin’s Axiom) yields
a set X € AddT(N) \ Cof*(N). Rectaw [R3] constructed from MA a v-set
which can be mapped onto w* by a Borel function. A modification of his
construction gives a strong ~y-set with the same property. Strong v, on the
other hand, easily implies Bf(€*). (See [R1] and [GMi] for definitions.)

MA also implies that there is a set of size 280 in Add*(N). Todoréevié
(unpublished) constructed from MA a set X of size 280 whose Borel im-
ages are each strong v-sets, hence also X € Add*(N) (see [R1], for this
construction under CH). Under MA the classes Covt(M) \ Non(M) and
(Covt(N)NB) \Non' (N) are nonempty. All (), k) Lusin sets for x < cov(M)
are in Cov¥(M) \ Non;r (M) (see [R1]), while all (A, k) Sierpinski sets for
x < min(cov(N),b) are in (Covi(N) N B*) \ Non(N) (see [P3]). Recall that
for A > k, a subset of 2 is a (A, k) Lusin (Sierpinski) set if it has size A and
meets every meager (null) set in a set of size < k.

The class Addf(M) \ Cov'(N) is also nonempty under MA (see [BR] for
a construction of a -set which is not strongly meager; it is known that
v = H&C", see [FMi], so y-sets are in Addf(M)).

Since any continuous image of 2¢ into w* is compact, 2 € Bf. However,
consistently 280 = Ry and Non' (V) UNon' (M) UCof*(N) C [w¥]=M. (Miller
[Mil] proved that if Ny Sacks reals are added iteratively to a model of CH,
then every subset of w® of size 2% can be continuously mapped onto 2%,
hence in a Borel way onto w®.)

Recall that a set X C 2% has strong measure zero iff for every meager set
A C2¥ A+ X # 2% (we take the Galvin—-Mycielski-Solovay characterization
of strong measure zero sets as our official definition; see [Mi3]). A set X C 2¢
is strongly meager iff for every null set A C 2¢ A+ X # 2¥. The Borel
Conjecture says that all strong measure zero sets are countable. The Dual
Borel Conjecture says the same about strongly meager sets. Laver [L] showed
that the Borel Conjecture is consistent. Carlson [C] did the same for the Dual
Borel Conjecture. Now, Cov' (M) C [w*]=X° if the Borel Conjecture is true
and Covi(N) C [w*]=X0 if the Dual Borel Conjecture is true. This is so
because of the following theorem ((a) is just a rephrasing of C”" = strong
measure zero).
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4.3. THEOREM. Let X C 2%,

(a) X € Covl(M) = X has strong measure zero.
(b) X € Covl(N) = X is strongly meager.

Proof. (a) Suppose that X C 2* and X € Cov'(M). Let A C 2¢ be
meager. Let B = {(x,9) € 2* x2¥ : y € A+ z}. Then B € MT(X). So,
there is y € 2 \ | J,c x Be- Then y € A+ X.

(b) Similar. m

Consistently B* C [w*]=R0 (Miller [Mi4] showed that consistently ev-
ery o-set is countable; easily, B* sets are o-sets). We do not know whether
Cov(N) U Covt(M) C [w?]=N0 is consistent. We also do not know whether
any of the classes Non*(M), Non*(N), DT can consistently be a subclass of
[w]=R0. The class Cof (M), however, cannot.

4.4. THEOREM. Cof*(M) contains an uncountable set.

Proof. Either cof (M) > Ry, and then [w*]=%t C Cof?, or else cof (M)
= Ny, and then there exists a Lusin set. By [R1] all Lusin sets are in

Covi(M). m

5. Conclusion. We can go beyond Cichon’s diagram. There are more in-
equalities between cardinal characteristics which can be parametrized. Some
parametrizations are quite straightforward (e.g. parametrizations of inequal-
ities involving the splitting number s and the reaping number r, see Blass
[BI]), others require two steps as in Theorems 1.16 and 3.3 (e.g. the equality
add(&, M) = cov(M) from [BSh]).

We can also consider small sets X C 2“ defined by “total continuous”
functions and/or choices (e.g. the sets X such that f[X] € B(-) for all con-
tinuous f : 2* — w“ and/or the sets X such that (J,.y B, € B(-) for all
closed B C 2% x w* whose all vertical sections are in §). This leads to some
suprising results about strong measure zero sets (see [AR], [P3]).

The reader might wish to consult Vojtds [V] and Blass [Bl] to get a
slightly different perspective onto parametrization.

QUESTIONS. (1) Suppose that for every continuous f : w* — w*, f[X]
can be diagonalized. Does it follow that for every closed A C w¥ x w* with
all sections meager | J, y Az # w*? (OK if the horizontal w® is replaced by
a set with property M.)

(2) All the classes from Cichon’s diagram but Cov*(N') are easily seen
to be o-additive (for Cov*(M) one can use Theorem 3.3(a)). Is Cov*(N)
additive?
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(3) Theorem 2.3(b) cannot be strengthened to Non* (M )UD* = Cof*(M).
A modification of a construction from [R1]| gives under CH a set ¥V €
Non*(M)\ Df. Now, if Z is a Lusin set then Z € D*\ Nonf(M),so YU Z €
Cof*\ (Nonf(M)UDT). What about Theorem 3.3(c)? (This is connected with
the so-called “half Cohen real” problem.)

[AR]
[B1]
[B2]
(BJ]

[BR]
[BSh]

[B]]

[F1]

[F2]
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