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Characterization of knot complements in the n-sphere

by

Vo Thanh L i e m (Tuscaloosa, Ala.)
and Gerard A. V e n e m a (Grand Rapids, Mich.)

Abstract. Knot complements in the n-sphere are characterized. A connected open
subset W of Sn is homeomorphic with the complement of a locally flat (n− 2)-sphere in
Sn, n ≥ 4, if and only if the first homology group of W is infinite cyclic, W has one end,
and the homotopy groups of the end of W are isomorphic to those of S1 in dimensions
less than n/2. This result generalizes earlier theorems of Daverman, Liem, and Liem and
Venema.

1. Introduction. In this note we characterize those subsets of the n-
sphere that are homeomorphic to complements of locally flat knots. We find
conditions on an open subset W of Sn under which W is homeomorphic to
Sn − h(Sn−2) for some locally flat topological embedding h : Sn−2 → Sn.
Our main theorem is the following.

Theorem. Let W be a connected open subset of Sn, n ≥ 4, such that
W has one end ε. Then W ∼= Sn − h(Sn−2) for some locally flat topological
embedding h : Sn−2 → Sn if and only if

(1.1) H1(W ) ∼= Z,
(1.2) π1(ε) is stable and π1(ε) ∼= Z, and
(1.3) πi(ε) = 0 for 1 < i < n/2.

The first theorem of this type was proved by Daverman [4, Theorem 4].
Daverman’s theorem is very similar to ours, but he adds the extra hypoth-
esis that W has the homotopy type of a finite complex. The main point of
the present paper is the fact that conditions (1.1)–(1.3) imply that W auto-
matically satisfies this finiteness condition. Our theorem also generalizes a
theorem of Liem [6]. Liem’s theorem is a variation on Daverman’s: he drops
the finiteness condition but adds the additional hypothesis that πi(ε) = 0
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for i = n/2. The hypotheses in our theorem are the intersection of those in
the theorems of Daverman and Liem. It should be noted that each of the
remaining hypotheses is essential; if any one of them is dropped, the other
two are not strong enough to imply the conclusion of the theorem.

The 4-dimensional case of Theorem 1 is already known [7]. At the time
that we proved the earlier theorem we believed that the 4-dimensional case
was special because of the low dimensions involved. Since that time we have
developed stronger techniques for dealing with the algebraic questions that
arise in the middle dimensions (see [7], [8], [13], and [14]). We now realize
that the 4-dimensional theorem is not special; instead we can improve the
high-dimensional theorem.

The main improvement in our theorem over Daverman’s is the fact that
the finiteness condition has been dropped. But we also improve Daverman’s
theorem in that we can get by with a weaker version of condition (1.1).
Daverman assumes that all the homology groups of W match those of S1

while we only assume that H1(W ) is infinite cyclic. Since W is a subset of
Sn, the strong conditions (1.2) and (1.3) on the homotopy groups of the end
of W combine with (1.1) to imply that all the higher homology groups of W
vanish. We do not prove this directly, but it becomes apparent as the proof
develops.

A final way in which our theorem differs from that of Daverman is the fact
that it covers the cases n = 4 and n = 5. As noted above, the 4-dimensional
case of the theorem is proved in [7] and does require some specifically 4-
dimensional techniques. Daverman needs n ≥ 6 because he applies the main
result of Siebenmann’s thesis [10]. Since Siebenmann’s result is now known
to hold in dimension 5 (at least for certain fundamental groups—see [9]),
Daverman’s proof actually does cover the 5-dimensional case. A theorem
similar to ours could be stated in dimension 3, but it would have to take
into account the fact that the expected π1(ε) in that case would be Z⊕ Z.
Another difference in dimension 3 is the fact that it might be W which is
knotted rather than its complement. The statement of the theorem would
have to account for this possibility.
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thank the University and the Slovenian government for their hospitality.
Both authors wish to thank Bob Daverman for listening patiently to the
proof and for making many helpful suggestions.

2. The construction of Wk. For the remainder of this paper we will
assume that n ≥ 5 and use k to denote the greatest integer in (n − 1)/2.
Thus k = (n − 1)/2 if n is odd and k = n/2 − 1 if n is even. Notice that
condition (1.3) can be restated as πi(ε) = 0 for 2 ≤ i ≤ k.
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In this section we perform a sequence of modifications to W to produce
a finite sequence of manifolds W1, . . . ,Wk.

Since π1(ε) is finitely generated, π1(W ) is finitely generated as well. It
follows that the kernel of the Hurewicz homomorphism π1(W ) → H1(W )
is normally generated by a finite set. We do a finite number of 1-surgeries
to kill this kernel. In other words, we find an embedded circle representing
each normal generator of ker[π1(W )→ H1(W )]. A regular neighborhood of
such a curve is homeomorphic with S1 × Bn−1. We remove the interior of
the regular neighborhood and paste in a copy of B2 × Sn−2. We use W1

to denote the manifold which results from doing all the 1-surgeries. Notice
that π1(W1) ∼= Z.

We use J to denote π1(W1) and Λ to denote the integral group ring
Λ = Z[J]. We also use p : W̃1 → W1 to denote the universal cover. Notice
that the homology groups Hi(W̃1) have the structure of modules over the
ring Λ. By [7, Lemma 1.4], W̃1 has one simply connected end.

Now consider π2(W1). Of course π2(W1) ∼= π2(W̃1) ∼= H2(W̃1). Let U be
a manifold neighborhood of ε such that π2(U) → π2(W1) is the trivial ho-
momorphism. Since the end of W̃1 is simply connected, we may assume that
H2(p−1(U))→ H2(W̃1) is trivial as well. In the Mayer–Vietoris sequence

H2(W̃1 − p−1(IntU))⊕H2(p−1(U)) α→ H2(W̃1)
β→ H1(p−1(∂U))

both imα and imβ are finitely generated over Λ and so, using [15, Lem-
ma 1.5], we see that H2(W̃1) is finitely generated over Λ. Thus we can do
a finite number of 2-surgeries to produce a manifold W2 with π2(W2) = 0
(and with π1(W2) still equal to J).

This process is continued inductively through dimension k. In that way
we see that it is possible to produce from W a new manifold Wk which
satisfies π1(Wk) = J and πi(Wk) = 0 for 2 ≤ i ≤ k. Since we perform only a
finite number of surgeries to W , the new manifold has the same end as the
original did. In other words, there are compact sets C ⊂ W and C ′ ⊂ Wk

such that W −C = Wk −C ′. Another important property of Wk is the fact
that Wk is contained in a compact manifold M with M −Wk = Sn −W .
The reason for this is the fact that we can think of the surgeries we have
done to W as being done to Sn ⊃W . Thus M is just the compact manifold
which results from doing our finite sequence of surgeries to Sn. We record
the properties of Wk in a lemma so that they are available for future use.

Lemma 2. It is possible to do a finite number of surgeries to W to produce
a new n-manifold Wk having the following properties:

(2.1) π1(Wk) = J.
(2.2) πi(Wk) = 0 for 2 ≤ i ≤ k.
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(2.3) There exist compact sets C ⊂ W and C ′ ⊂ Wk and a compact
manifold M ⊃Wk such that Sn − C = M − C ′.

3. The homotopy dimension of Wk. In this section we prove the
following lemma.

Lemma 3. Wk has the homotopy type of a (possibly infinite) complex of
dimension n− k − 1.

P r o o f. By Chapter 3 of Siebenmann’s thesis [10, Theorem 3.10], the
end of Wk has arbitrarily close 1-neighborhoods. This means that for every
compact set C ⊂ Wk there exists a neighborhood U of the end of Wk such
that U ⊂ Wk − C and the inclusion induced homomorphism π1(∂U) →
π1(U) ∼= π1(ε) ∼= Z is an isomorphism. (In this setting it is obvious that
∂U must carry a generator of π1(ε), so the proof is accomplished by trading
2-handles to kill the kernel of the homomorphism π1(∂U) → π1(U). It is
not necessary to trade any 1-handles as in the general case.) It should also
be observed that, by [7, Lemma 1.1], the inclusion induced map π1(U) →
π1(Wk) is an isomorphism.

Once we have arbitrarily close 1-neighborhoods of the end, we can pro-
ceed to construct k-neighborhoods of the end. For each compact subset C of
Wk there exists a neighborhood U of ε such that the inclusion induced ho-
momorphism π2(U)→ π2(Wk −C) is trivial. Thus we can attach 3-handles
to U to kill π2(U). This can be accomplished as in the proof of [2] or [10] and
results in a 2-neighborhood of the end. It should be noted that, in contrast
with the surgery done in the previous section, the surgery being done here
is ambient surgery; the handle is added to U by subtracting it from Wk−U .
Using induction we construct arbitrarily close k-neighborhoods of the end.
Embedding the handles we need is relatively easy because k < n/2. (Only
the case n = 5 requires special care.)

Let C be a PL embedded circle in Wk which represents a generator of
the fundamental group and let N be a regular neighborhood of C in Wk.
Define U0 = Wk −N . By the previous paragraph we can inductively find a
sequence U0, U1, . . . of closed neighborhoods of the end so that Ui+1 ⊂ IntUi
for each i,

⋂∞
i=0 Ui = ∅, π1(Ui)→ π1(U0) is an isomorphism for every i, and

πj(Ui) = 0 for 2 ≤ j ≤ k and for every i. Let Vi = Ui−1 − IntUi. Then
Hj(Ṽi, ∂Ũi) = Hj(Ũi−1, Ũi) by excision. The exact sequence

0 = Hj(Ũi−1)→ Hj(Ũi−1, Ũi)→ Hj−1(Ũi) = 0

shows that Hj(Ṽi, ∂Ũi) = 0 for every j ≤ k and for every i.
We can think of Vi as a cobordism based on ∂Ui. As in the proof of the

s-cobordism theorem, the observation in the previous paragraph allows us to
trade handles to eliminate all handles of dimensions ≤ k. If we think dually
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of Vi as a cobordism based on ∂Ui−1, then we have cancelled all handles of
index ≥ n−k. Thus each Vi collapses to ∂Ui−1∪Ki where Ki is a polyhedron
of dimension n − k − 1. Since ∂U0 = ∂N and N collapses to the circle C,
it follows that Wk has the homotopy type of an (n − k − 1)-dimensional
complex.

4. The finiteness of Wk in case n is odd. Suppose n is odd. Then
k = (n− 1)/2, so n− k − 1 = k.

Lemma 4. If n is odd , then Wk has the homotopy type of S1.

P r o o f. By Lemmas 2 and 3, Wk has the homotopy type of a k-dimen-
sional complex K with π1(K) ∼= Z and πi(K) = 0 for 2 ≤ i ≤ k. By the
Hurewicz theorem, the universal cover of K is contractible. Thus all the
higher homotopy groups of K vanish and K has the homotopy type of S1.

5. The finiteness of Wk in case n is even. In case n is even, we
will show that Wk has the homotopy type of the wedge of one copy of
S1 together with a finite number of copies of Sk+1. Notice that, in case
n is even, k = n/2 − 1, so n − k − 1 = k + 1. It follows from Lemmas 2
and 3 that Wk has the homotopy type of a (k + 1)-dimensional polyhedron
L such that π1(L) ∼= Z and πi(L) = 0 for 2 ≤ i ≤ k. We must examine
πk+1(L) ∼= Hk+1(W̃k).

Lemma 5.1. Hk+1(W̃k) is a free Λ-module.

P r o o f. First we observe that Hk+1(W̃k) is a projective module over
Λ by [15, Lemma 2.1]. But every projective module over Z[J] is free ([12]
and [1]).

Lemma 5.2. Hk+1(Wk) is finitely generated over Z.

P r o o f. Let X = Sn −W = M −Wk. We begin by showing that the
kth Čech cohomology group of X is finitely generated. Let Ui be one of the
submanifolds of Wk constructed in the proof of Lemma 3. Then Ui ∪X is a
neighborhood of X in M and X has arbitrarily close neighborhoods of this
kind. In the Mayer–Vietoris sequence

0 = Hk−1(Ui)→ Hk(M)→ Hk(Ui ∪X)⊕Hk(Wk)→ Hk(Ui) = 0,

Hk(Wk) = 0, so there is a natural isomorphism from Hk(Ui ∪X) to Hk(M).
Thus

Ȟk(X) = lim−→Hk(Ui ∪X) ∼= Hk(M)

and Ȟk(X) is finitely generated.
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By Alexander Duality we have Hk+2(M,Wk) ∼= Ȟk(X). This means that
both the first and the last terms in the exact sequence

Hk+2(M,Wk)→ Hk+1(Wk)→ Hk+1(M)

are finitely generated, so the middle term is as well.

Lemma 5.3. Hk+1(W̃k) is finitely generated over Λ.

P r o o f. Let t denote a generator of the group of deck transformations of
W̃k. The exact sequence

0→ C∗(W̃k) t−1−→ C∗(W̃k)
p∗−→ C∗(Wk)→ 0

of chain complexes gives rise to an exact sequence

. . .→ Hk+1(W̃k) t−1−→ Hk+1(W̃k)
p∗−→ Hk+1(Wk)→ 0

of homology groups. Thus

Hk+1(W̃k)/ im(t− 1) ∼= Hk+1(Wk).

Now Hk+1(W̃k) is free over Λ by Lemma 5.1. Hence

Hk+1(W̃k) =
⊕

i∈I
Λi

where each Λi is a copy of Λ and I is some countable indexing set. The
homomorphism (t − 1) respects this decomposition, so we must look at
Λ/ im(t−1). Now Λ consists of all Laurent polynomials in t with coefficients
in Z. It is easy to see that two such polynomials p1 and p2 are equivalent
over im(t− 1) if and only if p1(1) = p2(1). Thus Λ/ im(t− 1) ∼= Z and so

Hk+1(W̃k)/ im(t− 1) ∼=
(⊕

i∈I
Λi

)/
im(t− 1)

=
⊕

i∈I
(Λi/ im(t− 1)) ∼=

⊕

i∈I
Z.

On the other hand,Hk+1(W̃k)/ im(t−1) ∼= Hk+1(Wk), and so Lemma 5.2 im-
plies that the indexing set I must be finite. Let us say that I = {1, . . . ,m}.

Lemma 5.4. Wk has the homotopy type of S1 ∨ (
∨m
i=1 S

k+1
i ).

P r o o f. We know thatWk has the homotopy type of a (k+1)-dimensional
polyhedron L with π1(L) ∼= Z, πi(L) = 0 for 2 ≤ i ≤ k and πk+1(L) a
finitely generated free module over Z[π1(L)]. This is enough information to
construct a natural map S1∨ (

∨m
i=1 S

k+1
i )→ L which induces isomorphisms

on πi for i ≤ k + 1. This map is a homotopy equivalence by the Whitehead
Theorem [16, Theorem 1].
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6. The proof of the Theorem. In this section we complete the proof of
the Theorem. First we apply Siebenmann’s thesis [10] to conclude that the
end of Wk is collared. (We need some help from Quinn [9] in dimension 5.)
Since W has the same end, this means that the end of W is collared as well.
Thus there is a compact manifold P ⊂ W such that W − P ∼= ∂P × [0, 1).
The hypotheses (1.1)–(1.3) imply that π1(P ) ∼= π1(∂P ) ∼= Z and πi(∂P ) = 0
for 2 ≤ i ≤ k.

Let Q = Sn − P . Since Sn is simply connected, there must be a disk
(D, ∂D) ⊂ (Q, ∂Q) such that ∂D represents a generator of π1(∂P ). (See
[4, p. 370].) Let B be an n-cell in Q, B ∼= D × In−2, such that B ∩ ∂P
is a neighborhood of ∂D in ∂P . Define S = ∂(P ∪ B). Notice that S is
obtained from ∂P by doing 1-surgery on a generator of π1(∂P ), so S is an
(n− 1)-manifold with πi(S) = 0 for i ≤ (n− 1)/2. The Poincaré Conjecture
in dimensions ≥ 4 ([5] and [11]) tells us that S is an (n − 1)-sphere. Then
the Schoenflies Theorem [3] tells us that S bounds an n-cell in Sn. Hence
Q consists of an n-cell with an (n − 2)-handle attached. There is therefore
a homeomorphism h : Sn−2 × I2 → Q. Finally, we see that W ∼= P ∪ (∂P ×
[0, 1)) ∼= Sn − h(Sn−2 × {point}) and the proof is complete.

References

[1] H. Bass, Projective modules over free groups are free, J. Algebra 1 (1964), 367–373.
[2] W. Browder, J. Lev ine and G. R. Livesay, Finding a boundary for an open

manifold , Amer. J. Math. 87 (1965), 1017–1028.
[3] M. Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc.

66 (1960), 74–76.
[4] R. J. Daverman, Homotopy classification of locally flat codimension two spheres,

Amer. J. Math. 98 (1976), 367–374.
[5] M. H. Freedman, The topology of four-dimensional manifolds, J. Differential

Geom. 17 (1982), 357–453.
[6] V. T. Liem, Homotopy characterization of weakly flat knots, Fund. Math. 102

(1979), 61–72.
[7] V. T. Liem and G. A. Venema, Characterization of knot complements in the

4-sphere, Topology Appl. 42 (1991), 231–245.
[8] —, —, On the asphericity of knot complements, Canad. J. Math. 45 (1993), 340–356.
[9] F. Quinn, Ends of maps, III : dimensions 4 and 5, J. Differential Geom. 17 (1982),

503–521.
[10] L. C. S iebenmann, The obstruction to finding a boundary for an open manifold of

dimension greater than five, Ph.D. dissertation, Princeton Univ., Princeton, N.J.,
1965.
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