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Abstract. We prove that every nonmetrizable compact connected Abelian group G
has a family H of size |G|, the maximal size possible, consisting of proper dense pseu-
docompact subgroups of G such that H ∩ H ′ = {0} for distinct H,H ′ ∈ H. An easy
example shows that connectedness of G is essential in the above result. In the general case
we establish that every nonmetrizable compact Abelian group G has a family H of size
|G| consisting of proper dense pseudocompact subgroups of G such that each intersection
H ∩H ′ of different members of H is nowhere dense in G. Some results in the non-Abelian
case are also given.

1. Results. All topological groups considered in this paper are as-
sumed to be T0 (and therefore, completely regular). The cardinality of a set
X is denoted by |X|, and w(X) denotes the weight of a topological
space X. A (completely regular) space X is pseudocompact if every real-
valued continuous function defined on it is bounded [14].

Every nonmetrizable compact Abelian group contains a proper dense
pseudocompact subgroup (1). This result brings into consideration the fol-
lowing vague question:

1.1. Question. Given a nonmetrizable compact group G, is it possible
to find a “large” family H = {Hα : α < τ} consisting of “distinct” proper
dense pseudocompact subgroups of G?
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Both words enclosed in quotes in Question 1.1 require additional discus-
sion. We start with the second word. The obvious way to interpret “distinct”
is simply to require Hα 6= Hβ for different α, β < τ . A slightly stronger con-
dition was considered by Comfort [4] who added the requirement that the
intersection Hα ∩Hβ not be dense in G for different α, β < τ (thus trivially
Hα 6= Hβ for α 6= β). One can get an even stronger measure of distinctive-
ness by requiring each intersection Hα∩Hβ with α 6= β to be nowhere dense
in G. Finally, a much stronger interpretation of “distinct” would be to insist
that Hα ∩ Hβ = {e} for α 6= β, where e is the identity element of G. The
next definition pushes the last two conditions even further.

1.2. Definition. Let H = {Hα : α < τ} be a family of subgroups of a
topological group G, and let 〈X〉 denote the smallest subgroup of G that
contains X ⊆ G. We say that H is

(i) weakly almost disjoint if the intersection Hα ∩ 〈
⋃{Hβ : β 6= α}〉 is

nowhere dense in G for each α < τ , and
(ii) almost disjoint if Hα ∩ 〈

⋃{Hβ : β 6= α}〉 = {e} for every α < τ .

If G is not discrete (for example, compact and infinite), then every almost
disjoint family of subgroups of G is weakly almost disjoint, which justifies
the terminology.

To help understand the word “large”, the following lemma gives a con-
straint on the size of the family H in Question 1.1:

1.3. Lemma. Let G be an infinite compact group and let H={Hα : α < τ}
be a family of dense subsets of G such that the intersection Hα ∩Hβ is not
dense in G for α 6= β. Then |H| = τ ≤ |G|.

P r o o f. Indeed, let w(G) = κ, and let B be a base for G with |B| ≤ κ.
For each α < τ choose a dense set Dα ⊆ Hα with |Dα| ≤ κ. Since Hα is
dense in G, so is each Dα. Let [G]≤κ be the family of all subsets of G of
cardinality ≤ κ, and let F be the family of all functions f : B → [G]≤κ.
We claim that |F| ≤ |G|. Indeed, by Lemma 2.2 below, |G| = 2κ, and so
|[G]≤κ| = 2κ. Since we also have |B| ≤ κ, the desired inequality follows.
For each α < τ define fα ∈ F by fα(U) = U ∩ Dα for U ∈ B. Since all
Dα’s are dense in G, while each intersection Dα ∩Dβ ⊆ Hα ∩Hβ for α 6= β
is not dense in G, one may easily deduce that fα 6= fβ for α 6= β. Since
{fα : α < τ} ⊆ F , this yields τ ≤ |F| ≤ |G|.

Comfort [4] was apparently the first to consider a special case of Ques-
tion 1.1. The definition of an almost disjoint family of subgroups (Defi-
nition 1.2(ii)) is also due to Comfort [6]. The notion was later developed
in [7].

In this paper we establish a number of results on the existence of (weakly)
almost disjoint families H consisting of dense pseudocompact subgroups in
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compact groups. Since the bigger the size of the family H the better, it is
natural to maximize its size |H|. Lemma 1.3 gives us an upper bound for
the cardinality of such an H:

1.4. Corollary. If H is a weakly almost disjoint family of dense sub-
groups of an infinite compact group G, then |H| ≤ |G|.

We start with the special case when G is Abelian.

1.5. Theorem. For every nonmetrizable compact Abelian group G there
exists a weakly almost disjoint family of size |G| consisting of dense pseu-
docompact subgroups of G.

Theorem 1.5 improves substantially the result of Comfort [4] who showed
the existence of a family {Hα : α < c} of dense pseudocompact subgroups of
G such that Hα ∩Hβ is not dense in G for distinct α, β < c (here c denotes
the cardinality of the continuum).

For connected groups we can significantly strengthen Theorem 1.5:

1.6. Theorem. Let G be a nonmetrizable compact connected Abelian
group and K any closed , totally disconnected subgroup of G. Then there
exists an almost disjoint family H consisting of dense pseudocompact sub-
groups of G such that |H| = |G| and 〈⋃H〉 ∩K ⊆ {0}. In addition, each
H ∈ H is algebraically isomorphic to the free Abelian group of size |G|.

It turns out that connectedness of G is essential in Theorem 1.6, and
therefore one cannot replace weak almost disjointness by almost disjointness
in Theorem 1.5. The next example, essentially due to Wilcox, demonstrates
this:

1.7. Example. Let p and q be different primes. For a prime number
p we use Z(p) to denote the quotient group Z/pZ, where Z is the group
of integers. If G is a dense subgroup of Z(p)τ × Z(q), then G = H × Z(q)
for some dense subgroup H of Z(p)τ . In particular, if G and G′ are dense
subgroups of Z(p)τ × Z(q), then G ∩G′ ⊇ {0} × Z(q) 6= {0} × {0}.

A particular case of this example was considered by Wilcox [24, Exam-
ple 2.5], but he proved the analogous statement only in the special case
when G is pseudocompact. The analysis of his proof shows though that
pseudocompactness of G is superfluous and can be omitted. For complete-
ness we present a proof of the italicized statement. Let g ∈ Z(q) \ {0}.
Since Ug = Z(p)τ ×{g} is an open subset of Z(p)τ ×Z(q) and G is dense in
Z(p)τ ×Z(q), there is (g′, g) ∈ Ug∩G. Since G is a subgroup of Z(p)τ ×Z(q),
(0, pg) = (pg′, pg) = p · (g′, g) ∈ G. Observe that, since p and q are differ-
ent primes and g ∈ Z(q) \ {0}, h = pg 6= 0. Since 〈h〉 = Z(q), (0, h) ∈ G
and G is a subgroup of Z(p)τ × Z(q), we conclude that {0} × Z(q) ⊆ G.
Let H ⊆ Z(p)τ be the image of G under the projection from Z(p)τ × Z(q)
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onto Z(p)τ . Obviously H is a dense subgroup of Z(p)τ . From the inclusion
{0} × Z(q) ⊆ G it follows that G = H × Z(q).

All groups in Example 1.7 are torsion. The next theorem and its corol-
laries show that Theorem 1.6 remains valid also for some special nontorsion
Abelian groups. (Recall that a subset of an Abelian group G is independent
if the smallest subgroup of G generated by it is isomorphic to a free Abelian
group.)

1.8. Theorem. Let G be an infinite compact Abelian group such that
every closed Gδ-subgroup of G contains an independent set of size |G|. Then
there exists an almost disjoint family H of dense pseudocompact subgroups
of G such that |H| = |G| and each H ∈ H is algebraically isomorphic to the
free Abelian group of size |G|.

Theorem 1.8 is applicable to a variety of groups given by Cartesian prod-
ucts:

1.9. Corollary. Let G =
∏{Gα : α < τ} be an uncountable product

of compact Abelian groups each of which has cardinality ≤ 2τ . Suppose that
τ many Gα’s contain a subgroup algebraically isomorphic to Z. Then there
exists an almost disjoint family H of dense pseudocompact subgroups of G
such that |H| = |G| and each H ∈ H is algebraically isomorphic to the free
Abelian group of size |G|.

P r o o f. Let H be a closed Gδ-subgroup of G. Then there is a countable
set A ⊆ τ such that N = {0A}×G′ ⊆ H, where 0A is the zero element of the
group

∏{Gα : α ∈ A} and G′ =
∏{Gα : α ∈ τ \A}. Since τ ≥ ω1, |B \A| =

τ , where B = {α ∈ τ : Gα contains a subgroup algebraically isomorphic to
Z}. Since each Gα with α ∈ B contains a subgroup algebraically isomorphic
to Z, G′ =

∏{Gα : α ∈ B \ A} ⊆ H has an independent subset Y of
size 2|B\A| = 2τ . Then X = {0A} × Y ⊆ N ⊆ H is an independent set of
size 2τ . Now observe that |G| = 2τ and apply Theorem 1.8.

1.10. Corollary. Let G =
∏{Gα : α < τ} be an uncountable product

of compact metric Abelian groups. If τ many Gα’s contain a subgroup alge-
braically isomorphic to Z, then there exists an almost disjoint family H of
size |G| consisting of dense pseudocompact subgroups of G. Moreover , each
H ∈ H is algebraically isomorphic to the free Abelian group of size |G|.

P r o o f. Since each Gα is a compact metric space, we have |Gα| ≤ c ≤ 2τ ,
and Corollary 1.9 can be applied.

Theorem 1.6 remains also valid for some torsion groups G such as, for
example, Z(p)τ for τ ≥ ω1; see Lemma 3.4 (compare this with Example 1.7).

The situation in the non-Abelian case is much more complicated. In
particular, the authors do not know the answer to the following
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1.11. Question. Can one drop the word “Abelian” in Theorem 1.5 (2)?

However, we can give a positive answer to Question 1.11 in the connected
case:

1.12. Theorem. For every nonmetrizable compact connected group G
there exists a weakly almost disjoint family of size |G| consisting of dense
pseudocompact subgroups of G.

Quite surprisingly, Theorem 1.6 is not valid in the non-Abelian case,
so the common generalization of both Theorems 1.6 and 1.12 which could
have been obtained via removing the word “weakly” in Theorem 1.12 is
impossible. This is the substance of our next example:

1.13. Example. Let N be a compact Abelian group, K a non-Abelian
compact metric group and C 6= {e} the commutator subgroup of K, i.e. the
smallest subgroup of K generated by the set {xyx−1y−1 : x, y ∈ K}. Then
every dense pseudocompact group H ⊆ G = N × K contains {0} × C 6=
{0}× {e}. Therefore, there is no pair of dense pseudocompact subgroups of
G with a trivial intersection. If both N and K are connected (one may take
the group SO(3,R) of all 3 × 3 matrices with determinant 1 as K), then
G provides an example of a compact connected group without any pair of
distinct dense pseudocompact subgroups with a trivial intersection.

Indeed, it suffices to show that ghg−1h−1 ∈ H whenever g = (g0, g1) ∈
H ⊆ N × K and h = (h0, h1) ∈ H ⊆ N × K. Since K is metric, both
Fg = N × {g1} and Fh = N × {h1} are closed Gδ-subsets of G. Since H is
pseudocompact and dense in G, H must meet these two sets ([10]; see also
[5, Theorem 6.4]). So let g = (g0, g1) ∈ H ∩ Fg and h = (h0, h1) ∈ H ∩
Fh. Then ghg−1h−1 = (0, g1h1g

−1
1 h−1

1 ) = ghg−1h
−1 ∈ H because H is a

subgroup of G. Since g1, h1 are arbitrary elements of K, {0} × C ⊆ H.

A careful analysis of Example 1.13 shows that the main reason for the
pathology is that the “non-Abelian part” of G is small. If this part is big
enough, we do get a positive result:

1.14. Theorem. Let G be a nonmetrizable connected group with cen-
ter Z. If w(G/Z) = w(G), then there exists an almost disjoint family H
consisting of dense pseudocompact subgroups of G such that |H| = |G| and
each H ∈ H is algebraically isomorphic to the free group of size |G|.

(2) In fact, it is not even known in ZFC whether every nonmetrizable compact group
has a proper dense pseudocompact subgroup. As was mentioned in the paragraph preced-
ing Question 1.1, the answer is positive in the Abelian case (this also follows from The-
orem 1.5). Theorem 1.12 below shows that the answer is positive for connected groups.
The authors recently proved that the answer is also positive under 2ω < 2ω1 [18]. We note
in passing that the situation is different for locally compact groups, since there exists a
locally compact Abelian group without a proper dense subgroup [21].
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Since a compact metric space does not contain proper dense pseudocom-
pact subspaces, “nonmetrizable” is essential in Theorems 1.5, 1.6, 1.12 and
1.14, as well as in Corollaries 1.9 and 1.10.

1.15. Question. Is it possible to choose the families H in Theorems 1.6
and 1.14 satisfying the additional restriction that each H ∈ H is a (alge-
braically) normal subgroup of G?

Recall that a space X is countably compact if every infinite subset of
X has an accumulation point, and X is ω-bounded if the closure of every
countable subset of X is compact. One can easily see that ω-bounded ⇒
countably compact⇒ pseudocompact. It is therefore natural to ask the fol-
lowing question: Which of our results (if any) can be improved via replacing
“pseudocompact” by “countably compact” (or even, “ω-bounded”) in their
conclusions? To motivate this question, it should be mentioned that Com-
fort [3] proved that every compact Abelian group contains a proper dense
ω-bounded (hence countably compact) subgroup, and the authors recently
showed that the same is true for every compact connected group [19]. Fur-
thermore, under 2ω < 2ω1 , each compact group has a proper dense countably
compact subgroup [18].

The following example, which is a particular case of a recent result by
Dikranjan [12, Lemma 2.4], demonstrates that at least Theorem 1.8 and
Corollaries 1.9, 1.10 are sharp in the sense that in their conclusions “pseu-
docompact” cannot be strengthened even to “countably compact”.

1.16. Example. Let p > 1 be any prime number, and let Zp be the (com-
pact, totally disconnected) group of p-adic numbers (note that Zp contains
a copy of Z). Define G = T × Zω1

p , and let C = T × {0} be the connected
component of G, where 0 is the zero element of Zω1

p . Then C ⊆ H for every
dense, countably compact subgroup H of G. In particular, H∩H ′ ⊇ C 6= {0}
whenever H and H ′ are dense, countably compact subgroups of G.

However, the above example leaves open the following

1.17. Question. In Theorems 1.5, 1.6, 1.12 and 1.14, can one replace
“pseudocompact” by “countably compact” (or even, “ω-bounded”)?

Some results of this paper were announced in [17].

2. Preliminaries. For Abelian groups we use additive notation. In par-
ticular, 0 always denotes the zero element of an Abelian groupG. The symbol
e denotes the identity element of a non-Abelian group G. We use 〈X〉 to
denote the smallest subgroup of G that contains X ⊆ G. For x ∈ G we write
〈x〉 instead of 〈{x}〉. A subset X ⊆ G of an Abelian group G is indepen-
dent if 〈X〉 is the free Abelian group over X, or equivalently, if, whenever
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x0, . . . , xn ∈ X are distinct, k0, . . . , kn ∈ Z and k0x0 + . . .+ knxn = 0, then
k0 = . . . = kn = 0. We use Z(p) to denote the quotient group Z/pZ.

In this section we collect some “folklore” results that we need for future
references. Their proofs will be mostly omitted.

2.1. Lemma. If π : G → H is a continuous group homomorphism of a
compact group G onto a topological group H, then π(F ) is a Gδ-subset of H
for every closed Gδ-set F ⊆ G.

2.2. Lemma [5, Theorem 3.1(i)]. |G| = 2w(G) for every infinite compact
group G.

2.3. Lemma ([10]; see also [5, Theorem 6.4]). Let H be a subgroup of a
compact group G such that H∩F 6= ∅ for every nonempty , closed Gδ-subset
of G. Then H is pseudocompact (and dense in G).

2.4. Lemma. If F is the family of all closed Gδ-subsets of an infinite
compact group G, then |F| ≤ |G|.

2.5. Lemma (the Disjoint Refinement Lemma). Let τ be an infinite car-
dinal and let F be a family of subsets of a set Z with |F| ≤ τ . Suppose also
that X is a subset of Z such that |X ∩F | = τ for every F ∈ F . Then there
is a partition X =

⋃{Xα : α < τ} of X into pairwise disjoint sets of size τ
so that F ∩Xα 6= ∅ whenever α < τ and F ∈ F .

We finish this section with the lemma which will be our technical tool
for constructing weakly almost disjoint families in Theorems 1.5 and 1.12.

2.6. Lemma. Let π : G → H be a continuous group homomorphism
of a compact group G onto an infinite group H. If {Hα : α < τ} is a
weakly almost disjoint family of dense pseudocompact subgroups of H, then
{π−1(Hα) : α < τ} is a weakly almost disjoint family of dense pseudocom-
pact subgroups of G.

P r o o f. Each π−1(Hα) is a dense pseudocompact subgroup of G
[11, Lemma 4.1(b)]. Being a continuous group homomorphism defined on
a compact group, the map π is both open and closed, so π−1(E) is nowhere
dense in G for every set E nowhere dense in H, and the result follows.

3. Proofs of Theorems 1.5, 1.6 and 1.8. We first prove Theorem
1.8, then Theorem 1.6, and finally, Theorem 1.5. Such an unusual order is
due to the fact that both Theorem 1.6 and Theorem 1.8 are required for the
proof of Theorem 1.5, and some features of the proof of Theorem 1.8 are
also used in that of Theorem 1.6.

P r o o f o f T h e o r e m 1.8. Let κ = |G|. We are going to find a collec-
tion {Hα : α < κ} of subgroups of G such that:
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(i) each Hα is a free Abelian group of size κ,
(ii) Hα ∩ 〈

⋃{Hβ : β 6= α}〉 = {0} for all α < κ, and
(iii) if α < κ and F ⊆ G is a nonempty Gδ-set, then Hα ∩ F 6= ∅.
We get the combination of (i) and (ii) once we construct a disjoint fam-

ily {Iα : α < κ} of independent sets, each of size κ, such that the union⋃{Iα : α < κ} is independent as well. We may then set Hα = 〈Iα〉 for each
α. Lemma 2.3 would give us pseudocompactness of all Hα’s as soon as we
ensure property (iii). To get it we simply insist that Iα ∩ F 6= ∅ for every
α < κ and each nonempty Gδ-set F in G.

By Lemma 2.4, the set of nonempty Gδ-subsets of G may be enumerated
as {Fβ : β < κ}. By the assumptions of our theorem we can choose, for
each β, an independent set Dβ ⊆ Fβ of size κ. Without loss of generality
we may assume that Dβ ’s are pairwise disjoint. Now by a straightforward
induction one can construct an independent set D such that |D ∩Dβ | = κ
for all β. Let D ∩ Dβ = {xβα : α < κ} (without repetition). Finally, set
Iα = {xβα : β < κ}. The collection {Iα : α < κ} is as required.

P r o o f o f T h e o r e m 1.6. Observe that to prove our theorem, it suf-
fices to modify the proof of Theorem 1.8 to make sure that the set D chosen
there would satisfy the condition 〈D〉 ∩ K ⊆ {0}. One can easily verify
that the inductive construction of D with this additional condition can be
carried out provided that we can choose all Dβ ⊆ Fβ in such a way that
〈Dβ〉 ∩K ⊆ {0}. Therefore, Lemma 3.1 below completes the proof of The-
orem 1.6.

3.1. Lemma. Let G be a nonmetrizable, compact , connected Abelian
group, K its closed , totally disconnected subgroup and F a nonempty closed
Gδ-subset of G. Then there is an independent set X ⊆ F such that |X| =
|G| and 〈X〉 ∩K = {0}.

P r o o f. Let τ = w(G). First we will check the following

Claim. There exists a continuous, surjective group homomorphism π :
G→ Tτ with K ⊆ kerπ.

P r o o f. There exists a continuous, surjective group homomorphism ϕ :
G → Tτ (see, for example, [11, Lemma 5.2]). Note that L = ϕ(K) is a
totally disconnected subgroup of Tτ , and so is each image Nα = πα(L) ⊆ T
of L under the αth projection πα : Tτ → T. Being closed in T, Nα must be
finite. Observe that

L ⊆ N =
∏
{Nα : α < τ} ⊆ Tτ .

Since every T/Nα is topologically isomorphic to T, it follows that Tτ/N is
topologically isomorphic to Tτ . Let ψ : Tτ → Tτ be the natural quotient ho-
momorphism with the kernel N . Finally, π = ψ◦ϕ : G→ Tτ is a continuous,
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surjective homomorphism and

K ⊆ ϕ−1(ϕ(K)) = ϕ−1(L) ⊆ ϕ−1(N)

⊆ ϕ−1(ψ−1(0)) = π−1(0) = kerπ.

Returning back to the proof of our lemma, note that π(F ) is a Gδ-subset
of T τ (Lemma 2.1), so π(F ) contains an independent subset Y of size 2τ . For
every y ∈ Y choose xy ∈ F so that π(xy) = y, and let X = {xy : y ∈ Y }. One
can easily check that X is an independent subset of F with |X| = |Y | = 2τ

and 〈X〉∩K ⊆ 〈X〉∩kerπ ⊆ {0}. Now it remains only to note that |G| = 2τ

by Lemma 2.2.

3.2. Lemma. Let G be a compact Abelian group of weight κ ≥ ω1. Then
there exists a continuous group homomorphism π : G → H of G onto
a (compact Abelian) group H which contains an almost disjoint family
{Hα : α < 2κ} of dense pseudocompact subgroups of H.

P r o o f o f T h e o r e m 1.5. Since G is not metrizable, its weight κ is
uncountable. Let H be as in the conclusion of Lemma 3.2. Then, according to
Lemma 2.6, G has a weakly almost disjoint family {Gα : α < 2κ} consisting
of dense pseudocompact subgroups of G. Now it remains only to note that
|G| = 2κ by Lemma 2.2.

The rest of this section is devoted to proving Lemma 3.2. To do this we
need two auxillary lemmas first. In what follows we will use P to denote the
set of all prime numbers bigger than 1.

3.3. Lemma. Suppose that {κp : p ∈ P} is a set of cardinals, κ = sup{κp :
p ∈ P} ≥ ω1 and 2κp < 2κ for all p ∈ P. Then every closed Gδ-subgroup of
H =

∏{Z(p)κp : p ∈ P} contains an independent set of size |H| = 2κ.

P r o o f. Let H ′ be a closed Gδ-subgroup of H. Then for every p ∈ P
there is a countable set Ap ⊆ κp such that

N =
∏
{{0Ap} × Z(p)κp\Ap : p ∈ P} ⊆ H ′,

where 0A denotes the zero element of the group Z(p)A. Define κ′p = |κp \Ap|
and observe that the group N is isomorphic to

∏{Z(p)κ
′
p : p ∈ P}, κ =

sup{κ′p : p ∈ P} ≥ ω1 and 2κ
′
p < 2κ for all p ∈ P. This argument shows

that to prove our lemma, it suffices only to check that H itself contains an
independent set of size |H| = 2κ.

Let t(H) be the torsion subgroup of H. We have t(H) =
⊕{Hp : p ∈ P},

where Hp = {h ∈ H : ph = 0} is the p-torsion part of H [15, Theorem A.3].
Now observe that Hp = Z(p)κp , and so |Hp| = 2κp . Since 2κp < 2κ for all
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p ∈ P, by König’s theorem [8, Theorem 1.19] we have

|t(H)| =
∣∣∣
⊕
{Hp : p ∈ P}

∣∣∣
=
∑
{|Hp| : p ∈ P} =

∑
{2κp : p ∈ P} < (2κ)ω = 2κ.

Since |t(H)| < |H|, we conclude that H contains an independent set of size
|H| = 2κ.

3.4. Lemma. If p ∈ P and κ ≥ ω1, then there is an almost disjoint family
of size 2κ consisting of dense pseudocompact subgroups of Z(p)κ.

P r o o f. Let τ = 2κ = |Z(p)κ|, and let F be the family of all closed,
nonempty Gδ-subsets of Z(p)κ. We have |F| ≤ τ by Lemma 2.4. Also, |F | =
τ for every F ∈ F . This permits us to use a straightforward transfinite
induction to construct a set X = {xα : α < τ} such that

(i) xα 6∈ 〈{xβ : β < α}〉 for α < τ , and
(ii) |X ∩ F | = τ for every F ∈ F .

Let X = {Xα : α < τ} be a partition of X of the form given in Lemma
2.5. Then each Hα = 〈Xα〉 is a dense pseudocompact subgroup of Z(p)κ

(Lemma 2.3), and from (i) it follows that {Hα : α < τ} is an almost disjoint
family of subgroups of Z(p)κ.

P r o o f o f L e m m a 3.2. Let Ĝ be the dual group of G. Then
|Ĝ| = w(G) = κ (see [15, Theorem 24.15(i)]). Since Ĝ is uncountable,
|Ĝ| = sup{rp(Ĝ) : p ∈ P ∪ {0}}, where r0(H) = sup{|X| : X is an in-
dependent subset of H} is the free rank of H and rp(H) = sup{κ : H
contains a subgroup algebraically isomorphic to Z(p)(κ)} is the p-rank of H
for p ∈ P. (As usual, for an Abelian group G we use G(κ) to denote the
weak direct product (= free sum) of κ many copies of G.) If r0(Ĝ) = κ, then
there exists a continuous surjective homomorphism π : G → Tκ (see [11,
Proof of Lemma 5.2]), and H = Tκ will work by Theorem 1.6 (proved by
this time). So, without loss of generality, we will assume in the future that
r0(Ĝ) < κ. For typographical reasons set κp = rp(Ĝ). By our assumption
we have κ = |Ĝ| = sup{κp : p ∈ P}, and we need to consider two cases.

C a s e 1: 2κp = 2κ for some p ∈ P. In this case Ĝ contains a subgroup
algebraically isomorphic to Z(p)(κp), and so there is a continuous surjective
homomorphism π : G → Z(p)κp (see [11, Proof of Theorem 4.3]). Since
2κp = 2κ, H = Z(p)κp satisfies the conclusion of our theorem by Lemma 3.4.

C a s e 2: 2κp < 2κ for all p ∈ P. In this case Ĝ contains a subgroup
isomorphic to

⊕{Z(p)(κp) : p ∈ P}, and therefore there is a continuous
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surjective homomorphism

π : G→ H =
(⊕

{Z(p)(κp) : p ∈ P}
)̂

=
∏
{Z(p)κp : p ∈ P}.

Now note that sup{κp : p ∈ P} = κ ≥ ω1, so H satisfies the hypothesis of
Lemma 3.3, and Theorem 1.8 (also proved by this time) yields the desired
family of subgroups of H.

4. Proofs of Theorems 1.12 and 1.14. We need the following classical
structure theorem for compact connected groups:

4.1. Lemma [20, Theorem 6.5.6]. Let G be a compact connected group
and C the connected component of the center of G. Then there exist a
family {Lα : α < λ} consisting of compact , simply connected , simple Lie
groups Lα and a continuous surjective homomorphism π : C × L→ G with
the totally disconnected kernel kerπ ⊆ C × Z, where Z is the center of
L =

∏{Lα : α < λ}.
Our next lemma is the key to our proofs.

4.2. Lemma. Let G, C, L, Z and Lα for α < λ be as in Lemma 4.1.
Suppose also that λ = w(G) ≥ ω1. Then there exists an almost disjoint
family H of size 2λ consisting of dense pseudocompact subgroups of G such
that each H ∈ H is algebraically isomorphic to the free (non-Abelian) group
of size 2λ.

We will prove the last lemma later, but first we show how to deduce our
theorems from it.

P r o o f o f T h e o r e m 1.12. Let G be a compact connected group of
weight κ ≥ ω1. Then |G| = 2κ = τ (Lemma 2.2). Let {Lλ : α < λ} and π
be as in the conclusion of Lemma 4.1.

Claim. λ ≤ κ.

P r o o f. Let Zα be the center of Lα. Observe that, since kerπ ⊆ C × Z,
the group L/Z =

∏{Lα/Zα : α < λ} is a quotient group of G. Since the last
group is compact, so is L/Z. Applying [13, Theorem 3.1.22], we conclude
that w(

∏{Lα/Zα : α < λ}) ≤ w(G) = κ, which implies λ ≤ κ.

If λ = κ, then Lemma 4.2 yields the desired (even stronger) conclusion.
So it remains only to consider the case λ < κ. Let K = {0} × L ⊆ C × L
and N = π(K). Since K is a (closed) normal subgroup of C × L, N is a
(closed) normal subgroup of G. Let H = G/N be the quotient group of G
and ψ : G→ H the quotient group homomorphism. Since N is compact as
a continuous image of the compact space K, w(N) ≤ w(K) = ω · λ < κ by
[13, Theorem 3.1.22]. Since λ = w(G) = max{w(N), w(G/N)} and κ ≥ ω1,
it follows that w(H) = w(G) = κ. Now note that H is a nonmetrizable
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compact connected Abelian group, so Theorem 1.6 applied to H permits
us to find an almost disjoint family {H̃α : α < τ} of dense pseudocompact
subgroups of H̃. If one defines Hα = ψ−1(H̃α), then {Hα : α < τ} would be
the desired family (Lemma 2.6).

P r o o f o f T h e o r e m 1.14. Since we are going to use Lemmas 4.1
and 4.2, to avoid mixing of notations let us agree to denote the center of G
by Z∗. So let κ = w(G) = w(G/Z∗) ≥ ω1. Then |G| = 2w(G) = 2κ = τ . Let
{Lλ : α < λ} and π be as in the conclusion of Lemma 4.1. Let Zα be the
center of Lα. Observe that G/Z∗ = L/Z =

∏{Lα/Zα : α < λ} and each
Lα/Zα is again a compact, simply connected, simple Lie group [23]. Since
w(G/Z∗) = κ ≥ ω1, it follows that κ = λ. Now an application of Lemma 4.2
finishes the proof.

The rest of this section will be devoted to the (quite technical) proof of
Lemma 4.2. In its turn, it will be split into a sequence of lemmas.

4.3. Lemma. Suppose that τ is an infinite cardinal , Z ′ and Z ′′ are
nonempty sets, F , F ′ and F ′′ are families of nonempty subsets of Z ′×Z ′′,
Z ′ and Z ′′ respectively , such that

(a) |F ′| ≤ τ , |F ′′| ≤ τ , and
(b) if F ∈ F , then F ′ × F ′′ ⊆ F for some F ′ ∈ F ′ and F ′′ ∈ F ′′.

Let p : Z ′ × Z ′′ → Z ′ be the natural projection. Assume also that X ⊆ Z ′

and

(c) |X ∩ F ′| = τ for every F ′ ∈ F ′.
Then there exists Y ⊆ Z ′ × Z ′′ such that :

(i) p(Y ) ⊆ X,
(ii) p¹Y : Y → X is one-to-one, and

(iii) |Y ∩ F | = τ for every F ∈ F .

P r o o f. Applying Lemma 2.5 one can get a pairwise disjoint family
{XF ′ : F ′ ∈ F ′} of sets of size τ such that XF ′ ⊆ X ∩ F ′ for each F ′ ∈ F ′.
Applying Lemma 2.5 once more, one can split each XF ′ into a (pairwise
disjoint) family {XF ′,F ′′ : F ′′ ∈ F ′′} of sets of size τ . Now we can take for
Y the graph of any function f : Z ′ → Z ′′ with the property that f(x) ∈ F ′′
whenever x ∈ XF ′,F ′′ .

Since we are considering non-Abelian groups in this section, for the rest
of this paper let us agree to call a subset X of a group G independent if 〈X〉
is a free (non-Abelian) group over X.

4.4. Lemma. Suppose that τ is an uncountable cardinal , Lα is a compact ,
simply connected , simple Lie group for each α < τ , and Z is the center of
L =

∏{Lα : α < τ}. Then there is an independent set X ⊆ L such that
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(i) |X ∩ F | = 2τ for every (closed) nonempty Gδ-set F ⊆ L, and
(ii) 〈X〉 ∩ Z ⊆ {e}.
P r o o f. Let κ = 2τ . Since τ ≥ ω1, in the rest of our proof we will assume,

without loss of generality, that

L =
∏
{Lαβ : (α, β) ∈ τ × ω1},

where each Lαβ is a compact, simply connected, simple Lie group. (This
assumption may be easily achieved by splitting the index set if necessary.)
For (α, β) ∈ τ × ω1, the center Zαβ of Lαβ is a finite group, so the quotient
group Hαβ = Lαβ/Zαβ is again a compact, simply connected, simple Lie
group (see, for example, [2]). We have

Z =
∏
{Zαβ : (α, β) ∈ τ × ω1} and L/Z =

∏
{Hαβ : (α, β) ∈ τ × ω1}.

For each β < ω1 define

Gβ =
∏
{Lαβ : α < τ}, Hβ =

∏
{Hαβ : α < τ} and

Zβ =
∏
{Zαβ : α < τ}.

We need the following facts about these groups:

(1) |Hβ | = κ for all β < ω1,

(2) each Hβ contains an independent subset Iβ = {hµβ : µ < κ},
(3) Z =

∏
{Zβ : β < ω1} and L/Z =

∏
{Hβ : β < ω1}.

(1) easily follows from the fact that |Hαβ | = c for (α, β) ∈ τ × ω1. To
prove (2) observe that each Hαβ contains an independent subset of size c
[1, Lemma 2], and then apply [22, Lemma 2.16]. Finally, (3) trivially follows
from the definitions of Zβ and Hβ .

Let π : L → L/Z and πβ : Gβ → Hβ for β < ω1 be the natural
homomorphisms. Let F be the family of all nonempty, closed Gδ-subsets of
L. Observe that |F| ≤ |L| = 2τ = κ by Lemma 2.4. For F ∈ F given, π(F )
is a nonempty, closed Gδ-subset of L/Z (Lemma 2.1), so by (3) there are
δF < ω1 and gF ∈

∏{Hβ : β < δF } so that

(4) QF = {gF } ×
∏
{Hβ : δF ≤ β < ω1} ⊆ π(F ).

For each γ < ω1 use (1) to enumerate the subproduct
∏{Hβ : β < γ} as

{gξγ : ξi < κ}. Since κ ≥ ω1, there are maps ϕ : κ→ κ and ψ : κ→ ω1 such
that

(5) |{µ < κ : ϕ(µ) = η and ψ(µ) = δ}| = κ for all η < κ and δ < ω1.
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Finally, for every µ < κ define a point yµ ∈
∏{Hβ : β < ω1} by

(6) yµ(β) =

{
g
ϕ(µ)
ψ(µ)(β) if β < ψ(µ),

hµβ if β ≥ ψ(µ),

and set Y = {yµ : µ < κ}.
Claim 1. Y = {yµ : µ < κ} is a (faithfully indexed) independent subset

of
∏{Hβ : β < ω1}.
P r o o f. It suffices to prove that, for a given finite subset F of κ,

the set {yµ : µ ∈ F} is independent in
∏{Hβ : β < ω1}. Take any β >

max{ψ(µ) : µ ∈ F}. Then yµ(β) = hµβ by (6). Since {hµβ : µ ∈ F} is a
faithfully indexed subset of Iβ , the result follows from (2).

Claim 2. |Y ∩ π(F )| = κ for all F ∈ F .

P r o o f. Since gF ∈
∏{Hβ : β < δF }, there is η < κ with gF = gηδF .

From (4) and (6) it follows that yµ ∈ QF ⊆ π(F ) for all µ ∈MF = {µ < κ :
ϕ(µ) = η and ψ(µ) = δF }. Since |MF | = κ according to (5), it remains only
to note that yµ 6= yµ′ for different µ, µ′ < κ.

As was noted above, |F| ≤ κ, so we can use Claim 2 and Lemma 2.5 to
split κ into a family {AF : F ∈ F} of pairwise disjoint sets, each of size κ,
such that yµ ∈ π(F ) if µ ∈ AF . Finally, we choose xµ ∈ F with π(xµ) = yµ
whenever µ ∈ AF . It is now easy to see that X = {xµ : µ < κ} ⊆ L satisfies
the conclusion of Lemma 4.4.

P r o o f o f L e m m a 4.2. Let τ = 2λ. Let F , F ′ and F ′′ be the families
of all nonempty closed Gδ-subsets of C×L, L and C respectively. Note that
|F ′| ≤ |L| = 2λ = τ by Lemma 2.4. Since C ⊆ G, w(C) ≤ w(G) = λ, and so
|F ′′| ≤ |C| = 2w(C) ≤ 2λ = τ by Lemmas 2.2 and 2.4. Let p : C ×L→ L be
the projection onto the second coordinate. Let X be the independent subset
of L =

∏{Lα : α < κ} constructed in Lemma 4.4.
Now we can use Lemma 4.3 with Z ′ = L and Z ′′ = C to obtain a set

Y ⊆ C × L such that

(i) p(Y ) ⊆ X,
(ii) p¹Y : Y → X is one-to-one, and

(iii) |Y ∩ F | = τ for every F ∈ F .

Claim. Y is an independent subset of C × L with 〈Y 〉 ∩ (C × Z) ⊆
{0} × {e}.

P r o o f. Since X is an independent subset of L, from (i) and (ii) it follows
that Y is an independent subset of C ×L. Since 〈X〉 ∩Z ⊆ {e}, (i) and (ii)
imply also the second statement of our claim.
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Claim. π¹Y : Y → G is a one-to-one map, and π(Y ) is an independent
subset of G such that |π(Y ) ∩ Φ| = τ for every nonempty closed Gδ-subset
Φ of G.

P r o o f. Since kerπ ⊆ C × Z and 〈Y 〉 ∩ (C × Z) ⊆ {0} × {e}, the first
two statements of our claim follow. To prove the last one, observe that
F = π−1(Φ) ∈ F , and so |F ∩ Y | = τ . Since π¹Y : Y → G is one-to-one, we
conclude that |Φ ∩ π(Y )| = τ .

Since the cardinality of the family F∗ of all nonempty closed Gδ-subsets
of G does not exceed |G| = 2λ = τ (Lemmas 2.2 and 2.4), we may apply
Lemma 2.5 (with X = π(Y ) and F = F∗) to find a partition π(Y ) =⋃{Yα : α < τ} of π(Y ) into pairwise disjoint sets Yα of size τ such that
F ∩ Yα 6= ∅ for all F ∈ F∗ and α < τ . Define Hα = 〈Yα〉 for α < τ . Since
F ∩Hα ⊇ F ∩ Yα 6= ∅ for every F ∈ F∗, each Hα is a dense pseudocompact
subgroup of G (Lemma 2.3). Since π(Y ) is independent, {Hα : α < τ} is an
almost disjoint family. And since Yα ⊆ π(Y ) and |Yα| = τ , each Hα is the
free group of size τ .
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