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Hausdorff dimension and measures on Julia sets
of some meromorphic maps

by

Krzysztof B a r a ń s k i (Warszawa)

Abstract. We study the Julia sets for some periodic meromorphic maps, namely the
maps of the form f(z) = h(exp 2πi

T z) where h is a rational function or, equivalently, the

maps f̃(z) = exp( 2πi
T h(z)). When the closure of the forward orbits of all critical and

asymptotic values is disjoint from the Julia set, then it is hyperbolic and it is possible
to construct the Gibbs states on J(f̃) for −α log |f̃ ′|. For α̃ = HD(J(f̃)) this state is
equivalent to the α̃-Hausdorff measure or to the α̃-packing measure provided α̃ is greater
or smaller than 1. From this we obtain some lower bound for HD(J(f)) and real-analyticity
of HD(J(f)) with respect to f . As an example the family fλ(z) = λ tan z is studied. We
estimate HD(J(fλ)) near λ = 0 and show it is a monotone function of real λ.

1. Introduction. In the recent years some work was done in the dy-
namics of meromorphic (non-rational) maps (see [BKL], [DK], [K]). One of
the basic differences which appear in this case compared with the rational
one is that not all points have well defined forward orbits—the preimages of
the poles after some time reach infinity, where the function is not defined.
However, there are many similarities to the dynamics of rational and entire
functions.

Let f : C→ Ĉ be a meromorphic map with an infinite number of poles.
Denote by N(f) the set of points z ∈ C such that for some neighbourhood
U of z the sequence {fn|U}n∈N is defined, meromorphic and forms a normal

family. The Julia set J(f) is the complement of N(f) in Ĉ. We assume
∞ ∈ J(f). J(f) is a compact perfect set and z ∈ J(f) iff f(z) ∈ J(f) or
z =∞. As in the rational case, J(f) ⊂ cl

⋃
n≥0 f

−n(z) for all z ∈ Ĉ except
for at most two singular values in C with finite inverse orbits. Moreover, the
Julia set is the closure of the periodic repelling points (see [BKL.I]).
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In this paper we shall deal with meromorphic maps of the form

f(z) = h(e
2πi
T z),

where h is a rational function (not a polynomial) with all poles in C \ {0}
and T 6= 0 is a complex constant. These maps are periodic with period T .
Our basic assumption is that the closure in Ĉ of the forward orbits of all
critical and asymptotic values of f is disjoint from J(f) (we do not treat
infinity as a critical value). Note that the critical values of f are critical
values of h (and vice versa, except for 0), so there are a finite number
of them. There are at most two asymptotic values h(0), h(∞). From the
Fatou–Sullivan classification the complement of J(f) is the union of a finite
number of basins of sinks. Here are some examples of maps which satisfy
our assumptions.

R e m a r k 1.1. Consider a particular case when all critical and asymptotic
values lie in the immediate basin of attraction of one sink. Then there exists
a topological disk U containing J(f) ∩ C such that for all k all branches of
f−k are defined on it and for some n, f−n(U) ⊂ U . Hence the Julia set is
a Cantor set and fn|J(f) is conjugate to the shift on the space of one-sided
sequences with infinitely many symbols supplemented with finite sequences
corresponding to the preimages of the poles. Such a situation occurs in
Examples 1.2 and 1.3.

Example 1.2. Suppose h is a homography. Then f has constant Schwar-
zian derivative. Such maps were studied in [DK]. They have two asymptotic
values and no critical values. Take

h(z) = −λi z − 1
z + 1

and T = π. Then f(z) = λ tan z. For λ ∈ R with 0 < |λ| < 1 both asymptotic
values lie on the imaginary axis, f maps this axis into itself and all points
from it are attracted to 0. More generally, let

h(z) = ai
z + b

z + c

with a, T ∈ R \ {0}, b ∈ R, c > 0, b 6= c and π|a||b − c| < 2|T |c. Then the
picture is the same. For the tangent family, if λ ∈ C with 0 < |λ| < 1 then 0
is still a fixed sink and both asymptotic values are attracted to it. For these
λ all the maps are quasiconformally conjugate (see [DK]). This family will
be studied in Section 4.

Example 1.3. It is easy to check that the dynamics described in the
previous example is the same when h(z) = ip(z)/q(z), deg p ≤ deg q, p and
q have real coefficients, q has no non-negatives roots, all critical points of h
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are real and T is real and sufficiently large. For instance, take

h(z) = i
(z + a)m

(z + b)l

with m ≤ l, a ∈ R, b > 0. In particular, if

h(z) =
(
− λi z − 1

z + 1

)p
,

|λ| < 1, p some positive integer, T = π then f(z) = (λ tan z)p.

Example 1.4. In the case when f has more than one sink, the Julia set
is no longer a Cantor set. For f(z) = λ tan z with λ ∈ R, |λ| > 1, we have
J(f) = R ∪ {∞} and there are two sinks on the imaginary axis attracting
the upper and lower half-planes. The same is true for h(z) = ai z+bz+c with
a, T ∈ R \ {0}, b ∈ R, c > 0, b 6= c if there is a fixed source on the
imaginary axis, and for some parameters in the families from Example 1.3.
Like previously, for λ tan z, λ ∈ R, |λ| > 1 for small perturbation of λ there
is a quasiconformal conjugation between the maps. The Julia set is then a
quasi-circle.

Changing variables we assume T = 2πi to simplify notation. We are go-
ing to study measures on the Julia set using the thermodynamic formalism.
However, because of the periodicity of f the Perron–Frobenius–Ruelle op-
erator for the function −α log |f ′| is infinite. To avoid this we shall consider
the map f̃(z) = exp(h(z)). It is holomorphic on Ĉ except for the poles of h
where it has essential singularities. The definition of the Julia set of f̃ is the
same as for meromorphic maps. Let J = J(f) and J̃ = J(f̃). We have

(1) exp(fn(z)) = f̃n(exp(z))

so exp(J ∩ C) ⊂ J̃ ⊂ exp(J ∩ C) ∪ {0,∞}. By assumption h(0), h(∞) 6∈ J ,
hence 0, ∞ 6∈ J̃ . Consequently,

(2) J̃ = exp(J ∩ C).

Thus the local geometric properties of J̃ and J are the same.
The plan of the paper is as follows: in the next section we show that f̃

and thus f is expanding on the Julia set and prove the “bounded distortion”
lemma. In Section 3 we study the Perron–Frobenius–Ruelle operator Lϕ on
C(J̃) for ϕ = −α log |f̃ ′|. It is well defined for α greater than α0 = p/(p+1),
where p is the highest degree of the poles of h. The topological pressure P
is finite if and only if α > α0. The Gibbs state µα on J̃ is constructed in
the standard way. The Hausdorff dimension HD(J̃) = HD(J) is equal to α̃
which is the unique root of P . Consequently, it is greater than α0. From
the perturbation theory for Lϕ we obtain the real-analyticity of HD(J̃) with
respect to f̃ . Moreover, HD(J̃) equals the packing and box dimensions of J̃ .
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However, the α̃-Hausdorff measure Λα̃ and the α̃-packing measure Πα̃ on
J̃ are not always equivalent to µα̃. For HD(J̃) < 1 we have Πα̃ ∼ µα̃ and
Λα̃ = 0, for HD(J̃) = 1 all three measures are equivalent, and for HD(J̃) > 1,
Λα̃ ∼ µα̃ and Πα̃ = ∞. In Section 4 these results are applied to the family
fλ(z) = λ tan z for λ ∈ C, 0 < |λ| < 1, and λ in the neighbourhood of
R \ [−1, 1]. We show that HD(J(fλ)) = 1/2 + O(

√
|λ|) for λ → 0 and that

it is strictly increasing with respect to λ ∈ R for 0 < λ < λ0.
Recently R. D. Mauldin and M. Urbański ([MU]) have studied the limit

sets for so-called conformal iterated function systems (c.i.f.s.), i.e. countable
families of conformal contractions on some compact subsets of Rn. Such
objects appear in various situations, e.g. the limit sets of geometrically finite
Kleinian groups and the Julia sets for parabolic rational maps. Using the
thermodynamical formalism they prove existence of an invariant probability
measure, give a formula for the Hausdorff dimension and conditions for the
behaviour of the Hausdorff and packing measures. For the meromorphic
maps considered in this paper the situation when the Julia set is a Cantor
set is a particular case of the general theory of [MU].

The family λ tan z and other families of meromorphic maps were studied
by J. Kotus in [K]. She considered a measure on J(f) which is the limit of
a sequence of measures µn distributed on the sets of the nth generation An
from the construction of the Cantor set J(f) proportionally to (diamAn)α.
Then she used the Frostman lemma to estimate HD(J(f)). Some results
from that paper and from the present one are similar.

Acknowledgements. The author would like to thank J. Kotus, F. Przy-
tycki and A. Zdunik for their helpful suggestions.

2. Preliminary lemmas. Recall that we study the maps f(z) = h(ez)
for which J ∩S = ∅, where S is the closure in Ĉ of the forward orbits of the
critical and asymptotic values of f . From (1) and (2), J̃ is disjoint from S̃
which is the closure of the forward orbits of the critical and asymptotic values
of f̃ . Note that if |Re(z)| is large, then f(z) lies in a small neighbourhood of
one of the asymptotic values which are outside J . Thus J ∩ C is contained
in a strip {|Re(z)| ≤ a} for some a and J̃ is contained in an annulus {b−1 ≤
|z| ≤ b}. As in the rational case, our assumption implies expanding on the
Julia set.

Lemma 2.1. There exist n ≥ 1 and q > 1 such that |(fn)′(x)| > q for all
x ∈ J for which fn is defined. The same is true for f̃ and J̃ .

P r o o f. For f the proof is the same as for a rational function. The
derivative of fn at the point z differs by a bounded factor from the derivative
of f̃n at the point exp z. This gives the proof for f̃ .
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Now we estimate the distortion of the branches of f̃−n. Let us remark
that constants c, c1 etc. have different values depending on the context.

Recall the Koebe distortion lemma (see e.g. [G]).

Lemma 2.2. For every 0 < δ < 1 there is a constant cδ > 0 such that for
every univalent function f on the open unit disk ,

1
cδ
<

∣∣∣∣
f ′(x)
f ′(y)

∣∣∣∣ < cδ

for every x, y such that |x|, |y| < δ. Moreover , cδ → 1 as δ → 0.

Lemma 2.3. Let α > 0. Then there exists a constant c > 0 such that for
every x, y ∈ J̃ and every n > 0,

1
c
<

∑
z∈f̃−n(x) |(f̃n)′(z)|−α

∑
z∈f̃−n(y) |(f̃n)′(z)|−α

< c

if one of these sums is finite. Otherwise they are both infinite.

P r o o f. Recall that Ĉ \ J̃ is a finite union of the basins of sinks, so Ĉ \ S̃
is connected. Hence we can assume that x, y are some points from a small
ball Br(ξ) such that all branches of f̃−n are defined on B2r(ξ). Then it is
sufficient to use the Koebe lemma.

Lemma 2.4. The series S(x) =
∑
z∈f̃−1(x) |f̃ ′(z)|−α is (uniformly) con-

vergent for x ∈ J̃ if and only if α > α0, where α0 = p/(p+1) with p denoting
the highest degree of the poles of h.

P r o o f. By definition

S(x) =
∑

k∈Z

∑

z∈h−1(log x+kT )

|f̃(z)h′(z)|−α,

where we choose log x lying in the strip {z : 0 ≤ Im(z) < 2πi}. Denote by
b1, . . . , bs the poles of h and let pj be the degree of bj . If |k| is large, then
the set h−1(log x+ kT ) consists of d = deg h points lying at small distances
to the poles. For z ∈ h−1(log x+ kT ) which is close to bj we have

c−1
1 |k|(pj+1)/pj ≤ |h′(z)| ≤ c1|k|(pj+1)/pj .

Moreover, b−1 ≤ |f̃(z)| ≤ b. Therefore, if p is the maximum of the pj , then

c−1
2 |k|−(p+1)α/p ≤

∑

z∈h−1(log x+kT )

|f̃ ′(z)|−α ≤ c2|k|−(p+1)α/p.

Hence, the convergence of S(x) is equivalent to the convergence of∑∞
k=1 k

−(p+1)α/p. The uniform convergence follows from Lemma 2.3.

R e m a r k. These estimates are similar to the ones for the jump map
for parabolic rational maps (see [DU]). Both cases are geometrically very
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similar so one can obtain the same results for the Hausdorff and packing
measures on J (see Section 3).

3. Thermodynamic formalism and measures on the Julia set.
Let ϕ = −α log |f̃ ′| for some α > 0. We are going to study the Perron–
Frobenius–Ruelle operator Lα = Lϕ on the space C(J̃) of real continuous
functions on J̃ . By definition,

(3) Lαψ(x) =
∑

z∈f̃−1(x)

ψ(z)|f̃ ′(z)|−α.

Note that ϕ has singularities in J̃ . However, Lemma 2.4 shows that the
operator is well defined on C(J̃) for α > α0.

Let α > α0. The proof of the existence of the Gibbs state on J̃ for ϕ is
the same as in the case of the hyperbolic Julia set of a rational function.
It is sufficient to make use of the lemmas from the previous section. The
details are in e.g. [B1], [P], [PP]. The topological pressure equals

(4) P (α) = lim
n→∞

1
n

log
∑

z∈f̃−n(x)

|(f̃n)′(z)|−α

for any x ∈ J̃ . Denote the Gibbs state for the function ϕ by µα. From the
construction we have

Proposition 3.1. Fix some small numbers r0 < r1. There exists a con-
stant c > 0 such that for every B = Br(y), y ∈ J̃ , r0 < r < r1, every n > 0
and every branch f̃−nν on B,

1
c
<
µα(f̃−nν (B))enP (α)

|(f̃−nν )′(x)|α
< c

for every x ∈ B.

It is easy to see that for α > α0 the function α 7→ P (α) is strictly
decreasing, convex and P (α) → ∞ as α → α+

0 . Knowing that P is differ-
entiable (we shall prove it later) one can easily check that P ′(α) < c < 0.
Hence there is a unique α̃ > α0 such that P (α̃) = 0.

Now we compare the invariant measure µα̃ with some measures on J̃
which are defined in a geometric way. We shall consider the α̃-Hausdorff
measure Λα̃ and the α̃-packing measure Πα̃. In the case of rational func-
tions Λα̃ is equivalent to the Gibbs measure so HD(J) = α̃ (see [R]). In
our situation Λα̃ is equivalent to µα̃ only if HD(J̃) ≥ 1. Else Λα̃(J̃) = 0.
Examples of both cases will be given in Section 4. On the other hand, the
α̃-packing measure is equivalent to the Gibbs state for HD(J̃) ≤ 1 and
is infinite in the other case. In particular, all three measures are equivalent
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when HD(J̃) = 1. However, the Hausdorff dimension of J̃ (of course it equals
HD(J)) is always equal to α̃. Moreover, it coincides with the packing and
box dimensions.

Recall the definitions. Let A be a subset of a metric space. Let α > 0.
The α-Hausdorff measure of A is defined as

Λα(A) = lim
ε→0

inf
U

{∑

U∈U
(diamU)α

}
,

where the infimum is taken over all countable coverings U of A by open sets
of diameters less than ε.

A countable family of open balls {Bri(xi)} is called a packing of A if
xi ∈ A for every i and dist(xi, xj) ≥ ri + rj for any i 6= j. For α > 0 we
define

Π∗α(A) = lim
ε→0

sup
{∑

i

rαi

}
,

where the supremum is taken over all packings of A by balls Bri(xi) with
radii less than ε. The α-packing measure of A is defined by

Πα(A) = inf∪iAi=A
{∑

i

Π∗α(Ai)
}
,

where Ai are arbitrary subsets of A.
The Hausdorff dimension of A is

HD(A) = sup{α > 0 : Λα(A) =∞} = inf{α > 0 : Λα(A) = 0}.
The packing dimension PD(A) is defined in the same way.

Let Nε(A) be the minimal number of balls of diameters ε needed to cover
A. Define the lower and upper box dimensions as

BD(A) = lim inf
ε→0

logNε(A)
− log ε

, BD(A) = lim sup
ε→0

logNε(A)
− log ε

.

In the above definitions Nε(A) can be replaced by N ′ε(A) equal to the max-
imal number of elements of any packing of A by balls of diameter ε.

If the lower and upper box dimensions are equal, their common value is
the box dimension BD(A).

Now we recall the theorem which enables us to compare the Hausdorff
and packing measures with other measures on compact sets in Rn, i.e. the
stronger version of the Frostman lemma and its analogue for the packing
measure. This theorem follows from the definition of the Hausdorff and
packing measures and the Besicovitch covering theorem.

Theorem 3.2. Let A be a compact set in Rn and let µ be a finite Borel
measure on A. Then there exists a constant C depending only on n such
that for every Borel subset E of A:
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• If for every x ∈ E,

lim sup
r→0

µ(Br(x))/rα ≥ a

then for every Borel subset D of E,

Λα(D) ≤ 2αCa−1µ(D).

• If for every x ∈ E,

lim sup
r→0

µ(Br(x))/rα ≤ a

then for every Borel subset D of E,

Λα(D) ≥ 2αa−1µ(D).

• If for every x ∈ E,

lim inf
r→0

µ(Br(x))/rα ≥ a
then for every Borel subset D of E,

Πα(D) ≤ a−1µ(D).

• If for every x ∈ E,

lim inf
r→0

µ(Br(x))/rα ≤ a
then for every Borel subset D of E,

Πα(D) ≥ C−1a−1µ(D).

Since the measure µα̃ is invariant, we have µα̃(
⋃
n f̃
−n(h−1(∞))) = 0 so

it is sufficient to compare the measures on J̃ \⋃n f̃−n(h−1(∞)). (The points
from this set have well-defined forward orbits.) Take a point x from this set
and a ball B = Br(f̃n(x)), r0 < r < r1 (see Proposition 3.1). Taking the
branch of f̃−n specified by the trajectory of x and using Proposition 3.1 and
the fact that the distortion is universally bounded we can find a ball centered
at x whose µα measure is comparable up to a universal (i.e. independent
of x, n) constant to its radius. As n → ∞, by expanding the radii of these
balls tend to 0. Hence using Theorem 3.2 we obtain

Proposition 3.3. There exist constants c1, c2 > 0 such that

Λα̃ ≤ c1µα̃ and Πα̃ ≥ c2µα̃.
Now we show when the Hausdorff and packing measures are equivalent

to the Gibbs state. First we prove a useful lemma.

Lemma 3.4.

µα̃({x ∈ J̃ : lim sup
n→∞

|h(f̃n(x))| <∞}) = 0.
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P r o o f. It is sufficient to prove the lemma with∞ replaced by k0T for a
fixed k0. Let Dn = {x : |h(f̃n(x))| < k0T}. We prove that µα̃(

⋂
i≥n0

Di) = 0

for every n0. From compactness of J̃ and Proposition 3.1,

µα̃(J̃) ≥ c1
∑

z∈f̃−n(x)

|(f̃n)′(z)|−α̃,

µα̃

( n0+j⋂

i=n0

Di

)
≤ c2

∑

z∈f̃−n(x)
|h(f̃i(z))|≤(k0+1)T

i=n0,...,n0+j

|(f̃n)′(z)|−α̃,

where c1, c2 are independent of x, j. Using the chain rule and Lemmas 2.3
and 2.4 we get

µα̃

( n0+j⋂

i=n0

Di

)
≤ c3

(∑
|k|≤(k0+1) k

−(p+1)α̃/p

∑
k∈Z k−(p+1)α̃/p

)j
< c3q

j

for some q < 1. Hence µα̃(
⋂
i≥n0

Di) = 0.

We shall also need the following:

Lemma 3.5. For every ai, α > 0,
(∑

i

ai

)α
≤
∑

i

aαi if and only if α ≤ 1.

P r o o f. If α ≤ 1 then
∑
i a
α
i

(
∑
i ai)

α
=
∑

i

(
ai∑
j aj

)α
≥
∑

i

ai∑
j aj

= 1.

For α ≥ 1 we proceed analogously.

Theorem 3.6. Λα̃ is equivalent to µα̃ if and only if HD(J̃) ≥ 1. Other-
wise Λα̃(J̃) = 0.

P r o o f. To prove the theorem we must look closer at the geometric
structure of the Julia set. First consider J . Fix a > 0 such that J ∩C ⊂ {z :
|Re(z)| < a}. Let EM = {z : |Re(z)| < a, Im(z) > M (resp. < M)} provided
M > 0 (resp. M < 0) and let Jk = J ∩ {z : kT ≤ Im(z) < (k + 1)T}. For
sufficiently large |M | the branches of f−1 are defined on EM . For the branch
f−1
ν on EM going to the neighbourhood of some pole b the modulus of its

derivative on Jk is comparable with |k|−(p+1)/p, where p is the degree of b
(see Lemma 2.4). There are 2p such branches going to the neighbourhood
of b. Thus J close to b consists of 2p sequences of sets f−1

ν (Jk) of diameters
comparable with |k|−(p+1)/p and converging to b like {|k|−1/p} as k → ∞
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A detail of the Julia set for f(z) = 0.7(tan z)3

or −∞. The ratio between the diameters of the sets and their distances to
b tends to 0 and the sequences form 2p equal angles around b.

By (2) the Julia set J̃ in the neighbourhood of the poles of h consists
of 2p sequences of sets J̃s,k = exp(f−1

s (Jk)) for s = 1, . . . , p, k ∈ Z, with
the same asymptotic behaviour. This picture is transferred with bounded
distortion by f̃−n to the neighbourhood of the preimages of the poles of
h. Note that by Proposition 3.1, the measure µα̃ of the set f̃−nν (J̃s,k) is
comparable with its diameter to the power α̃.

Assume α̃ < 1. We want to show Λα̃(J̃) = 0. From Proposition 3.3, Λα̃ is
absolutely continuous with respect to µα̃. Hence by Lemma 3.4 it suffices to
prove that Λα̃(K) = 0, where K = {x ∈ J̃ : lim supn→∞ |h(f̃n(x))| = ∞}.
Take x from K. There exists a sequence kn →∞ such that f̃kn(x) lies in a
small neighbourhood of some pole b of h and belongs to exp(f−1(Jln)) with
|ln| → ∞. Let f̃−knν be the branch on B1 = B|b−f̃kn (x)|(f̃

kn(x)) specified by
the trajectory of x. Let B = Bdiam f̃−knν (B1)(x). By bounded distortion and
Proposition 3.1,

µα̃(B)
rα̃

≥ c1
∑∞
k=|ln| k

−(p+1)α̃/p

(
∑∞
k=|ln| k

−(p+1)/p)α̃
≥ c2|ln|1−α̃

for some universal constants c1, c2. Thus lim supr→0 µα̃(Br(x))/rα̃ =∞ and



Julia sets of meromorphic maps 249

from Theorem 3.2, Λα̃(K) = 0.
Now assume α̃ ≥ 1. We show Λα̃ ≥ cµα̃ (Proposition 3.3 gives the

inverse inequality). Fix some small % > 0 and large C,M > 0. Take x ∈ J̃
and B = Br(x) for a small r. We prove

(5) µα̃(B) ≤ c1rα̃
for some universal constant c1. Like previously we can assume that x has
a well-defined forward orbit. Set Gn = f̃−nν (B%(f̃n(x))) for the branch f̃−nν
specified by the trajectory of x. Let B′ = BCr(x) and let n0 be the smallest
integer such that Gn0 ⊂ B′ (it exists by expanding). This implies

(6) r ≥ 1
2C

diamGn0 .

If we take C large enough then B ⊂ Gn0−1 by bounded distortion. Now
there are two possibilities:

(i) |h(f̃n0−1(x))| ≤ M . Then |f̃ ′(f̃n0−1(x))| ≤ c2 for a universal
constant c2 so diamGn0−1 ≤ c3 diamGn0 . Hence µα̃(B) ≤ µα̃(Gn0−1) ≤
c4(diamGn0)α̃. From (6) we have (5).

(ii) |h(f̃n0−1(x))| > M . Then f̃n0−1(x) lies close to some pole of h and
J̃ ∩ Gn0−1 has the structure described at the beginning of the proof. Let
L = {|k| : J̃s,k intersects B%(f̃n0−1(x)) for some s} and let i = inf L,
j = supL (j may be equal to infinity). One can check that the diameters
of sets J̃s,k intersecting B%(f̃n0−1(x)) are less than c5%. Then again using
bounded distortion and Proposition 3.1 we get

µα̃(B)
rα̃

≤ c6
∑j
k=i k

−(p+1)α̃/p

(
∑j
k=i k

−(p+1)/p)α̃
.

Now (5) holds by Lemma 3.5.
Having (5) we can use Theorem 3.2 to end the proof.

In the very same way one can prove the dual theorem about the packing
measure:

Theorem 3.7. Πα̃ is equivalent to µα̃ if and only if HD(J̃) ≤ 1. Other-
wise Λα̃(J̃) = ∞. In particular , if HD(J̃) = 1 then all three measures are
equivalent.

R e m a r k. Theorems 3.6 and 3.7 hold in various situations, e.g. for
parabolic Julia sets of rational maps ([DU]) and limit sets of geometrically
finite Kleinian groups. The following lemma shows the geometric assump-
tions needed to prove the theorems. The proof is the same as previously.

Lemma 3.8. Let J be a bounded Borel subset of C and let µ be a fi-
nite Borel measure on J . Fix c, δ > 0 and some positive integer p. Assume
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that for every x ∈ J there exist a sequence rn → 0, pn ∈ {1, . . . , p} and
homeomorphisms hn : Bn = Brn(x)→ hn(Bn) ⊂ Bδ(0) such that

|hn(x)|pn+1 ≤ cdiamhn(Bn)
rn+1

rn
and

c−1 ≤ |hn(x1)− hn(y1)|
|x1 − y1|

/ |hn(x2)− hn(y2)|
|x2 − y2| ≤ c

for every x1, x2, y1, y2. Set gn(y) = 1/(hn(y))pn . Suppose that the following
holds:

(1) Fix some a, b, T > 0 and let Jk = {z : |Re(z)| ≤ a, kT ≤ Im(z) ≤
(k + 1)T}. Then diam gn(Bn) ≥ b, gn(J) ⊂ ⋃k Jk, and gn(J) ∩ Jk 6= ∅ for
every k.

(2) For every ball B = B%(z) ⊂ gn(Bn) with z ∈ gn(J) and %0 < % < %1

for some fixed small %0, %1 and for every component U of g−1
n (B),

c−1
1 ≤ µ(U)

(diamU)α
≤ c1

for some fixed α, c1.
(3) For µ-almost every x ∈ J there exists a subsequence nk such that

lim
k→∞

|gnk(x)| =∞ and ∞ ∈ gnk(Bnk).

Then Theorems 3.6 and 3.7 hold for the measure µ and for the α-Hausdorff
and α-packing measures on J .

From Proposition 3.3 we have HD(J) = HD(J̃) ≤ α̃. Theorem 3.6 gives
the inverse inequality when α̃ ≥ 1. Now we shall prove it for α̃ < 1. We
shall consider the map f and the Julia set J . Note that in this case the
complement of J is connected, because if there are two different compo-
nents of Ĉ \ J then the Julia set contains their borders and has Hausdorff
dimension at least 1. Thus all the critical and asymptotic values of f are
in one immediate basin of a sink s which is a fixed point (cf. Remark 1.1).
Join them to s by disjoint non-self-intersecting curves and take one more
curve γ : [0, 1) → C disjoint from the Julia set such that γ(0) = s and
Re(γ(t)) → ∞ as t → 1− (it exists since J ⊂ {|Re(z)| ≤ a}). The com-
plement of the union of all these curves in C is an open topological disk
containing J ∩ C and the branches of f−1 are defined on it. Hence J ∩ C
consists of compact and pairwise disjoint sets Jk such that Jk = J0 + kT .

Now we define a sequence Am of subsets of J such that HD(Am) → α̃
as m → ∞. Let Cm =

⋃
|k|≤m Jk and Am =

⋂
n≥0 f

−n(Cm). The sets Am
are compact, forward-invariant and do not contain poles. Set Vm = {z :
dist(z,Am) < ε}, with ε so small that all branches f−nν are defined on disks
contained in Vm and |(f−nν )′| < cq−n, q > 1. The map f|Vm : Vm → C is
holomorphic.
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Lemma 3.9. For large m the set Am is a mixing repeller for f|Vm , i.e.

(i) there exist constants c > 0 and q > 1 such that |(fn)′(z)| > cqn for
every z ∈ Am,

(ii) Am = {z ∈ Vm : fn(z) ∈ Vm for every n > 0},
(iii) f|Vm is mixing , i.e. for every non-empty open set U intersecting Am

there exists n > 0 such that (f|Vm)n(U) ⊃ Am.

P r o o f. It is sufficient to use expanding, the density of the preimages of
the points from J and the fact that dist(Cm, J \ Cm) > 0.

Thus the sets Am form a sequence of mixing repellers contained in J .
Fix some x ∈ J0 with bounded trajectory. The topological pressure Pm for
Am equals

Pm(α) = lim
n→∞

1
n

log
∑

z∈f−n(x)
z∈Am

|(fn)′(z)|−α

and the Hausdorff dimension of Am is equal to the unique root of Pm (see
[B1], [B2], [R]). By periodicity of f ,

Pm(α) = lim
n→∞

1
n

log
∑

z∈f−n(x)
z∈Am∩J0

|(fn)′(z)|−α

and from (3) and (1),

P (α) = lim
n→∞

1
n

log
∑

z∈f−n(x)
z∈J0

|(fn)′(z)|−α.

Hence Pm(α) ≤ Pm+1(α) ≤ P (α).

Proposition 3.10. For α > α0, P (α) = limm→∞ Pm(α).

P r o o f. Let ε > 0. Define

S(k, x, z) =
∑

k∈Z

∑

z∈f−1(x+kT )
z∈J0

|f ′(z)|−α,

Sm(k, x, z) =
∑

|k|≤m

∑

z∈f−1(x+kT )
z∈J0

|f ′(z)|−α.

By Lemma 2.3 there is c such that 1/c < S(k, x, z)/S(k, y, z) < c for every
x, y ∈ J0. Hence we can take m so large that Sm(k, x, z) > (1− ε)S(k, x, z)
for every x ∈ J0. We have

P (α) = lim
n→∞

1
n

log
∑

z1∈f−1(x)
z1∈J0

|f ′(z1)|−αS(k1, z1, z2) . . . S(kn−1, zn−1, zn),
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and similarly for Pm(α) with Sm in place of S. Let

Z(zj) = S(kj , zj , zj+1) . . . S(kn−1, zn−1, zn)

and define Zm(zj) in the same way. We want to compare Zm(z1) with Z(z1).
From Lemma 2.3 we can assume 1/c < Z(zj)/Z(z′j) < c for every zj , z′j ∈ J0.
We know Zm(zn−1) > (1 − ε)Z(zn−1). We proceed by induction. Suppose
Zm(zj) > qjZ(zj) for some qj . Then

Zm(zj−1)
Z(zj−1)

> qj
Sm(kj−1, zj−1, zj)Z(zj)
S(kj−1, zj−1, zj)Z(zj)

= qj

(
1− (S − Sm)(kj−1, zj−1, zj)Z(zj)

S(kj−1, zj−1, zj)Z(zj)

)

> qj

(
1− c2 (S − Sm)(kj−1, zj−1, zj)

S(kj−1, zj−1, zj)

)
> qj(1− c2ε).

Hence Zm(z1) > (1 − c2ε)n−1Z(z1) and Pm(α) ≥ log(1 − c2ε) + P (α) for
arbitrary ε, which ends the proof.

From this proposition HD(J) ≥ supm HD(Am) = α̃. Hence we obtain

Theorem 3.11. HD(J) = HD(J̃) = α̃. In particular , HD(J) > p/(p+ 1)
> 1/2, where p is the greatest degree of the pole of f .

R e m a r k. The above lower bound on HD(J) is valid under weaker as-
sumptions about f . It is sufficient to assume that the closure of the forward
orbits of the critical and asymptotic values is bounded and disjoint from
the set of poles. Then instead of J we can study its subset J ′ consisting of
points with forward orbits contained in a small neighbourhood of infinity.
In the same way we obtain the formula for the Hausdorff dimension of J ′

and the inequality also holds for J .

Now we show that the Hausdorff dimension of the Julia set is a real-
analytic function of f . This is so for hyperbolic Julia sets of rational functions
([R]). We use the perturbation theory for Lα. Recall the suitable theorem
(see [PP]).

Theorem 3.12. Let B be a complex Banach space and L : B → B be
a bounded operator. If λ is an isolated simple eigenvalue for L then for L′
close to L there is an isolated simple eigenvalue λ′. Moreover , the function
L′ 7→ λ′ is analytic.

In our case f and f̃ are parametrized in C2d+1 = R4d+2. The map
R4d+2 3 t 7→ −α log |f̃ ′t | is real-analytic. We extend it for complex t ∈
C4d+2 in the neighbourhood of α̃ to an analytic map ϕ(α, t). Regard Lϕ
as an operator on the space of continuous complex functions on J̃ . Then
(α, t) 7→ Lϕ(α,t) is analytic. For real ϕ the spectrum of the operator on the
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space of complex functions is the same as on the space of real functions.
λ = expP is an isolated simple eigenvalue for Lϕ. Hence by Theorem 3.12,
(α, t) 7→ P (α, t) is analytic for α in the neighbourhood of α̃, so for real α
and t it is real-analytic. Recall that ∂P/∂α < 0. From the implicit function
theorem the function R4d+2 3 t 7→ α̃ is real-analytic.

Corollary 3.13. HD(J) depends real-analytically on f .

Recall that from the definitions of the Hausdorff, packing and box di-
mensions it follows that

(7) HD(J̃) ≤ PD(J̃) ≤ BD(J̃).

Now we are going to show that all three dimensions coincide.

Theorem 3.14. BD(J̃) = α̃.

P r o o f. From (7), BD(J̃) ≥ α̃. To prove the inverse consider two cases:

(i) α̃ ≤ 1. In the same way as in the proof of Theorem 3.6 we find that
there exist c, ε0 > 0 such that for every x ∈ J̃ and every ε < ε0 we have
µα̃(Bε(x))/εα̃ ≥ c. Hence if N ′ε(J̃) equals the maximal number of elements
of packings of J̃ by balls of diameter ε then µα̃(J̃) ≥ cεα̃N ′ε(J̃). Thus

BD(J̃) = lim sup
ε→0

logN ′ε(J̃)
− log ε

≤ α̃.

(ii) α̃ > 1. Since BD(A) = BD(clA) it is sufficient to compute the box
dimension of H =

⋃
n f̃
−n(poles of h). Let Bi, i = 1, . . . , s, be small disjoint

balls centered at the poles of h. Let ε > 0. We estimate the number Nε
of balls of diameter ε needed to cover H. Note that it is sufficient to cover
only H ′ =

⋃
n≤n0

f̃−n(poles of h), n0 = c1 log ε−1 for some constant c1 > 0,

because by expanding all points in J̃ are at a distance less than ε to H ′.
Consider the branches f̃−nν on Bi. Let

Vn = {f̃−nν (Bi) : diam f̃−nν (Bi) < ε, i = 1, . . . , s},
Wn = {f̃−nν (Bi) : diam f̃−nν (Bi) ≥ ε, i = 1, . . . , s},

and let V =
⋃
n≤n0

Vn, W =
⋃
n≤n0

Wn. Take W ∈ Wn. The sets V ∈
Vn+1 contained in W form 2p sequences converging to z ∈ W which is the
nth preimage of some pole of degree p as was described in the proof of
Theorem 3.6. Hence it is possible to cover the point z and all sets V ∈ Vn+1

which are contained in W by less than c2ε
−1 diamW balls of diameter ε,

where c2 is independent of n, W , ε. Denote by U the family of covering balls
contained in all W ∈ W. Now we prove that

(8) dist
(
H ′,

⋃

U∈U
U
)
< c3ε
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for some constant c3. Let x ∈ H ′. Then x ∈ f̃−n(poles of h) for some n ≤ n0.
If x ∈W ∈ Wn then from the construction it is contained in some ball from
U . It remains to consider the case x ∈ V ∈ Vn. For j = 0, . . . , n let ij be
such that Bij contains the pole of h nearest to f̃ j(x). Take the branch f̃−jν
specified by the trajectory of x defined on an open connected set containing
f̃ j(x) and Bij . We also require that f̃ j(x) and Bij can be connected in
this set by a curve of universally bounded length and that the distortion is
universally bounded. (It is possible to find such sets since all the critical and
asymptotic values are attracted by sinks.) Set

Dj = f̃−jν (Bij ).

We have D0 ∈ W and Dn ∈ V. Let j0 be the smallest integer such that
Dj0 ∈ V. As in the proof of Theorem 3.6 we have two possibilities:

(a) |h(f̃ j0−1(x))| ≤M for a large fixed M . Then we have diamDj0−1 ≤
c4 diamDj0 for a universal constant c4. Thus by bounded distortion,

dist(x,Dj0−1) ≤ c5 diamDj0−1 ≤ c4c5 diamDj0 ≤ c4c5ε.
From the construction there exists a ball from U contained in Dj0−1 and
diamDj0−1 ≤ c4ε so (8) holds.

(b) |h(f̃ j0−1(x))| > M . Then f j0−1(x) lies close to the pole from Bij
and Wj0 3 Dj0 ⊂ Dj0−1 ∈ Wj0−1. Thus the balls from U cover Dj0 and
dist(x,Dj0) ≤ c5 diamDj0 ≤ c5ε so we have (8).

By (8),

(9) Nε ≤ c6ε−1
∑

W∈W
diamW.

Note that for every n the sets W ∈ Wn are pairwise disjoint. Hence using
Proposition 3.1 we obtain

∑

W∈W
(diamW )α̃ ≤ c7

∑

W∈W
µα̃(W ) = c7

n0∑
n=0

∑

W∈Wn

µα̃(W ) ≤ c8n0.

Therefore

(10) c8n0 ≥
∑

W∈W
(diamW )α̃−1 diamW ≥ εα̃−1

∑

W∈W
diamW.

From (9) and (10), Nε ≤ c1c8ε
−α̃ log ε−1 and from the definition we get

BD(J̃) ≤ α̃.

Corollary 3.15. HD(J̃) = PD(J̃) = BD(J̃).

4. The family λ tan z. Let us consider the family of maps

fλ(z) = λ tan z, λ ∈ C \ {0}.
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The dynamics of this family was studied in [DK]. We recall some basic
properties:

• fλ has no critical values, there are two asymptotic values ±λi, if they
do not belong to the Julia set then all branches f−1

ν are defined on the
whole J(fλ), (f−1

ν )′(z) = λ/(λ2 + z2), J(fλ) is symmetric with respect to
the origin and J(f−λ) = J(fλ).
• If λ ∈ R \ 0 then J(fλ) ∩ C ⊂ R, since J(f) = cl

⋃
n≥0 f

−n(∞).
• If λ ∈ R and |λ| ≥ 1, then J(fλ) = R ∪ {∞} and all points from the

upper and lower half-planes are attracted respectively to two sinks on the
imaginary axis.
• If λ ∈ R and 0 < |λ| < 1, then J(fλ) ∩ C is contained in pairwise

disjoint closed intervals Jk, k ∈ Z (see Fig. 1).

Fig. 1

• For λ ∈ C with 0 < |λ| < 1, the Julia set J(fλ) is a Cantor set and all
fλ are quasiconformally conjugate.
• For λ = ±1 the origin is a neutral point and J(fλ) = R ∪ {∞}.
Recall that fλ(z) = h(e2iz) for h(z) = −λi z−1

z+1 . Note that deg h = 1. For
0 < |λ| < 1, λ ∈ C, both asymptotic values lie in the immediate basin of
attraction of the origin. J(fλ) ∩ C is divided into compact disjoint sets Jk,
Jk = J0 + kπ. Denote by f−1

k the branch of f−1 leading to Jk for k ∈ Z
and define Jk1,...,kn = f−1

k1
◦ . . . ◦ f−1

kn−1
(Jkn). Then Jk1,...,kn+1 ⊂ Jk1,...,kn

and f(Jk1,...,kn) = Jk2,...,kn . Every point x ∈ J(fλ) ∩ C can be regarded
as the sequence (k1, . . . , kn, . . .) where x =

⋂∞
n=1 Jk1,...,kn or as (k1, . . . , kn)

when x = f−1
k1
◦ . . . ◦ f−1

kn
(∞). The dynamics of fλ on J(fλ) is equivalent

to the shift on the space of one-sided sequences with infinitely many sym-
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bols supplemented with finite sequences corresponding to the preimages of
infinity.

Applying the results of the previous section we conclude that HD(J(fλ))
> 1/2 for 0 < |λ| < 1, λ ∈ C. Moreover, HD(J(fλ)) is a real-analytic
function of λ for 0 < |λ| < 1, λ ∈ C, and in the neighbourhood of |λ| > 1,
λ ∈ R. We can compute how HD(J(fλ)) behaves when λ is near 0.

Proposition 4.1. If 0 < |λ| < b, λ ∈ C, then there exists a constant
c > 0 such that

1
2

+ c−1|λ|1/2 ≤ HD(J(fλ)) ≤ 1
2

+ c|λ|1/2.
P r o o f. We have

P (α) = lim
n→∞

1
n

log
∑

k1,...,kn−1∈Z
|(f−1

0 ◦ f−1
k1
◦ . . . ◦ f−1

kn−1
)′(x)|α.

Since (f−1
k )′(z) = λ/(λ2 + z2), there exists c1 > 0 such that for every

z ∈ J(fλ) ∩ C and α > 1/2,

1
cα1
|λ|α

∞∑

k=1

1
k2α ≤

∑

k∈Z
|(f−1

0 )′(x+ kπ)|α ≤ cα1 |λ|α
∞∑

k=1

1
k2α

for λ in the neighbourhood of 0. Hence

log
(
c−α1 |λ|α

∞∑

k=1

1
k2α

)
≤ P (α) ≤ log

(
cα1 |λ|α

∞∑

k=1

1
k2α

)

so

log
c−α2 |λ|α
2α− 1

≤ P (α) ≤ log
cα2 |λ|α
2α− 1

for α > 1/2. From this one can easily get the desired estimates.

Note that HD(J(fλ)) = α̃ < 1 for λ near 0, and so by Theorem 3.6 the
α̃-Hausdorff measure of J(fλ) is 0.

Assume now λ ∈ R. Note that HD(J(f−λ)) = HD(J(fλ)). Now we prove
the following:

Proposition 4.2. For 0 < λ < λ0 the function λ 7→ HD(J(fλ)) is
strictly increasing.

P r o o f. We will show that for 0 < λ < λ0 for every x ∈ J(fλ)∩C, every
n > 0 and every branch f−nλ ,

(11)
∂

∂λ
(f−nλ )′(x) > 0.

Then λ 7→ Pλ(α) is strictly increasing and so is λ 7→ HD(J(fλ)).
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Take a branch f−nλ and let gi = f−iλ (x) for i = 0, . . . , n. Then

∂

∂λ

∂

∂x
f−nλ (x) =

λn−1

(λ2 + g2
0) . . . (λ2 + g2

n−1)

n−1∑

i=0

g2
i − 2λgi

∂gi
∂λ − λ2

λ2 + g2
i

.

It is sufficient to show that for every i we have g2
i − 2λgi

∂gi
∂λ − λ2 > 0. Since

∂gi
∂λ

=
∂

∂λ
arctan

gi−1

λ

we get by induction

∂gi
∂λ

= −
i−1∑

j=0

λi−1−jgj
(λ2 + g2

j ) . . . (λ2 + g2
i−1)

for i ≥ 1.

We have J(fλ) ⊂ R\ (−δ, δ) where δ cot δ = λ (see Fig. 1) so |gi| > δ. Hence
it is sufficient to have

g2
i − 2λgi

i−1∑

j=0

λi−1−jδ
(λ2 + δ2)i−j

− λ2 > 0.

It is easy to compute that this inequality holds for 0 < λ < λ0 where λ0 is
0.402 . . . Consequently, (10) holds for such λ. This ends the proof.

For λ ∈ R \ {−1, 0, 1} the Hausdorff dimension of the Julia set is a real-
analytic function of λ. For |λ| ≥ 1, J(fλ) = R ∪ {∞} so HD(J(fλ)) is equal
to 1. At the bifurcation point λ = 1, HD(J(fλ)) cannot be analytic since it
is not constant. However, it is continuous for λ ∈ R, i.e. HD(J(fλ))→ 1 as
|λ| → 1−, λ ∈ R. Let λ ∈ (−1, 1). Denote by I an interval of nth generation
in the Cantor set J(fλ) and by Ik, k ∈ Z, the intervals of (n+1)th generation
contained in I (see Fig. 2).

Fig. 2

(Gk are the gaps between the intervals Ik). Denote the length of I by |I|.
Lemma 4.3. Let λ ∈ (−1, 1)\{0}. Suppose that for some α,

∑
k∈Z |Ik|α ≥

|I|α for all intervals I of nth generation and all n. Then HD(J(fλ)) ≥ α.
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P r o o f. In fact, this lemma is geometric but in our situation we can
prove it immediately:

P (α) = lim
n→∞

1
n

log
∑

I of nth
gen. in J0

|I|α ≥ lim
n→∞

1
n

log |J0|α = 0.

Now we can use the fact that in I \ (I0∪I1) the geometry of the intervals
and gaps is universally bounded. More precisely, we have

Lemma 4.4. There is a constant c > 0 such that for every 0 < |λ| < 1,
every n, every interval I of nth generation and for all k ∈ Z \ {0, 1},

c
π − 2δ

2δ
<
|Ik|
|Gk| < c−1π − 2δ

2δ
,

where δ = dist(J(fλ), 0) (see Fig. 1).

P r o o f. We have Ik = f−nλ (Jk′) and Gk = f−nλ (G̃k′) for some branch of
f−nλ . Here Jk′ is an interval of length π− 2δ and k′ 6= 0, 1, and G̃k′ is a gap
of length 2δ. The trajectories of asymptotic values of fλ are contained in
the imaginary axis. The distance between the imaginary axis and Jk′ ∪ G̃k′
is at least π/2. Therefore from the Koebe lemma the distortion of f−nν is
universally bounded on Jk′ ∪ G̃k′ .

Proposition 4.5. HD(J(fλ))→ 1 as λ→ 1−.

P r o o f. Let α < 1. We want to use Lemma 4.3. From Lemma 3.5 the
assumption of Lemma 4.3 will be satisfied if for every I,

(12)
∑

k∈Z\{0,1}
|Ik|α ≥ |I \ (I0 ∪ I1)|α.

By bounded geometry, |Ik| < b
∑
k∈Z\{0,1} |Ik|, where b < 1 is indepen-

dent of k and λ. Thus∑

k∈Z\{0,1}
|Ik|α =

∑

k∈Z\{0,1}
|Ik|α−1|Ik|

>
(
b

∑

k∈Z\{0,1}
|Ik|
)α−1 ∑

k∈Z\{0,1}
|Ik| = bα−1

( ∑

k∈Z\{0,1}
|Ik|
)α
.

From this and Lemma 4.4,
∑

k∈Z\{0,1}
|Ik|α ≥ bα−1

1 +
(
cπ−2δ

2δ

)α |I \ (I0 ∪ I1)|α.

Let α1 be such that
bα1−1

1 +
(
cπ−2δ

2δ

)α1 = 1.
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Then (11) holds for α1 and from Lemma 4.3, HD(J(fλ)) ≥ α1. It is easy to
compute that α1 ≥ 1− c1δ. We know that δ → 0 as λ→ 1−. This completes
the proof.

Corollary 4.6. R 3 λ 7→ HD(J(fλ)) is analytic for λ 6= 0,±1 and
continuous for λ 6= 0.

We end this section by giving an example of maps for which the Julia set
is a Cantor set and the Hausdorff dimension is greater than 1, so according
to Theorem 3.6 the α̃-Hausdorff measure is equivalent to the Gibbs measure.
Fix 0 < |λ| < 1, λ ∈ C. Consider the map

fλ,p(z) = (λ tan z)p

for some large positive integer p. It is easy to see that fλ,p has the same dy-
namics as λ tan z, expect that 0 is now a critical point. The set

⋃
k∈Z f

−1
λ,p(x+

kπ) ∩ J0 consists of 2p sequences converging to the pole of degree p with
asymptotic behaviour like {|k|−1/p}. For each branch f−1

λ,p,

|(f−1
λ,p)
′(y)| ≥ c(λ)p−1|y|−(p+1)/p.

Moreover, for every p the Julia sets J(fλ,p) are contained in the same strip
{|Im(z)| ≤ a}. Therefore

∑

k∈Z

∑

z∈f−1(x+kπ)
z∈J0

|(f−1
λ,p)
′(x+ kπ)| ≥ c1(λ)

∞∑

k=k0

k−(p+1)/p ≥ c2(λ)pk−1/p
0

for some k0 independent of x, p. For large p the expression is greater than
q > 1. This implies P (1) > 0, so α̃ > 1. Hence we obtain

Corollary 4.7. For given 0 < |λ| < 1, λ ∈ C, there exists p0 such that
HD(J(fλ,p)) > 1 for p > p0.
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