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Construction of non-subadditive measures
and discretization of Borel measures

by

Johan F. A a r n e s (Trondheim)

Abstract. The main result of the paper provides a method for construction of regular
non-subadditive measures in compact Hausdorff spaces. This result is followed by several
examples. In the last section it is shown that “discretization” of ordinary measures is
possible in the following sense. Given a positive regular Borel measure λ, one may construct
a sequence of non-subadditive measures µn, each of which only takes a finite set of values,
and such that µn converges to λ in the w∗-topology.

1. Introduction. In this paper we continue the study of non-subadditive
measures undertaken in [1], [2] and [5], called there “quasi-measures”. They
are set-functions defined on the open and on the closed subsets of a locally
compact Hausdorff space X, and represent a genuine generalization of reg-
ular Borel measures in such spaces. This paper is devoted to showing how
they arise and may be constructed when X is compact, and to giving some
applications.

Non-subadditive measures (NSA-measures), as the name indicates, are
generally not subadditive. Indeed, if they are, then they turn out to be
ordinary regular Borel measures. This lack of subadditivity is what makes
NSA-measures different, and in some respects more interesting than ordinary
measures. Instead of weighing effects or events on an additive scale, the
NSA-measures register a cumulative effect of events. To produce a certain
result, several other results must occur simultaneously. This is of course a
very superficial description, and only future development and applications
can substantiate what we indicate here.

Even if NSA-measures by definition are generalizations of ordinary mea-
sures, their existence is not an obvious matter, and turns out to be closely
linked to properties of the underlying topological space. The existence of
NSA-measures was first established in the author’s paper [1]. In [2] we gave
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a description of the basic properties of extremal NSA-measures (those taking
only the values 0 and 1). In [5] Knudsen gave a procedure for the construc-
tion of such extremal NSA-measures in certain spaces. The present paper
is devoted to the construction of general NSA-measures. Our main result
(Theorem 5.1) shows how all NSA-measures arise and may be constructed
(in certain spaces). We believe that even when applied to ordinary measures
this is a new result of some interest. The main result is followed by several
examples of construction. In the last section of the paper we show that “dis-
cretization” of ordinary measures is possible in the following sense: Given
a positive, regular Borel measure λ (for instance Lebesgue measure on the
unit sphere in R3), we construct a sequence of NSA-measures µn, each of
which takes only a finite set of values, and such that µn converges to λ in
the w∗-topology.

1.1. Notation and basic concepts. Throughout X denotes a compact
Hausdorff space and A = C(X) is the algebra of real-valued continuous
functions on X. For a ∈ A we let A(a) denote the smallest uniformly closed
subalgebra of A containing a and 1. A function % : A → R satisfying
%(1) = 1, %(a) ≥ 0 if a ≥ 0 and such that % is linear on A(a) for each a ∈ A
is called a non-linear state (previously called a quasi-state).

Let C denote the collection of closed subsets of X, let O denote the
collection of open subsets of X and put A = C ∪ O. A real-valued, non-
negative function µ on A is called a NSA-measure in X if the following
conditions are satisfied:

(Q0) µ(K) + µ(X \K) = µ(X) for K ∈ C,
(Q1) K1 ⊂ K2 ⇒ µ(K1) ≤ µ(K2) for K1,K2 ∈ C,
(Q2) K1 ∩K2 = ∅ ⇒ µ(K1 ∪K2) = µ(K1) + µ(K2) for K1,K2 ∈ C,
(Q3) µ(U) = sup{µ(K) : K ⊂ U,K ∈ C} for U ∈ O.

µ is normalized if µ(X) = 1. For simplicity we shall assume that all
NSA-measures in this paper are normalized.

R e m a r k. A NSA-measure µ which is also subadditive is called a regular
content . In Halmos ([4], §54, Theorem A) it is shown that a regular content
has a unique extension to a regular Borel measure in X.

In [1] we established that there is a 1-1 correspondence between non-
linear states and normalized NSA-measures. The set of all non-linear states
is a convex set, denoted by Q, which is compact in the topology of pointwise
convergence on A.

A subset D of X is co-connected if X \D is connected. D is solid if it is
connected and co-connected.

In what follows a subscript s indicates “solid”, and a subscript c indicates
“connected”, so that for instance As is the collection of all solid sets that
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are either open or closed and Cc is the family of closed connected sets. C0 is
the family of closed sets with only a finite number of connected components.
O0 = {U ∈ O : X \ U ∈ C0}, and A0 = C0 ∪ O0.

2. Fundamentals. In this section we introduce the main object of study
in this paper: the solid set-function. Some preliminaries are needed. From
now on we assume that X is a compact Hausdorff space which is connected
and locally connected . By convention the empty set ∅ is connected, so ∅ and
X both belong to Cs.

Definition 2.1. A partition of X is a collection of mutually disjoint,
non-void sets {Ai}i∈I ⊆ As, where at most finitely many of the Ai are
closed, and such that X =

⋃
i∈I Ai. The number of closed sets in a partition

P is called the order of P.

Any connected and locally connected space X with more than one point
has a partition. For if x ∈ X, then {x}c is open and has a non-void connected
component V ∈ Os (cf. Lemma 3.2 in the next section). Hence C = V c ∈ Cs
and {C, V } is a partition of X of order 1. Accordingly, partitions of order 1
are called trivial .

Let {Ai}i∈I be a non-trivial partition, and let I0 = {i ∈ I : Ai is closed}.
Definition 2.2. {Ai}i∈I is irreducible if the following two conditions

hold:

(i)
⋃
i∈I0 Ai is not co-connected.

(ii) For any proper subset I ′ of I0,
⋃
i∈I′ Ai is co-connected.

Necessarily, any irreducible partition has order ≥ 2, and any partition of
order 2 is irreducible. For a given space X, let n denote the maximal order
of any irreducible partition. If n is finite, let g = n − 1. If X only permits
trivial partitions, put g = 0.

Definition 2.3. A function µ : As → [0, 1] satisfying the conditions (A),
(B) and (C) below is called a solid set-function.

(A) For any finite collection of disjoint sets {C1, . . . , Cn} ⊆ Cs such that
Cj ⊆ C ∈ Cs for j = 1, . . . , n we have

n∑

j=1

µ(Cj) ≤ µ(C).

(B) For all U ∈ Os we have

µ(U) = sup{µ(C) : C ⊆ U, C ∈ Cs}.
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(C) For any trivial or irreducible partition {Ai}i∈I of X we have
∑

i∈I
µ(Ai) = 1.

N o t e. If g = 0 then X has no irreducible partitions, so (C) reduces to
the condition that µ(A) + µ(Ac) = 1 for each set A ∈ As.

R e m a r k. It is important to realize that the restriction of a NSA-
measure µ to As is always a solid set-function. Indeed, since µ is additive
and monotone on C, (A) is clearly true. If K is closed and contained in a
solid open set U , there is a solid closed set C such that K ⊆ C ⊆ U (see
Section 3), and (B) follows. Finally, (C) is a consequence of Proposition 2.1
of [1] and Corollary 2.1 of [2].

We next point out that any NSA-measure (or any regular Borel measure)
is uniquely determined by its restriction to Cs. For suppose µ is a NSA-
measure in X. If the values of µ on Cs are known, then they are also known on
the complements of these sets, i.e. on Os. But then, by virtue of Corollary 2.1
quoted above, and Lemma 3.2 of this paper, it follows that µ is determined
on the family of closed connected sets, and hence also on C0. Now let K
be a closed set contained in an open set U , and let U =

⋃
i∈I Ui be the

decomposition of U into its connected components. By compactness of K
there is a finite index set I ′ ⊆ I such that K ⊆ ⋃i∈I′ Ui. Let Ki = K

⋂
Ui

(i ∈ I ′). By Lemma 3.1 of this paper there are connected closed sets Ci such
that Ki ⊆ Ci ⊆ Ui for each i ∈ I ′. But then C =

⋃
Ci belongs to C0 and

K ⊆ C ⊆ U . By (Q3) in the definition of NSA-measures it therefore follows
that µ is determined on the open sets by the values it takes on the class C0.
Taking complements again we see that the uniqueness claim follows.

Example. Let X = S2 and let p1, . . . , p5 be five distinct points in X.
For C ∈ Cs define µ(C) to be 0 if C contains at most one of these points,
to be 1/2 if C contains two or three of the points, and to be 1 if C contains
four or five points. It is easily seen that (A) and (B) hold, and (C) is true
because S2 only permits trivial partitions.

The main purpose of this paper is to show that a solid set-function has
a unique extension to a NSA-measure in X. In the example just given this
extension turns out to be an extreme point in the convex set of all normalized
NSA-measures in X (cf. [2], Example 2.1).

To begin with, we record some of the basic properties of solid set-
functions.

Proposition 2.1. If µ is a solid set-function in X then

1. µ(∅) = 0, µ(X) = 1.
2. A1 ⊆ A2 ⇒ µ(A1) ≤ µ(A2) for all A1, A2 ∈ As.
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3. If U1, . . . , Un belong to Os, where n is an arbitrary integer ≥ 1,
Ui ∩ Uj = ∅, i 6= j, and Ui ⊆ U ∈ Os for all i = 1, . . . , n, then

n∑

i=1

µ(Ui) ≤ µ(U).

The proof is left to the reader.

R e m a r k. Let µ be a solid set-function in X, and suppose {Ci}i∈I ⊆ Cs
is an arbitrary collection of mutually disjoint sets. From (A) it immediately
follows (let C = X) that the subfamily {Ci : µ(Ci) > 0} is at most countably
infinite. When it comes to summation we may therefore replace the index
set I by Z+ or N. This is implicit when we write

∑
i∈I µ(Ci). If Ci ⊆ C ∈ Cs

for all i ∈ I we must clearly have
∑
i∈I µ(Ci) ≤ µ(C). Analogously, in view

of Proposition 2.1.3 the corresponding statements hold for open sets, and
will be utilised without further comments.

For later use we include the following:

Lemma 2.1. Let F = {Cj}j∈J ⊆ Cs (n ≥ 1) be a finite family of mutually
disjoint sets such that

⋃
j∈J Cj is not co-connected. Then F has a subfamily

F ′ such that each connected component Ui of U = (
⋃{Cj ∈ F ′})c belongs

to Os (i ∈ I = some index set) and F ′ ∪ {Ui}i∈I is an irreducible partition
of X.

P r o o f. F contains a subfamily F ′= {Cj}j∈J′ such that U = (
⋃
j∈J′ Cj)

c

is not connected, but for any proper subset J ′′ of J ′, the set (
⋃
j∈J ′′ Cj)

c is
connected. Let U =

⋃
i∈I Ui be the decomposition of U into its connected

components. Then card I ≥ 2 and each Ui is in Oc. We claim that each Ui
is also co-connected. So pick an arbitrary U0 ∈ {Ui}i∈I , and let I ′ = I \{0}.
We must show that U c

0 = (
⋃
j∈J ′ Cj)∪ (

⋃
i∈I′ Ui) is connected. Suppose not.

Then there are non-void, disjoint, closed sets K1 and K2 in X such that
K1 ∪K2 = U c

0 . By connectedness, K1 (and K2) must contain all or nothing
of each of the sets Cj(j ∈ J ′) and Ui (i ∈ I ′). Let

Jk = {j ∈ J ′ : Cj ⊆ Kk}, Ik = {i ∈ I ′ : Ui ⊆ Kk}, k = 1, 2.

We must have J1 6= ∅ and J2 6= ∅ and at least one of the sets Ik is non-
empty since card I ≥ 2. Suppose I1 6= ∅. Since K1 is closed, its complement
Kc

1 = K2 ∪ U0 is open. But then also

V = (K2 ∪ U0) ∪
( ⋃

i∈I1
Ui

)

is open and not connected. But V c =
⋃
j∈J1

Cj , which is a contradiction,
since J1 is a proper subset of J ′. Hence U c

0 is connected and the proof is
complete.
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Proposition 2.2. For a space X we have g = 0 if and only if
⋃{C ∈ F}

is co-connected for any finite family F ⊆ Cs of disjoint sets.

P r o o f. This follows from Lemma 2.1.

R e m a r k. In [5] Knudsen has shown that if X is also locally pathwise
connected and H1(X,Q) = (0) then g = 0. Hence Sn (the unit n-sphere)
and Bn (the unit n-ball) have g = 0, the torus and an annulus in the plane
have g = 1, etc.

3. Topological preliminaries. The results in this section are more
or less known. Some proofs are included for the convenience of the reader.
Good references are [3] and [6].

Throughout we assume that X is a compact Hausdorff space which is
connected and locally connected .

Lemma 3.1. Let K ∈ C, U ∈ O and K ⊆ U . If either K or U is
connected , then there is a set V ∈ Oc such that K ⊆ V ⊆ V ⊆ U .

Lemma 3.2. Let K ∈ Cc. Then each connected component of V = X \K
belongs to Os.

Lemma 3.3. Let K ∈ Cs, U ∈ O and K ⊆ U . Then there is a set V ∈ Os

such that K ⊆ V ⊆ V ⊆ U .

P r o o f o f L e m m a 3.3. By Lemma 3.1 we may assume that U is
connected. Let F = X \ U , so F ⊆ X \ K, which is open and connected.
Hence again by Lemma 3.1 there is an open set V ∈ Oc such that F ⊆ V ⊆ V
and V ∩K = ∅. Let W = X \V so K ⊆W ⊆ U . Since V ∈ Cc it now follows
that each connected component of W belongs to Os (Lemma 3.2), and K
must be contained in exactly one of them. The proof is complete.

3.1. The solid hull of a closed connected set. Let K ∈ Cc, V ∈ Os and
suppose K ⊆ V . Let X \ K = W =

⋃
i∈IWi be the decomposition of W

into disjoint connected components. Then C = X \ V is connected and is
contained in one of them, say W0, called the exterior component of W with
respect to V . Each Wi with i 6= 0 is then called an interior component . Since
each Wi is in Os the set K̃ = X \W0 belongs to Cs. We have

K̃ =
⋃
{Wi : i 6= 0} ∪K

and K ⊆ K̃ ⊆ V. K̃ is called the solid hull of K with respect to V .

Lemma 3.4. Suppose C1, C2 are disjoint , closed , connected sets, both
contained in V ∈ Os. Then either
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(i) C̃1 ∩ C̃2 = ∅, or
(ii) C̃1 ⊆ C̃2 or C̃2 ⊆ C̃1 (proper inclusion).

P r o o f. Let W j = X \ Cj (j = 1, 2), and let W j =
⋃
i∈Ij W

j
i as

above, with W j
0 as the exterior component of W j with respect to V . Now

C1 ∩ C2 = ∅ so
C1 ⊆W 2 and C2 ⊆W 1.

Since C1 and C2 are connected, there are unique components W 2
i and W 1

k

such that C1 ⊆W 2
i and C2 ⊆W 1

k .

(i) Suppose C1 ⊆W 2
0 and C2 ⊆W 1

0 . Then C2 ⊆ C̃2 = X \W 2
0 ⊆W 1 by

the first inclusion. Since C̃2 is connected the second inclusion implies that
C̃2 ⊆W 1

0 = X \ C̃1, so C̃1 ∩ C̃2 = ∅.
(ii) Suppose C2 ⊆ W 1

k for some k 6= 0. Then W 1
k ⊆ V so X \ V ⊆

X \W 1
k ⊆W 2. Since X \W 1

k is connected and contains X \V we must have
X \W 1

k ⊆W 2
0 , so that C̃2 = X \W 2

0 ⊆W 1
k ⊆ C̃1. Similarly, if C1 ⊆W 2

i for
some i 6= 0, then C̃1 ⊆ C̃2. The proof is complete.

R e m a r k. We may note that in the above situation one of the sets is
always contained in the exterior component associated with the other set.

4. Extension to C0. Let µ be a solid set-function. Our goal in this
section is to extend µ to a function on C0 to [0, 1] such that

(Q1)0 K1 ⊆ K2 ⇒ µ(K1) ≤ µ(K1) for K1,K2 ∈ C0.
(Q2)0 K1 ∩K2 = ∅ ⇒ µ(K1 ∪K2) = µ(K1) + µK2) for K1,K2 ∈ C0.
(Q3)0 For all C ∈ C0 and all ε > 0 there is C ′ ∈ C0 such that C ∩C ′ = ∅

and µ(C) + µ(C ′) > 1− ε.
If K ∈ Cc we know by Lemma 3.2 that X \ K = V =

⋃
i∈I Vi, where

the sets Vi are open, connected, co-connected and mutually disjoint. From
Proposition 2.1.3 it therefore follows that the set {Vi : µ(Vi) > 0} is at most
countable, and that

∑
i∈I µ(Vi) ≤ 1. We may then define

(4.1) µ(K) = 1−
∑

i∈I
µ(Vi).

Next, if K = K1 ∪ . . .∪Kn ∈ C0, where the Kj are connected and mutually
disjoint, we put µ(K) =

∑n
j=1 µ(Kj).

Proposition 4.1. The function µ as defined above maps C0 into [0, 1]
and satisfies conditions (Q1)0, (Q2)0 and (Q3)0.

We start with (Q1)0: If K1,K2 ∈ C0, then K1 ⊆ K2 ⇒ µ(K1) ≤ µ(K2).
Suppose first that K1 is connected, while K2 = C1 ∪ . . . ∪ Cn with the

Cj in Cc and mutually disjoint. Then we must have K1 ⊆ Cj for some j, say
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K1 ⊆ C1. Let
⋃
i∈I Ui = X\K1 and

⋃
i∈J Vj = X\C1 be the decompositions

of these sets into their solid components. Each Vj must be contained in
some Ui. Let

Ji = {j ∈ J : Vj ⊆ Ui}.
Then

⋃
i∈I Ji = J , and by Proposition 2.1.3 we get

∑

j∈J
µ(Vj) =

∑

i∈I

∑

j∈Ji
µ(Vj) ≤

∑

i∈I
µ(Ui).

Hence µ(K1) = 1−∑i∈I µ(Ui) ≤ 1−∑j∈J µ(Vj) ≤ µ(C1).
Next, assume that K1 = C ′1 ∪ . . . ∪ C ′m is the decomposition of K1 into

its connected components. Since K1 ⊆ K2 each C ′i is contained in Cj for
some j ∈ {1, . . . , n}.

Suppose C ′i1 , . . . , C
′
ik
⊆ Cj . We need to show that

∑k
l=1 µ(C ′il) ≤ µ(Cj).

To simplify the notation, assume that C0, C1, . . . , Cn are connected, closed,
disjoint and contained in C ∈ Cc. Let X \C0 = V =

⋃
i∈I Vi. Since all the Cj

are connected, each Cj for j ≥ 1 is contained in some Vi, and only finitely
many Vi will contain some Cj . Let

Ji = {j : Cj ⊆ Vi}, i ∈ I.
Let U = X \ C =

⋃
i∈K Uk. Then U ⊆ V and we put

Ki = {k ∈ K : Uk ⊆ Vi}.
The Uk are disjoint and obviously also disjoint from all the Cj . We want to
show that

(4.2)
n∑

j=0

µ(Cj) ≤ µ(C),

which is equivalent to

1−
∑

i∈I
µ(Vi) +

n∑

j=1

µ(Cj) ≤ 1−
∑

k∈K
µ(Uk),

or

(4.3)
n∑

j=1

µ(Cj) +
∑

k∈K
µ(Uk) ≤

∑

i∈I
µ(Vi).

Now (4.3) will follow if we can show that

(4.4)
∑

j∈Ji
µ(Cj) +

∑

k∈Ki
µ(Uk) ≤ µ(Vi)

for all i ∈ I. Therefore, what we really need is the following result, formally
stated as a lemma.
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Lemma A. Let C1, . . . , Cn ∈ Cc and U1, . . . , Uk, . . . ∈ Os be mutually
disjoint subsets of V ∈ Os. Then

(4.5)
n∑

j=1

µ(Cj) +
∞∑

k=1

µ(Uk) ≤ µ(V ).

P r o o f. We employ induction on n.

S t e p 1: n = 1. Let X \ C1 = W =
⋃
i∈IWi. Now X \ V is connected

and contained in W , and is therefore contained in one of W ’s components,
which we denote by W0, i.e. X \ V ⊆W0 and W0 is the exterior component
of W with respect to V (cf. Section 3). Let I ′ = I \ {0} and put C̃1 =
C1 ∪ (

⋃
i∈I′Wi) = X \W0, i.e. C̃1 is the solid hull of C1 with respect to V .

We want to show that

µ(C1) +
∞∑

k=1

µ(Uk) ≤ µ(V ),

or

1−
∑

i∈I′
µ(Wi)− µ(W0) +

∞∑

k=1

µ(Uk) ≤ µ(V ),

i.e.

(4.6) µ(C̃1) +
∞∑

k=1

µ(Uk) ≤ µ(V ) +
∑

i∈I′
µ(Wi).

We have Uk ⊆W for all k = 1, 2, . . . (since all Uk are disjoint from C1) and
we let

Ki = {k ∈ Z+ : Uk ⊆Wi}, i ∈ I.
Then we have, using Proposition 2.1.3 again,

∞∑

k=1

µ(Uk) =
∑

k∈K0

µ(Uk) +
∑

i∈I′

[ ∑

k∈Ki
µ(Uk)

]

≤
∑

k∈K0

µ(Uk) +
∑

i∈I′
µ(Wi).

Hence (4.6) will follow if we can show that

(4.7) µ(C̃1) +
∑

k∈K0

µ(Uk) ≤ µ(V ),

where we observe that if k ∈ K0 then Uk is disjoint from C̃1. In turn, (4.7)
will follow from the next lemma (which in fact is just a weakened version of
Lemma A).
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Lemma B. Let C1, . . . , Cm ∈ Cs and U1, . . . , Uk, . . . ∈ Os be mutually
disjoint subsets of V ∈ Os. Then

(4.8)
m∑

j=1

µ(Cj) +
∞∑

k=1

µ(Uk) ≤ µ(V ).

P r o o f. Let ε > 0 be arbitrary. Select N ∈ Z+ such that
∑
k>N µ(Uk) <

ε/2. For k = 1, . . . , N take C ′k ⊆ Uk such that C ′k ∈ Cs and µ(C ′k) >
µ(Uk)− ε/2k+1 by (B). Then

∞∑

k=1

µ(Uk) =
N∑

k=1

µ(Uk) +
∑

k>N

µ(Uk)

<

N∑

k=1

µ(C ′k) + ε

N∑

k=1

1
2k+1 +

ε

2
<

N∑

k=1

µ(C ′k) + ε.

Let C = X \ V , so C ∈ Cs and C ∩ Cj = C ∩ C ′k = ∅ for all j and k. Then
by (A) we get

m∑

j=1

µ(Cj) +
N∑

k=1

µ(C ′k) + µ(C) ≤ 1.

Hence
m∑

j=1

µ(Cj) +
∞∑

k=1

µ(Uk) ≤ µ(V ) + ε.

Since ε > 0 was arbitrary, the assertion follows.

The inequality (4.7) now follows (taking m = 1) since C̃1 ∈ Cs. We have
now established Lemma A for n = 1.

S t e p 2. Suppose inductively that Lemma A has been verified for k =
1, . . . , n − 1. For j = 1, . . . , n let X \ Cj = W j =

⋃{W j
i : i ∈ Ij}, and let

W j
0 be the exterior component of W j with respect to V . Let C̃j = X \W j

0
denote the solid hull of Cj with respect to V .

C a s e 1: C̃j ∩ C̃l = ∅ for all j, l with j 6= l. The assertion (4.5) is
equivalent to

(4.9)
n∑

j=1

µ(C̃j) +
∞∑

k=1

µ(Uk) ≤ µ(V ) +
n∑

j=1

∑

i∈I′
j

µ(W j
i ),

where I ′j = Ij \ {0}. Now observe that X \⋃nj=1 C̃j =
⋂n
j=1W

j
0 , so that if
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we put

K0 =
{
k ∈ Z+ : Uk ⊆

n⋂

j=1

W j
0

}
,

Kj = {k ∈ Z+ : Uk ⊆ C̃j}, j = 1, . . . , n,

then we exhaust all possibilities for the sets Uk in mutually exclusive cases.
By Lemma B we now get

(4.10)
n∑

j=1

µ(C̃j) +
∑

k∈K0

µ(Uk) ≤ µ(V ).

If Uk ⊆ C̃j then Uk ⊆ W j
i for some i ∈ I ′j so that (using Proposition 2.1.3

again)

(4.11)
∑

k∈Kj
µ(Uk) ≤

∑

i∈I′
j

(W j
i ), j = 1, . . . , n.

Combining (4.10) and (4.11) we obtain (4.9), which establishes the assertion
(4.5) in Case 1.

C a s e 2: C̃j ∩ C̃j 6= ∅ for some pair j 6= l. By Lemma 3.4 either C̃j ⊆ C̃l
or C̃l ⊆ C̃j (proper inclusion). We may therefore re-index the sets Cj (j =
1, . . . , n) as follows:

1. C̃10, C̃20, . . . , C̃m0 (m < n) are mutually disjoint.

2. C̃jl ⊆ C̃j0 for l = 0, . . . ,mj and 1 ≤ j ≤ m, where the inclusions are
proper if l ≥ 1.

3. m+
∑m
j=1mj = n.

The verification of this is a simple induction argument based on
Lemma 3.4, and is left to the reader. We return to the proof of (4.9), which
after the re-indexing takes the form

(4.12)
m∑

j=1

mj∑

l=0

µ(C̃jl) +
∞∑

k=1

µ(Uk) ≤ µ(V ) +
m∑

j=1

mj∑

l=0

∑

i∈I′
jl

µ(W jl
i ),

where X \ Cjl =
⋃{W jl

i : i ∈ Ijl}.
Let K0,K1, . . . ,Kn be defined as in Case 1. Then again by Lemma B we

immediately get

(4.13)
m∑

j=1

µ(C̃j0) +
∑

k∈K0

µ(Uk) ≤ µ(V ),
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so to establish (4.12) it remains to show that

(4.14)
m∑

j=1

mj∑

l=1

µ(C̃jl) +
m∑

j=1

∑

k∈Kj
µ(Uk) ≤

m∑

j=1

mj∑

l=0

∑

i∈I′
jl

µ(W jl
i ),

which will follow if we can show that for each j = 1, . . . ,m we have

(4.15)
mj∑

l=1

µ(C̃jl) +
∑

k∈Kj
µ(Uk) ≤

mj∑

l=0

∑

i∈I′
jl

µ(W jl
i ).

Now µ(C̃jl) = µ(Cjl) +
∑
i∈I′

jl
µ(W jl

i ), so (4.15) is equivalent to

(4.16)
mj∑

l=1

µ(Cjl) +
∑

k∈Kj
µ(Uk) ≤

∑

i∈I′
j0

µ(W j0
i ).

Let
Jji = {l ≤ mj : Cjl ⊆W j0

i }, i ∈ I ′j0,
Kji = {k ∈ Kj : Uk ⊆W j0

i }, i ∈ I ′j0.
Since Cjl ⊆ W j0

i for some i ∈ I ′j0 if 1 ≤ l ≤ mj , and Uk ⊆ W j0
i for some

i ∈ I ′j0 if k ∈ Kj , we exhaust all possibilities for l and k in this manner.
Hence (4.16) will follow if we can show that for each i ∈ I ′j0,

(4.17)
∑

l∈Jji
µ(Cjl) +

∑

k∈Kji
µ(Uk) ≤ µ(W j0

i ).

The number of elements in Jji is ≤ mj ≤ m < n so (4.17) now follows by
the induction hypothesis. This concludes the proof of Lemma A.

This also concludes the proof of condition (Q1)0 in Proposition 4.1. As
for (Q2)0, if K1,K2 ∈ C0 and K1 ∩ K2 = ∅ let K1 = C1 ∪ . . . ∪ Cn and
K2 = C ′1∪. . .∪C ′m be their decompositions into connected components. Then
K1∪K2 = C1∪. . .∪Cn∪C ′1∪. . .∪C ′m and the right-hand side represents the
decomposition of K1 ∪K2 into connected components. From the definition
of µ on C0 it now immediately follows that µ(K1 ∪K2) = µ(K1) + µ(K2),
and (Q2)0 follows.

It remains to verify the regularity property (Q3)0.
Let K ∈ C0 be arbitrary. Then K = C0 ∪ C1 ∪ . . . ∪ Cn, where Cj ∈ Cc

and Cj ∩ Ck = ∅ if j 6= k. Let X \ C0 = V =
⋃
i∈I Vi, where the Vi are

mutually disjoint and belong to Os. Each Cj (j = 1, . . . , n) is contained in
some Vi, and we let

Ji = {j ∈ {1, . . . , n} : Cj ⊆ Vi}, i ∈ I.
From Lemma A it follows that

∑
j∈Ji µ(Cj) ≤ µ(Vi) for all i ∈ I. Let

ε > 0 be arbitrary, and choose N such that
∑
i>N µ(Vi) < ε/2 (since
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{i ∈ I : µ(Vi) > 0} is countable, we may assume that I = Z+). Now
suppose for the moment that there are sets C ′i ∈ C0 for i = 1, . . . , N such
that

(4.18)
{
C ′i ⊆ Vi and C ′i ∩ Cj = ∅ if j ∈ Ji,
µ(C ′i) > µ(Vi)−

∑
j∈Ji µ(Cj)− ε/2i+1.

Then let C ′ =
⋃N
i=1 C

′
i, so C ′ ∈ C0 and C ′ ∩K = ∅. Moreover (by (Q2)0),

µ(C ′) =
N∑

i=1

µ(C ′i) >
N∑

i=1

µ(Vi)−
N∑

i=1

∑

j∈Ji
µ(Cj)−

N∑

i=1

ε

2i+1

>

∞∑

i=1

µ(Vi)− ε

2
−

n∑

j=1

µ(Cj)− ε

2

= 1− µ(C0)−
n∑

j=1

µ(Cj)− ε = 1− µ(K)− ε,

which establishes (Q3)0 under the assumption that (4.18) holds. So what
we need is the following.

Lemma C. Let C1, . . . , Cn ∈ Cc be mutually disjoint and contained in
V ∈ Os. For each ε > 0 there is a C ′ ∈ C0 such that C ′ ∩ Cj = ∅ for all j,
C ′ ⊆ V and

n∑

j=1

µ(Cj) + µ(C ′) > µ(V )− ε.

P r o o f. We first consider the special case where all the sets C1, . . . , Cn
belong to Cs, and V = X. The proof in this case goes by induction on n. For
n = 1 the assertion is covered by (B) in the definition of a solid set-function.
Now assume n ≥ 2 and that the assertion is true for all k < n. Let ε > 0 be
arbitrary. Combining (B) and Lemma 3.3, we may find a family of mutually
disjoint sets V1, . . . , Vn in Os such that Cj ⊆ Vj and

µ(Vj) < µ(Cj) + ε/n, j = 1, . . . , n.

Next, choose Wj ∈ Os such that

Cj ⊆Wj ⊆W j ⊆ Vj , j = 1, . . . , n

(Lemma 3.3). Let Fj be the solid hull of W j with respect to Vj . Then

Cj ⊆Wj ⊆ Fj ⊆ Vj , Fj ∈ Cs,
for j = 1, . . . , n.

At this point we distinguish between two subcases:

(i) U = X \⋃nj=1 Fj is connected. Then C ′ = U is connected and con-
tained in X \⋃nj=1Wj , so C ′ ∩ Cj = ∅ for j = 1, . . . , n. On the other hand,
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X \ C ′ ⊆ ⋃nj=1 Vj . If X \ C ′ =
⋃
i∈I Oi is the decomposition of X \ C ′ into

its disjoint connected components, then each Oi belongs to Os and each
Oi is contained in some Vj . But then, by Proposition 2.3.3, it follows that∑
i∈I µ(Oi) ≤

∑n
j=1 µ(Vj). Consequently, we get

µ(C ′) = 1−
∑

i∈I
µ(Oi) ≥ 1−

n∑

j=1

µ(Vj) > 1−
n∑

j=1

(Cj)− ε,

which yields the assertion in this case.

(ii) X\⋃nj=1 Fj is not connected. Let m be the minimal number of sets in
any subcollection F ′ ⊆ F = {F1, . . . , Fn} such that

⋃{Fj : Fj ∈ F ′} is not
co-connected. Let F1 be such a subfamily of F with m elements, 2 ≤ m ≤ n.
Let U = (

⋃{Fj : Fj ∈ F1})c. By Lemma 2.1 we have U =
⋃
i∈I Ui, Ui

disjoint, Ui ∈ Os. Again we distinguish between two cases:

a) m = n. Let N be such that
∑
i>N µ(Ui) < ε/2. Then for i ≤ N choose

Ki ⊆ Ui such that Ki ∈ Cs and

µ(Ki) > µ(Ui)− ε

2N
.

The family {Fj , Ui : j = 1, . . . , n, i ∈ I} is an irreducible partition of X so
that by (C),

n∑

j=1

µ(Fj) +
∑

i∈I
µ(Ui) = 1,

and hence
n∑

j=1

µ(Cj) +
N∑

i=1

µ(Ki) >
n∑

j=1

µ(Fj)− ε+
N∑

i=1

µ(Ui)− ε

>

n∑

j=1

Fj +
∑

i∈I
µ(Ui)− 5ε

2
= 1− 5ε

2
,

which proves the assertion when we take C ′ =
⋃N
i=1Ki.

b) m < n. The family {Fj , Ui : j = 1, . . . ,m, i ∈ I} is an irreducible
partition of X. If Fj 6∈ F1 then Fj ⊆ Ui for some i ∈ I. Since m ≥ 2 we
have n−m < n− 1, so that for any i ∈ I the collection

Fi = {Fk ∈ F : Fk ⊆ Ui} ∪ {X \ Ui}
will have at most n − 1 elements. By the induction hypothesis it therefore
follows that there is a Ki ∈ C0 such that Fk∩Ki = ∅ for all Fk ∈ Fi, Ki ⊆ Ui
and ∑

Fk∈Fi
µ(Fk) + µ(Ki) + µ(X \ Ui) > 1− ε

N
,
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so ∑

Fk∈Fi
µ(Fk) + µ(Ki) > µ(Ui)− ε

N
, i = 1, . . . , N.

Then we get
n∑

j=1

µ(Cj) +
N∑

i=1

µ(Ki) >
n∑

j=1

µ(Fj)− ε+
N∑

i=1

µ(Ki)

≥
m∑

j=1

µ(Fj) +
N∑

i=1

∑

Fk∈Fi
µ(Fk) +

N∑

i=1

µ(Ki)− ε

>

m∑

j=1

µ(Fj) +
N∑

i=1

µ(Ui)− 2ε

>

m∑

j=1

µ(Fj) +
∑

i∈I
µ(Ui)− 5ε

2
= 1− 5ε

2
,

which proves the assertion in case b).

Finally, if C1, . . . , Cn ⊆ V ∈ Os, let C0 = X \V . Applying the argument
above to the family C0, C1, . . . , Cn now yields Lemma C when all the sets
C1, . . . , Cn are solid.

Next, we turn to the general case, assuming that all the sets Cj
(j = 1, . . . , n) belong to Cc. Again we use induction on n.

S t e p 1: n = 1. Let C ⊆ V ∈ Os and C ∈ Cc. Let X \ C =
⋃
i∈IWi

with Wi ∈ Os. Let W0 be the exterior component with respect to V , and
put C̃ = X \ W0 as usual. We have C̃ ⊆ V and by the first part of the
proof, there is a K0 ∈ C0 such that C̃ ∩ K0 = ∅, K0 ⊆ V and µ(C̃) +
µ(K0) > µ(V ) − ε/2. Choose N such that

∑
i>N µ(Wi) < ε/4 (restricting

to a countable subfamily again). Next, choose Ki ⊆ Wi such that Ki ∈ Cs
and µ(Ki) > µ(Wi)− ε/(4 · 2i) for i = 1, . . . , N . All the Ki (i = 0, 1, . . . , N)
are now disjoint from C, mutually disjoint (K0 ⊆ W0 ∩ V ) and contained
in V . Take K =

⋃N
i=0Ki, so K ∈ C0,K ∩ C = ∅ and K ⊆ V . Moreover,

µ(K) =
N∑

i=0

µ(Ki) > µ(V )− µ(C̃)− ε

2
+

N∑

i=1

µ(Wi)− ε

4

> µ(V )− (1− µ(W0)) +
∑

i∈I
µ(Wi)− ε

= µ(V )− µ(C)− ε,
which establishes the assertion for n = 1.

S t e p 2: Assume inductively that the assertion is true for k=1, . . . , n−1.
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C a s e 1: C̃1, . . . , C̃n are mutually disjoint. By the first part of the proof
there is K0 ∈ C0 such that K0 ⊆ V,K0 ∩ C̃j = ∅ (j = 1, . . . , n) and µ(K0) >
µ(V )−∑n

j=1 µ(C̃j)− ε/2.

Let X \ Cj = W j =
⋃
i∈Ij W

j
i , where W j

0 is the exterior component

of W j with respect to V (i.e. C̃j = X \W j
0 ). Let Nj ∈ Z+ be such that∑

i>Nj
µ(W j

i ) < ε/(4n). For i = 1, . . . , Nj pick Kj
i ⊆W j

i such that Kj
i ∈ Cs

and

µ(Kj
i ) > µ(W j

i )− ε

4n
· 1

2i
, j = 1, . . . , n.

Since the C̃j are mutually disjoint, all the sets Kj
i are mutually disjoint and

also disjoint from K0 ⊆
⋂n
j=1W

j
0 . Let K = K0 ∪

⋃{Kj
i : 1 ≤ i ≤ Nj , j =

1, . . . , n} so K ∈ C0, K ∩ Cj = ∅ (j = 1, . . . , n) and K ⊆ V . We now obtain

µ(K) = µ(K0) +
n∑

j=1

Nj∑

i=1

µ(Kj
i )

> µ(V )−
n∑

j=1

µ(C̃j)− ε

2
+

n∑

j=1

Nj∑

i=1

[
µ(W j

i )− ε

4n
· 1

2i

]

> µ(V )−
n∑

j=1

[
µ(C̃j)−

∑

i∈I′
j

µ(W j
i )
]
− ε

= µ(V )−
n∑

j=1

µ(Cj)− ε,

which proves the assertion in Case 1.

C a s e 2: C̃j ∩ C̃k 6= ∅ for some pair j 6= k. We proceed as in the proof
of Lemma A, and re-index the sets C1, . . . , Cn so that

1. C̃10, C̃20, . . . , C̃m0 (m < n) are mutually disjoint.
2. C̃jl ⊆ C̃j0 for l = 0, . . . ,mj and 1 ≤ j ≤ m, where the inclusions are

proper if l ≥ 1.
3. m+

∑m
j=1mj = n.

As before, let X \Cjl =
⋃{W jl

i : i ∈ Ijl} = W jl, and let W jl
0 denote the

exterior component of W jl with respect to V . Again, by the first part of the
proof, there is K0 ∈ C0 such that K0 ⊆ V,K0 ∩ C̃j0 = ∅ (j = 1, . . . ,m), and

(4.19) µ(K0) > µ(V )−
m∑

j=1

µ(C̃j0)− n−m
n

ε.

For each j ∈ {1, . . . ,m} choose Nj ∈ Z+ such that
∑
i>Nj

µ(W j0
i ) < ε/(2n).
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When l ≥ 1 each set Cjl is contained in some interior component W j0
i

of W j0, i.e. i 6= 0. We let

Jji = {l : 1 ≤ l ≤ mj , Cjl ⊆W j0
i }, 1 ≤ i ≤ Nj .

If Jji = ∅ there is by (B) a set Kj
i ⊆W j0

i such that Kj
i ∈ Cs and

(4.20) µ(Kj
i ) > µ(W j0

i )− ε

2Njn
.

If Jji 6= ∅ there is, by the induction hypothesis, since mj < n, a set Kj
i ⊆

W j0
i such that Kj

i ∈ C0 and

(4.21) µ(Kj
i ) > µ(W j0

i )−
∑

l∈Jji
µ(Cjl)− ε

2Njn
.

Let Kj =
⋃Nj
i=1K

j
i ∈ C0 for j = 1, . . . ,m. Then, adding the inequalities

(4.20) and (4.21), we get

µ(Kj) =
Nj∑

i=1

µ(Kj
i )

>

Nj∑

i=1

µ(W j0
i )−

Nj∑

i=1

∑

l∈Jji
µ(Cjl)− ε

2n

>

∞∑

i=1

µ(W j0
i )−

mj∑

l=1

µ(Cjl)− ε

n

= µ(C̃j0)− µ(Cj0)−
mj∑

l=1

µ(Cjl)− ε

n
,

so

(4.22) µ(Kj) > µ(C̃j0)−
mj∑

l=0

µ(Cjl)− ε

n
, j = 1, . . . , n.

Now let K =
⋃m
j=0Kj ∈ C0. By addition of (4.19) and the equations (4.22)

we get

µ(K) =
m∑

j=0

µ(Kj)

> µ(V )−
m∑

j=1

µ(Cj0)− (n−m)
ε

n

+
m∑

j=1

µ(C̃j0)−
m∑

j=1

mj∑

l=0

µ(Cjl)− mε

n

= µ(V )−
m∑

j=1

mj∑

l=0

µ(Cjl)− ε,
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which concludes the proof of the lemma since the double sum above com-
prises all the sets C1, . . . , Cn given initially.

Lemma C was what was needed to establish (4.18) and the proof of
Proposition 4.1 is therefore also complete.

5. Extension to a NSA-measure. Let X be a compact Hausdorff
space which is connected and locally connected . Suppose µ : C0 → [0, 1]
satisfies (Q1)0, (Q2)0 and (Q3)0 of the preceding section. If V ∈ O0 we may
define

(5.1) µ(V ) = 1− µ(X \ V ),

thereby obtaining a function µ : A0 → [0, 1] which satisfies the conditions
(Q0), (Q1), (Q2) and (Q3) for a NSA-measure, as given in the introduction.
In particular, we may note that (Q3) is an immediate consequence of (Q3)0

and (5.1), i.e. we have, for V ∈ O0,

(5.2) µ(V ) = sup{µ(K) : K ⊆ V, K ∈ C0}.
We now use (5.2) to extend µ to all of O, and then define

(5.3) µ(C) = 1− µ(X \ C)

for an arbitrary set C ∈ C.
Proposition 5.1. The function µ : A → [0, 1], as defined by (5.2) for

V ∈ O and by (5.3) for C ∈ C, is a NSA-measure in X.

P r o o f. Our task is to verify that (Q0)–(Q3) hold on A. (Q0) is auto-
matic by (5.3). From (5.2) it follows that µ(V1) ≤ µ(V2) if V1 ⊆ V2 and
V1, V2 ∈ O. (Q1) now follows from (5.3). To prove (Q3) we first observe
that if K ⊆ U , K ∈ C, U ∈ O, then there is a set C ∈ C0 such that
K ⊆ C ⊆ U . This follows as in the remark subsequent to the definition of a
solid set-function. (Q3) now follows from (5.2) and (Q1).

To prove (Q2) we first show that µ is additive on O. Let U1 and U2 be
disjoint open sets, and let ε > 0 be arbitrary. Choose K ∈ C0 such that
K ⊆ U1 ∪ U2 and µ(K) > µ(U1 ∪ U2)− ε.

Next, chooseK1,K2 ∈ C0 such thatKi ⊆ Ui, µ(Ki) > µ(Ui)−ε (i = 1, 2).
Then we get, since K1 ∩K2 = ∅,

µ(U1) + µ(U2) < µ(K1) + µ(K2) + 2ε = µ(K1 ∪K2) + 2ε

≤ µ(U1 ∪ U2) + 2ε < µ(K) + 3ε

= µ(K ′1 ∪K ′2) + 3ε = µ(K ′1) + µ(K ′2) + 3ε

≤ µ(U1) + µ(U2) + 3ε,

where K ′i = K ∩Ui ∈ C0 (i = 1, 2). Since ε > 0 was arbitrary it follows that
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if U1 ∩ U2 = ∅ and U1, U2 ∈ O, then

(5.4) µ(U1 ∪ U2) = µ(U1) + µ(U2).

We are now ready to show that µ is additive on C. Let K1 ∩ K2 = ∅
and K1,K2 ∈ C. Combining (5.2) and (5.3) we find, for ε > 0 arbitrary, sets
U,U1, U2 in O such that

K1 ∪K2 ⊆ U, µ(U) < µ(K1 ∪K2) + ε,

Ki ⊆ Ui, µ(Ui) < µ(Ki) + ε, i = 1, 2.

Since µ is monotone on O we may assume that U1 ∩ U2 = ∅. Then we get

µ(K1) + µ(K2) > µ(U1) + µ(U2)− 2ε = µ(U1 ∪ U2)− 2ε

≥ µ(K1 ∪K2)− 2ε (by (Q3))

> µ(U)− 3ε

≥ µ((U ∩ U1) ∪ (U ∩ U2))− 3ε

= µ(U ∩ U1) + µ(U ∩ U1)− 3ε

≥ µ(K1) + µ(K2)− 3ε.

Since ε > 0 was arbitrary it follows that if K1,K2 ∈ C and K1 ∩ K2 = ∅,
then

(5.5) µ(K1) + µ(K2) = µ(K1 ∪K2),

which is (Q2).

R e m a r k. In the author’s paper [1] another version of the extension
from C0 to C is given, which avoids the connectedness assumptions on X
([1], Proposition 5.1). However, a different assumption has to be made, and
the present treatment is closer in spirit to the rest of this paper.

Combining the last result with the results of Section 4 we have our main
result:

Theorem 5.1. Let X be a compact Hausdorff space which is connected
and locally connected.

(i) Any solid set-function µ : As → [0, 1] has a unique extension to a
NSA-measure in X.

(ii) The arising NSA-measure is extremal if and only if µ : As → {0, 1}.
(iii) If µ is subadditive on Cc, i.e. if µ(C1 ∪ C2) ≤ µ(C1) + µ(C2) for all

C1, C2 ∈ Cc, then µ extends to a uniquely determined regular Borel measure
in X.

Part (ii) is obvious and the proof of the third part is left to the reader.
One has to show that µ is subadditive on C and then apply a standard result
of measure theory (cf. the remark in the introduction).



232 J. F. Aarnes

As a first application of the theorem above we show that the construction
of extremal NSA-measures as established in [5] now follows as a special case.
We assume that g = 0.

A subfamily S of Cs is called a co-basis if the following four conditions
hold ([5], Definition 3.6):

(S1) C1 ⊆ C2 ∈ S ⇒ C1 ∈ S if C1 ∈ Cs.
(S2) C1, C2 ∈ Cs \ S ⇒ C1 ∩ C2 6= ∅.
(S3) C1, C2 ∈ S ⇒ C1 ∪ C2 6= X.
(S4) For all C1 ∈ S there is a C2 ∈ S such that C1 ⊆ C0

2 .

Suppose S is a co-basis and define, for C ∈ Cs,

(5.6) µ(C) =
{

0 if C ∈ S,
1 if C 6∈ S.

Let us verify that µ is a solid set-function. By (S1) it is clear that ∅ ∈ S,
and by (S3) it follows that X 6∈ S. Hence µ(X) = 1. Now suppose C1, C2 ∈
Cs, C1 ∩ C2 = ∅. By (S2) at most one of these sets is not in S. Combining
this fact with (S1) we get (A). To get (B) it suffices to show that if C1 ∈ S
then there is a set C ′1 ∈ Cs \ S such that C1 ∩ C ′1 = ∅. By (S4) we get
C2 ∈ S such that C1 ⊆ C0

2 . By Lemma 3.3 there is a set W ∈ Os such that
C1 ⊆ W ⊆ C0

2 . Then C ′1 = X \W ∈ Cs and C ′1 ∪ C2 = X so by (S3) we
must have C ′1 6∈ S. So µ is a solid set-function, and we get the following
(Corollary 3.7 of [5]):

Proposition 5.2. µ as defined by (5.6) has a unique extension to an
extremal NSA-measure in X.

A more general example may be given as follows: Let P = {p1, . . . , pq}
be a set of q distinct points in X, where

q = 2n+1 + 1, n ∈ Z+.

For any set C ∈ Cs let ]C denote the number of elements in P ∩ C. Define,
for k = 0, 1, . . . , 2n,

µn(C) = k/2n if ]C = 2k ∨ 2k + 1.

We leave it to the reader to verify that µn is a solid set-function. It is easily
seen that µn is not subadditive, so that the resulting NSA-measure is not
(the restriction of) a regular Borel measure. However, one may show (using
the same technique as in Example 2.1 of [2]) that each µn is an extreme
point in the convex set Q of all normalized NSA-measures in X.

We close this section with a “continuous example”, i.e. a NSA-measure
µ such that Spµ is all of [0,1]. Let X = S2 = the unit sphere in R3, and
let λ denote normalized Lebesgue measure in X, i.e. λ(X) = 1. Let E =
{(x, y, z) ∈ S2 : z = 0, i.e. x2 + y2 = 1} = the equator on S2.
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Define µ on Cs as follows:

(i) µ(C) = 1 if E ⊆ C.
(ii) µ(C) = λ(C) if E ∩ C 6= ∅ and E ∩ Cc 6= ∅.

(iii) µ(C) = 0 if E ⊆ Cc.

Let us verify (A) and (B).

(A) Let C1, . . . , Cn be a disjoint family in Cs, all contained in C ∈ Cs.
We may assume that all the Ci fall in the category (ii), otherwise there is
nothing to prove. Then

∑n
i=1 µ(Ci) =

∑n
i=1 λ(Ci) ≤ λ(C). Since C ∩E 6= ∅

the assertion follows.
(B) Let C ∈ Cs and ε > 0 be given. If E ⊆ C there is nothing to

prove, and if E ⊆ Cc we just take C ′ = E. So assume that E ∩ C 6= ∅ and
E ∩ Cc 6= ∅. Since Cc ∈ Os, by Lemma 3.3 it follows that there is a set
C ′ ∈ Cs such that λ(C ′) + λ(C) > 1 − ε, and C ′ ⊆ Cc, C ′ ∩ E 6= ∅. This
establishes (B).

The NSA-measure constructed in this way is not a measure since it lacks
subadditivity.

6. Discretization of measures. In this section we provide an affirma-
tive solution to the following problem: Given a regular Borel measure λ with
Spλ = [0, 1], is it possible to find NSA-measures µ with finite spectra which
approximate λ arbitrarily well?

We shall assume that X is a compact Hausdorff space which is connected,
locally connected and have g = 0. Since there is no need to assume that the
initial measure λ is really a measure, we just assume that λ is a normalized
NSA-measure.

Definition. Two disjoint sets C1, C2 ∈ Cs with non-zero λ-measure are
called a splitting pair for λ if λ(C1) + λ(C2) = 1. λ is non-splitting if there
is no splitting pair for λ.

Now suppose λ is a non-splitting NSA-measure satisfying λ(X) = 1. Let
n be an arbitrary non-negative integer and put q = 2n + 1. We are going to
construct a NSA-measure µn such that Spµn = {k/2n : k = 0, 1, . . . , 2n}.
Define intervals Ik as follows:

Ik = [k/q, (k + 1)/q), k = 0, 1, . . . , 2n − 1,

I2n = [2n/q, 1]

We define, for C ∈ Cs,
(D) µn(C) = k/2n if λ(C) ∈ Ik, µn(X \ C) = 1− µn(C),
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Note that µn(C) ∈ Ik for all k,

µn(C) = 0 if λ(C) < 1/q and

µn(C) = 1 if λ(C) ≥ 2n/q.

Proposition 6.1. µn is a solid set-function in X.

P r o o f. Let C1, . . . , Cm ⊆ C ∈ Cs, Ci ∈ Cs for i = 1, . . . ,m and
Ci ∩ Cj = ∅ if i 6= j.

C a s e 1: λ(C) ∈ Ik for some k < 2n. Then
∑m
i=1 λ(Ci) ≤ λ(C) <

(k + 1)/q. For j = 0, 1, . . . , 2n let

Jj = {i : 1 ≤ i ≤ m, λ(Ci) ∈ Ij}
and let nj denote the number of elements in Jj . Since Ci ⊆ C for all i =
1, . . . ,m we have nj = 0 if j > k. Clearly

∑k
j=0 nj = m. Now, if λ(Ci) ∈ Ij

then λ(Ci) ≥ j/q, so we must have

k + 1
q

>

m∑

j=1

λ(Cj) ≥
k∑

j=0

nj
j

q

and so

(6.1)
k∑

j=1

jnj ≤ k.

Now µn(Ci) = j/2n if i ∈ Jj so we get

m∑

i=1

µn(Ci) =
k∑

j=1

∑

i∈Jj
µn(Ci) =

k∑

j=1

nj
j

2n

=
1
2n

n∑

j=1

njj ≤ k

2n
= µ(C).

C a s e 2: λ(C) ∈ I2n . With notation as above we now get

(6.2)
2n∑

j=1

jnj ≤ 2n + 1.

Suppose equality holds in (6.2). Then

1 ≥
m∑

i=1

λ(Ci) =
2n∑

j=1

∑

i∈Jj
λ(Ci) ≥

2n∑

j=1

j

2n + 1
nj = 1.
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Hence we must have λ(Ci) = j/q if i ∈ Jj . This violates the non-splitting
of λ. We must therefore have

(6.3)
2n∑

j=1

jnj ≤ 2n.

and the assertion
∑m
i=1 µn(Ci) ≤ µn(C) now follows as in Case 1. We have

established (A).
Now let C ∈ Cs be arbitrary, and assume that λ(C) ∈ Ik for some k < 2n.

(If k = 2n then µn(C) = 1 and there is nothing to prove). Let U = X \C so
λ(U) ∈ ((q − (k + 1))/q, (q − k)/q]. By the regularity of λ and Lemma 3.1
there is a set C ′ ⊆ U such that C ′ ∈ Cs and λ(C ′) ∈ same interval. Then
µn(C ′) = (q − (k + 1))/(q − 1), since we cannot have λ(C ′) = (q − k)/q
because of the non-splitting of λ. But then

µn(C) + µn(C ′) =
k

q − 1
+
q − (k + 1)
q − 1

= 1,

which shows that (B) is true. The proof is complete.

Proposition 6.2. Let λ be a normalized non-splitting NSA-measure (or
regular Borel measure) in X. For n = 1, 2, . . . let µn be defined by (D). Then
the resulting sequence {µn} of NSA-measures converges to λ in the topology
of Q.

P r o o f. By definition it follows that |λ(C)−µn(C)| < 1/2n for all C ∈ Cs.
Let {µni} be an arbitrary subsequence of {µn}. Since Q is compact, {µni}
must have a subnet {µnij } which converges to some element λ′ ∈ Q (we
identify Q with the set of non-linear states). For C ∈ Cs we then have

λ′(C) =lim
j
µnij (C) = λ(C)

so λ and λ′ agree on Cs. But then, by uniqueness, we must have λ = λ′.
We have therefore shown that any subsequence of {µn} has a subnet which
converges to λ. But then µn converges to λ. The proof is complete.

We do not know whether µn(K) → λ(K) for all closed sets K in X.
What follows is what we can show, and what will suffice in most cases.

Proposition 6.3. If C ∈ C0 then µn(C)→ λ(C).

P r o o f. By definition we have µn(C) = k/2n if λ(C) ∈ Ik (k = 0, 1, . . .
. . . , 2n) if C ∈ Cs. Let I ′k = (k/q, (k + 1)/q] for k = 1, . . . , 2n and put
I ′0 = [0, 1/q]. It is then easily verified that µn(V ) = k/2n if λ(V ) ∈ I ′k
(k = 0, 1, . . . , 2n) and V ∈ Os. To prove the assertion it suffices to consider
C ∈ Cc. Let such a C ∈ Cc be given. We have X \ C = V =

⋃
i∈I Vi, where

the Vi belong to Os and are disjoint.
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We now claim that for arbitrary n ∈ Z+ we have (with qn = 2n + 1)

(6.4)
∑

i∈I
µn(Vi) <

∑

i∈I
λ(Vi) +

1
qn
.

Indeed, let Jj = {i ∈ I : λ(Vi) ∈ I ′j} for j = 1, . . . , 2n. For each j ≥ 1 the
number of elements in Jj is finite and is denoted by nj . If λ(V ) ∈ I ′k we
have nj = 0 for j > k. Since λ(Vi) > j/q if i ∈ Jj we now get

k∑

j=1

nj
j

q
<

k∑

j=1

∑

i∈Jj
λ(Vi) ≤

∑

i∈I
λ(Vi) = λ(V ) ≤ k + 1

q

so that
∑
njj ≤ k.

If λ(Vi) ∈ I ′j then µn(Vi) = j/2n so we get

∑

i∈I
µn(Vi) =

k∑

j=1

∑

i∈Jj
µn(Vi) =

k∑

j=1

nj
j

2n
≤ k

2n
<
k + 1
q

.

Since
∑
i∈I λ(Vi) ∈ I ′k the claim (6.4) follows.

Now let ε > 0 be arbitrary. Choose N such that
∑
i>N λ(Vi) < ε. Then

choose N ′ such that 1/(2N ′) < ε/N . For n ≥ N ′ we then obtain
N∑

i=1

|λ(Vi)− µn(Vi)| < N

2n
< ε.

Fix an arbitrary n ≥ N ′. By (6.4) (applied to the family {Vi}i>N ) we get
∑

i>N

µn(Vi) <
∑

i>N

λ(Vi) +
1
qn

< ε+
1
qn

< 2ε.

Consequently, for any n ≥ N ′,
|λ(C)− µn(C)| ≤

∑

i∈I
|λ(Vi)− µn(Vi)|

≤
N∑

i=1

|λ(Vi)− µn(Vi)|+
∑

i>N

λ(Vi) +
∑

i>N

µn(Vi)

< ε+ ε+ 2ε = 4ε.

Hence µn(C)→ λ(C) if C ∈ Cc. The proof is complete.
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