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On barycentrically soft compacta

by

T. R a d u l (L’viv)

Abstract. It is shown that a barycentrically soft compactum is necessarily an absolute
retract of weight ≤ ω1. Since softness of a map is the mapping version of the property of a
space to be an absolute retract, the above mentioned result can be considered as mapping
version of the Ditor–Haydon Theorem stating that if P (X) is an absolute retract then the
compactum X is of weight ≤ ω1 [2].

All spaces considered are assumed to be compacta (compact Hausdorff
spaces). For a compactum X let C(X) be the space of all real-valued con-
tinuous functions on X metrized by sup-metric and let P (X) be the space
of all non-negative functionals µ : C(X) → R with norm 1, equipped with
the weak* topology.

Recall that the base of the weak* topology in P (X) consists of the sets
of the form

O(µ0, f1, . . . , fn, ε) = {µ ∈ P (X) | |µ(fi)−µ0(fi)| < ε for every 1 ≤ i ≤ n}.
Let E be a locally convex vector space. Then for any convex compact

subset K ⊂ E there exists a map b = bK : P (X) → K which is called the
barycentric map of probability measures. It is defined by b(µ) =

∫
x dµ(x),

where x = idE . The map bK is continuous [1]. It is not difficult to check
that for µ = a1δx1 + . . .+ anδxn , ai ∈ R, xi ∈ K, we have bK(µ) = a1 x1 +
. . .+ an xn, where δxi denotes the Dirac measure supported by xi.

A map f : X → Y is said to be (0-)soft if for any (0-dimensional)
paracompact space Z, any closed subspace A of Z and maps Φ : A → X
and Ψ : Z → Y with Ψ |A = f ◦ Φ there exists a map G : Z → X such that
G|A = Φ and Ψ = f ◦G. This notion was introduced by E. Shchepin [9].
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A convex compactum K is said to be barycentrically soft (open) if the
barycentric map bK is soft (open). V. Fedorchuk [3] has given a criterion
of barycentric openness of compacta which, in particular, implies that for
every compactum X the compactum P (X) is barycentrically open. He has
also shown in [4] that the product of a family of cardinality ω1 of barycen-
trically soft compacta is barycentrically soft and in the survey article [5]
he has formulated the following questions concerning barycentric softness of
compacta:

1) [5, Question 7.13] Is there a barycentrically soft compactum of weight
≥ ω2?

It is worth noticing that the space P (X) is not an absolute retract for
any compactum of weight ≥ ω2 [2]. So we naturally obtain:

2) [5, Question 7.14] Is every barycentrically soft compactum an absolute
retract?

3) [5, Question 7.15] Is every barycentrically open AR-compactum of
weight ω1 barycentrically soft?

The author has answered the last question negatively: it is shown in [8]
that the barycentric softness of a compactum of the form P (X) is equivalent
to the metrizability of X.

In this paper we answer questions 1) and 2) showing that every barycen-
trically soft compactum must be an absolute retract of weight ≤ ω1.

In the sequel we shall need some definitions and results. Let

X1 X2

Y1 Y2

p //

f1

²²
f2

²²q //

be a commutative diagram. The map χ : X1 → X2 ×Y2 Y1 = {(x, y) ∈
X2 × Y1 | f2(x) = q(y)} defined by χ(x) = (p(x), f1(x)) is called the char-
acteristic map of this diagram. The diagram is called bicommutative (re-
spectively open, 0-soft , soft) if the map χ is onto (respectively open, 0-soft,
soft).

It is shown in [6] that softness of a map with compact convex fibers is
equivalent to its 0-softness.

Let τ be an infinite cardinal number. A partially ordered set A is called
τ -complete if every subset of cardinality ≤ τ has a least upper bound in
A. An inverse system of compacta and surjective bonding maps over a τ -
complete indexing set is called τ -complete. A continuous τ -complete system
consisting of compacta of weight ≤ τ is called a τ -system.

The following theorem from [10] gives a characterization of 0-soft maps:
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Theorem A. A map f : X → Y is 0-soft if and only if there exist
ω-systems SX and SY with limits X and Y respectively and a morphism
{fα} : SX → SY with limit f such that

1) fα is 0-soft for every α;
2) every limit square diagram is 0-soft.

Lemma 1. Let X and Y be convex compacta and let f : X → Y be an
affine non-open map. Then the diagram

P (X) P (Y )

X Y

P (f) //

bX

²²
bY

²²f //

is non-open.

P r o o f. Since f is non-open, the inverse map f−1 : Y → expX is not
continuous. (By expX we denote the hyperspace of X, i.e., the set of non-
empty closed subsets of X endowed with the Vietoris topology.)

Let y0 ∈ Y be a discontinuity point of f−1. Then there exist a net
{yα}α∈A and a neighborhood U of f−1(y0) in expX such that yα → y0 and
f−1(yα) 6∈ U for every α ∈ A. We can assume that f−1(yα) → A ∈ expX.
Since f is a closed map, A is a proper convex subset of f−1(y0).

Choose points x1 ∈ A and x2 ∈ f−1(y0) \ A. Replacing x1 by x′1 =
(1−λ)x1 +λx2, with λ ∈ [0, 1) chosen to be maximal subject to x′1 ∈ A, we
may assume that (x1 + x2)/2 6∈ A. Since A is convex, there exists an affine
map ψ that strictly separates the segment [x2; (x1 + x2)/2] from A. We can
assume that ψ([x2; (x1 + x2)/2]) < 0 and ψ(A) > 0. Since f−1(yα) → A,
there exists α0 ∈ A such that ψ|f−1(yα) > 0 for every α > α0. Consider
a net {xα}α>α0 such that xα → x1 and the corresponding net in P (X)
defined by µα = (δx2 +δxα)/2. Then χ(µα) = ((x2 +xα)/2, (δy0 +δyα)/2)→
((x2 + x1)/2, δy0). Now take the measure δ(x1+x2)/2 ∈ χ−1((x1 + x2)/2, δy0)
and its neighborhood O(δ(x1+x2)/2, φ, 1/4), where φ ∈ C(X) is a map such
that φ((x1 + x2)/2) = 1 and φ(x) = 0 for every x ∈ X with ψ(x) ≥ 0.
Then µ(φ) = 1/2 for every measure µ ∈ P (f)−1((δy0 + δyα)/2), hence µ 6∈
O(δ(x1+x2)/2, φ, 1/4) and the map χ is non-open. The lemma is proved.

A compactum X is called openly generated if X can be represented as
the limit of an ω-system with open bonding maps.

Theorem 1. If a convex compactum K is barycentrically soft , then K
is openly generated.

P r o o f. Present K as the limit of an ω-system SK = {Kα, pα,A}, where
the Kα are convex compacta and the bonding maps pα are affine for every
α ∈ A.
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If bK : P (K) → K is soft, then, using the spectral theorem of E. V.
Shchepin [7, Theorem 3.12] and Theorem A, we deduce that there exists a
closed cofinal subset B ⊂ A such that for each α ∈ B the diagram

P (K) P (Kα)

K Kα

P (pα)//

bK

²²
bKα

²²pα //

is 0-soft and therefore open.
It follows from Lemma 1 that the map pα is open for each α ∈ B.

But since K = lim{Kα, pα,B}, the compactum K is openly generated. The
theorem is proved.

Theorem 2. Let K be a barycentrically soft compactum. Then the weight
of K does not exceed ω1.

P r o o f. Let K be a convex barycentrically open compactum of weight
τ > ω1. Suppose that the barycentric map is soft. Then there exist an
embedding i : P (K) → IA ×K and a retraction r : IA ×K → P (K) such
that the diagram

P (K) IA ×K P (K)

K

bK

JJJJJJJJ%%

i //

pr2

²²

r //

bK
yytttttttt

is commutative.
We can assume that the cardinality of A is τ . The compactum K is

assumed to be embedded in IA. Present K as the limit of an ω1-system
S = {Kα, pα,A}, where the Kα are convex compacta, the pα are affine maps
for every α ∈ A, and A is the set of all subsets of cardinality ≤ ω1 of A.
Then IA ×K is the limit of the ω1-system S′ = {IB ×KB , qB , B ∈ A} and
prK is the limit of the morphisms determined by the family {prB | B ∈ A}.
Since the map bK is embedded in prK , we can assume that the restriction
of the limit projections of the system S′ onto P (K) gives a morphism of
inverse systems with the limit diagrams of the form

P (K) P (KB)

K KB

P (pB)//

bK

²²
bKB
²²pB //

By Shchepin’s Theorem (see [7]) there exists a cofinal closed subset B ⊂
A such that for every B ∈ B there exist an embedding iB : P (KB) →
IB ×KB and a retraction rB : IB ×KB → P (KB) for which the diagrams
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P (K) P (KB)

IA ×K IB ×KB

P (K) P (KB)

%B //

i

²²
iB

²²

r

²²

qB //

rB

²²
%B //

and

P (KB) IB ×KB P (KB)

KB

iB //

bKB

LLLLLLLLL&&
pr2

²²

rB //

bKBxxrrrrrrrrr

are commutative (here %B denotes P (pB) and qB denotes the product of the
corresponding projections from IA to IB and from K to KB respectively).

Now choose sets B,E ∈ B such that B ∩ E = C 6= ∅, B \ C 6= ∅ and
C ∈ B. We can do that by the method used in the proof of Theorem 3 of [2].

Let T = {(k1, k2) ∈ KB×KE | pCB(k1) = pCE(k2)}, where pCB : KB → KC

and pCE : KE → KC are the natural projections and TP = {(µ1, µ2) ∈
P (KB)× P (KE) | P (pCB)(µ1) = P (pCE)(µ2)}.

For every (µ1, µ2) ∈ TP we have iB(µ1) ∈ IB ×KB , iE(µ2) ∈ IE ×KE ,
and for each l ∈ C = B ∩ E the l-coordinates of the points iB(µ1) and
iE(µ2) are equal. Using this fact define iT : TP → IB∪E × T by the
conditions sB ◦ iT (µ1, µ2) = iB(µ1) and sE ◦ iT (µ1, µ2) = iE(µ2),
where sB : IB∪E × T → IB × KB and sE : IB∪E × T → IE × KE are
the natural projections.

Define rT : IB∪E×T → TP by the conditions rT ◦sB = rB and rT ◦sE =
rE . We can immediately check that rT ◦ iT = idTP .

The diagram

(1)

IA ×K IB∪E × T

K T

qB∪E×h//

pr2

²²
pr2

²²
h //

where h = (pB , pE), is open.
But the diagram

(2)

P (K) TP

K T

hP //

bK

²²
bKB×bKE
²²

h //
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where hP = (P (pB), P (pE)), is a retract of (1) and must be open as well.
In order to finish the proof we have to show that (2) is non-open.

Consider the following three cases.

1) The map h is open. We can assume that pCB and pCE are not homeomor-
phisms. Then there is a point c1 ∈ KC with non-singleton fiber with respect
to pCB and a point c2 ∈ KC with non-singleton fiber with respect to pCE . The
fibers of c = (c1 + c2)/2 with respect to pCB and pCE are not single points.
Now choose b1, b2 ∈ (pCB)−1(c) and e1, e2 ∈ (pCE)−1(c). We have (bi, ej) ∈ T
for every i, j ∈ {1, 2}. Since h is surjective, we can choose pairwise distinct
points k11, k12, k21, k22 such that pB(ki1) = pB(ki2) = bi for i ∈ {1, 2} and
pE(k1j) = pE(k2j) = ej for j ∈ {1, 2}.

Let µ =
∑ 2

i,j=1
1
4δkij . Then

χ(µ) =
( 2∑

i,j=1

1
4
kij ,

1
2
δb1 +

1
2
δb2 ,

1
2
δe1 +

1
2
δe2

)
= (d, ν, η).

Choose k ∈ K such that pC(k) 6= c. Let b = pB(k) and e = pE(k). Now put
bi = 1

i+1b + i
i+1b2 and ei = 1

i+1e + i
i+1e2. Define the sequence of measures

νi ∈ P (KB) by νi = 1
2δbi + 1

2δb1 and the sequence of measures ηi ∈ P (KE)
by ηi = 1

2δei + 1
2δe1 .

It is obvious that νi converges to ν and ηi converges to η. Since h is
open, we can choose a sequence dik in K such that dik converges to d and
pB(dik) = 1

2b
ik + 1

2b1, pE(dik) = 1
2e
ik + 1

2e1. In K ×T TP consider the
sequence (dik , ν

ik , ηik) converging to (d, ν, η). Choose neighborhoods V1 and
V2 of e1, e2 such that clV1∩clV2 = ∅ and neighborhoods U1, U2 of b1, b2 with
the same property. Let Oij = p−1

E (Vj)∩p−1
B (Ui). There exist functions φij ∈

C(K) such that φij(kij) = 1 and φij |(K \Oij) = 0 for every i, j ∈ {1, 2}. We
can assume that bik ∈ U2 and eik ∈ V2 for every ik. Let µ′ ∈ χ−1(dil , ν

il , ηil)
for some il. Then P (pB)(µ′) = 1

2δbil + 1
2δb1 , i.e., the measure µ′ takes on

the value 1/2 on the sets p−1
B (bil) and p−1

B (b1). Since pCB(bil) 6= k, we have
p−1
E (e1) ∩ p−1

B (bil) = ∅. But P (pE)(µ′) = 1
2δeil + 1

2δe1 and hence µ′ takes
on the value 1/2 on p−1

E (e1) ∩ p−1
B (b1) ⊂ O11. Reasoning similarly, we can

prove that µ′ takes on the value 1/2 on O22. But then µ′(O12) = 0 and
hence µ′ 6∈ O(µ, φij , 1/8). We have shown that the diagram (2) is non-open
whenever the map h is open.

2) Let h be non-open but surjective. In this case the proof is analogous
to that of Lemma 1.

3) Let h be non-surjective. We show that so is χ. Let (e1, b1) ∈ T and
(e1, b1) 6∈ h(K). Since pB and pE are surjective, we can choose kB ∈ p−1

B (b1)
and kE ∈ p−1

E (e1). Let pE(kB) = e2 and pB(kE) = b2. Then (e1, b2) ∈
h(K), (e2, b1) ∈ h(K), and (e2, b2) ∈ T . But then 1

2 (e1, b1) + 1
2 (e2, b2) =
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1
2 (e2, b1) + 1

2 (e1, b2) ∈ h(K). We can assume that k = 1
4 (e2, b2) + 3

4 (e1, b1)
∈ h(K). Define ν = 1

4δb2 + 3
4δb1 , η = 1

4δe2 + 3
4δe1 and choose z ∈ h−1(k).

Then (z, ν, η) ∈ K ×T TP . But since p−1
B (b1) ∩ p−1

E (e1) = ∅, we have
χ−1(z, ν, η) = ∅.

Thus the diagram (2) is non-open.

Since the properties of being an AR-compactum and of being an AE(0)-
compactum coincide in the class of convex compacta and each openly gen-
erated compactum of weight ≤ ω1 is an AE(0)-compactum, the following
theorem is an immediate consequence of Theorems 1 and 2.

Theorem 3. A barycentrically soft compactum is necessarily an AR-
compactum of weight ≤ ω1.

The author would like to express his sincere thanks to V. Fedorchuk
for drawing his attention to this problem and to M. Zarichny̆ı for valuable
discussions.
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