
FUNDAMENTA
MATHEMATICAE

148 (1995)

Irreducible representations of metrizable spaces
and strongly countable-dimensional spaces

by

Richard P. M i l l s p a u g h (Grand Forks, N.D.),
Leonard R. R u b i n (Norman, Okla.)

and Philip J. S c h a p i r o (Langston, Okla.)

Abstract. We generalize Freudenthal’s theory of irreducible representations of metriz-
able compacta by inverse sequences of compact polyhedra to the class of all metrizable
spaces. Our representations consist of inverse sequences of completely metrizable polyhe-
dra which are ANR’s. They are extendable: any such representation of a closed subspace of
a given metrizable space extends to another such of the entire space. We use our techniques
to characterize strongly countable-dimensional metrizable spaces.

1. Introduction. It is a classical result of Freudenthal [Fr] that every
metrizable compactum can be written as the limit of an inverse sequence of
compact polyhedra with bonding maps which are irreducible and piecewise
linear. In [J-R] we proved a stronger version of this theorem which provides,
among other things, an extendability property. The idea here is to choose,
for a given X, an irreducible inverse sequence representation so that when-
ever X is a closed subspace of another metrizable compactum Y , then Y has
an irreducible representation (of the same “type” as the one for X), which is
an extension of the one for X. All the new bonding maps are extensions and
the coordinate projection maps are extensions of the previous ones. Since the
system for Y is of the same “type” as the one for X, it again is extendable,
and one may continue to produce such extendable extensions ad infinitum.

To provide such a theory for arbitrary metrizable spaces X introduces
some major difficulties. The first one involves a question of which types of
polyhedra to use. If X is not compact, then we could not expect it to be
the limit of an inverse sequence of compact polyhedra. If X is not separable,
then we could not even embed it in such a limit.
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We have chosen as our class of polyhedra those which are completely
metrizable absolute neighborhood retracts (ANR’s) and which are locally
finite-dimensional. These seem natural to us. Now if X happens not to be
completely metrizable, then obviously X cannot be homeomorphic to the
limit of an inverse sequence of such polyhedra. We account for this by defin-
ing a notion of representation (see Section 6) which yields an embedding of
X onto a dense subspace of the limit and which happens to be a homeomor-
phism, with our construction, in case X is topologically complete.

To get the property of local finite-dimensionality in our polyhedra, which
is crucial for inducing irreducibility of our maps, we must have polyhedra
which are locally finite-dimensional in the combinatorial sense. These poly-
hedra are the spaces of nerves of certain open covers of our given space.
Classically one can always obtain arbitrarily fine open covers of a metriz-
able space whose nerves are locally finite-dimensional by directly applying
theory developed by Dowker in [Do]. We, however, are faced with the prob-
lem of delicately extending such open covers from a closed subspace to those
of the rest of the space. To do this we had to do more than just apply the
results in [Do]; indeed, we had to analyze one of his proofs and bring to light
certain extension attributes that his construction yields. This will become
apparent in Section 5 below.

Previous results along these lines ([Is1], [Is2], [Ko1]) are discussed, for
example, in [Ko2]. These differ in certain significant ways from the ones that
will be found herein. On the one hand, our approach (but none of theirs)
contains the property of extendability, which was crucial in [J-R]. On the
other hand, our method involves an axiomatic, recursive type of construc-
tion, which can be used in certain applications. Indeed, it was this recursive
procedure which, because of its flexibility, was decisive in [R-S] where it
was shown that if X is a metric space and dimZX ≤ n, then X is the
cell-like image of a metric space Y with dimY ≤ n. We anticipate that the
systematic constructions herein described will be used essentially in further
applications to the theory of cohomological dimension.

Let us now outline our approach. In Section 2 we develop some theory
for polyhedra with arbitrary topologies. We give in Theorem 2.7 a criterion
for detecting when such a polyhedron is an ANR and in Lemma 2.9 we show
a relation between the combinatorial dimension of a polyhedron and a space
mapping irreducibly onto it. Section 3 contains the theory on uniformities for
polyhedra which will produce metrizable topologies of the desired type. Here
the main result is Proposition 3.5. Such uniformities were important in [R-S].

In Section 4 we review notions of nerves and canonical maps. The defi-
nition of an “expansion” of an open cover of a closed subspace to an open
cover of the entire space is made. We give in Section 5 the definition of a
Dowker system. This is a way to describe the hidden structure that exists
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in [Do] in the proof of existence of arbitrarily fine open covers with locally
finite-dimensional nerves. It leads to a concept of principal refinement of
a locally finite open cover of a metric space X. Although a Dowker sys-
tem yields refinements in a canonical manner, and this is very important to
our construction, the principal refinements are not at all canonical. Since
we have to extend them anyway, it is necessary that we keep track of the
manner in which they refine certain given covers, and this leads to much
complication as we proceed with this method.

Section 6 contains the notion of a simplicially irreducible representation.
Our representation involves an embedding of the given space onto a dense
subspace of the limit of an inverse sequence of polyhedra. However, we make
stringent requirements on the bonding maps, the polyhedra, and the rep-
resentation. In case the given space has a complete metric, this embedding
as done by our construction will be a homeomorphism. We also define the
concept of a definitive system for a metric space. Such a definitive system
always induces a simplicially irreducible representation for the space.

Our work in Section 7 involves proving that every metric space supports
a definitive system and hence has a simplicially irreducible representation.
We do more, though, by laying the groundwork for extendable representa-
tions. The main tool is Lemma 7.3, and the main result is Lemma 7.7. We
apply the basic concepts of irreducible representations in Section 8 where
we give a characterization of strong countable dimension. The key to this is
showing that each open cover of our given space can be refined by a locally
finite open cover whose nerve is locally finite-dimensional and whose local
order at each point x is not greater than the value of a certain prescribed
function evaluated at x (Proposition 8.8). In our final section, we give our
definition of extendable and recursively extendable representations. Theo-
rem 9.5 contains the result on existence of such representations, and, in case
we are dealing with completely metrizable spaces, it states that we can make
the representations (recursively) faithful.

2. Polyhedra which are ANR’s. Part of our main construction in-
volves putting a metric topology on the polyhedron of a simplicial complex
by means of a countable base for a uniformity. We shall want this uniformity
to be complete and the resulting space to be an ANR. Let us now present
some basic theory which will help us produce the desired structures.

For our theory of uniformities we shall use the notion of uniform covers
[Wi, 36, p. 244] instead of the idea of surroundings or entourages [Wi, 35,
p. 238].

Let K be a simplicial complex; by |K| we mean, as in [Sp, 3.1], the
polyhedron of K with no topology implied. The n-skeleton of K will be
denoted by K(n). Let us use |K|T to denote |K| with a given topology T .
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The Whitehead (weak) topology is designated CW . There is a metric d for
|K|, “induced by K” (see the appendix of [M-S]), and given by

d(x, y) =
∑

v∈K(0)

|βv(x)− βv(y)|,

where βv denotes the v-barycentric coordinate function for a vertex v of K.
We shall use Td to designate the topology generated by this metric d. It is
well known that the metric

d′(x, y) =
√ ∑

v∈K(0)

(βv(x)− βv(y))2

yields the same topology. We shall also say that d′ is “induced by K”.
As usual, for v∈K(0), st(v,K) is the open star of v in |K| and stk+1(v,K)

is the open star of stk(v,K), namely, the union of the elements of st(v,K)
which intersect stk(v,K). Let us use stkK for {stk(v,K) | v ∈ K(0)}, and
stK for st1K. We shall treat st(v,K), the closed star of v in K, as the sub-
complex of K consisting of all simplexes of K which are faces of simplexes
of K having v as a vertex. If L is a subdivision of K, then |L|CW = |K|CW ,
and stL is an open cover of |L|CW .

If T is a metrizable topology for |K| and |K|T is locally finite-dimensional,
then |K|T is an ANR if and only if |K|T is locally contractible (see II.17.1
of [Hu]). Of course, if v ∈ K(0), then |st(v,K)|CW is contractible. These
facts will be useful in showing that the metrizable polyhedra employed in
this work are ANR’s.

2.1. Definition. Let f, g : X → |K| be functions, where K is an arbi-
trary simplicial complex. Then we say that g is a K-modification of f if for
each x ∈ X and simplex τ of K, whenever f(x) ∈ τ , then also g(x) ∈ τ .
(Equivalently, one can say that whenever f(x) lies in the interior of a simplex
τ of K, then g(x) ∈ τ .)

2.2. Lemma. Suppose K is a simplicial complex and L is a collection of
subdivisions of K having the property that B = {stL | L ∈ L} is a base for a
uniformity U on |K|. Let T be the topology on |K| determined by U . Then
for each x ∈ |K| and neighborhood V of x in |K|T , there exists L ∈ L and
v ∈ L(0) such that x ∈ |st(v, L)| ⊂ V .

P r o o f. Since B is a base for U , there is an M ∈ L such that st(x, stM)
⊂ V . Further, there exists L ∈ L such that stL is a star-refinement of
the cover stM . Now for some v ∈ L(0), x ∈ st(v, L). Hence for some
w ∈ L(0), x ∈ st(st(w,L), stL) ⊂ st(x, stM). Choose v ∈ L(0) so that
x ∈ st(v, L) and st(v, L) ∩ st(w,L) 6= ∅. There exists Q ∈ stM such that
x ∈ st(st(v, L), stL) ⊂ Q and hence Q ⊂ st(x, stM). Finally, just note that
x ∈ st(v, L) ⊂ |st(v, L)| ⊂ st(st(v, L), stL) ⊂ Q ⊂ st(x, stM) ⊂ V .
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Let us agree that whenever σ is a simplex, we shall also use the symbol
σ to denote the simplicial complex consisting of σ and all its faces.

2.3. Lemma. Let K be a simplicial complex and T be a paracompact
topology for |K| such that

(i) T ⊂ CW ,
(ii) for each σ ∈ K, |σ|T = |σ|CW , and

(iii) for each v ∈ K(0), st(v,K) is open in |K|T .

Let i1 : |K|T → |K|CW be the identity function and i2 : |K|CW → |K|T
be the identity map. Then there is a map j : |K|T → |K|CW which is a
K-modification of i1 and such that j is a homotopy equivalence with homo-
topy inverse i2. In fact , there is a function H : |K| × I → |K| such that for
each t ∈ I, Ht : |K| → |K| is simplex preserving and that

(iv) H : |K|CW × I → |K|CW is a homotopy between j ◦ i2 and the
identity on |K|CW , and

(v) H : |K|T × I → |K|T is a homotopy between i2 ◦ j and the identity
map on |K|T .

P r o o f. One repeats the proof of Theorem 10 of the appendix of [M-S]
with just one change: In the last paragraph of the proof (page 303), obtain
the continuity of H : |K|T × I → |K|T locally at (x, t) as follows. Choose a
neighborhood G of x such that G∩Uv 6= ∅ for at most finitely many v ∈ K(0)

(designated V in that proof). Then H carries G×I into the space of a finite
subcomplex of K, so the continuity follows here just as it did in [M-S].

2.4. Notation. Whenever U is a base for a uniformity on a space X and
Y ⊂ X, then we shall use U|Y to designate the restriction of the base U to
Y . Thus U|Y is always a base for a uniformity of Y whose induced topology
is the topology on Y inherited from X, where U generates the topology for
X. If U is a uniformity for X, then U|Y is also a uniformity for Y .

2.5. Proposition. Let K be a simplicial complex and L a collection of
subdivisions of K such that B = {stL | L ∈ L} is a base for a uniformity
U on |K|. Let T be the topology on |K| determined by U , and assume that
|K|T is paracompact and T ⊂ CW . Suppose that for each L ∈ L and
v ∈ L(0), st(v, L) is open in |K|T and that whenever σ ∈ K, U| |σ| induces
CW on |σ|. Then |K|T is locally contractible.

P r o o f. Employing Lemma 2.2, one sees that it is sufficient to show that
|st(v, L)|T is contractible for each L ∈ L and v ∈ L(0). This will be true
if we can show that |st(v, L)|T is homotopy equivalent to the contractible
space |st(v, L)|CW . One can employ Lemma 2.3 to obtain this simply by
using the restriction of H on |st(v, L)| × I, which lands in |st(v, L)| because
of the simplex preserving property of each Ht.
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The next result gives a condition under which the combinatorial dimen-
sion of a simplicial complex also equals the topological dimension of its
polyhedron with a given topology.

2.6. Lemma. Let K be a simplicial complex , and T be a topology for |K|
such that

(i) |K|T is a normal space,
(ii) |σ|T = |σ|CW for each σ ∈ K, and

(iii) whenever L is a subcomplex of K, then |L| is closed in |K|T .

Then for each n, dim |K(n)|T ≤ n.

P r o o f. Let A ⊂ |K(n)| = |K(n)|T be closed and f : A→ Sn be a map.
Suppose inductively that we have extended f to a map g : A∪ |K(r)| → Sn

where −1 ≤ r < n. We shall show that g extends to a map ψ of A∪|K(r+1)|
to Sn. Since by (iii), |K(r+1)| is closed in |K(n)|, then our proof will be
complete by induction.

From (iii), A∪ |K(r)| is closed in |K(r+1)|, so there exists a closed neigh-
borhood B of A ∪ |K(r)| in |K(r+1)| and a map h : B → Sn which is
an extension of g. For each σ ∈ K(r+1), choose a map ψσ : |σ| → Sn so
that ψσ| |σ| ∩ B = h| |σ| ∩ B. Here we make use of (ii). Define the func-
tion ψ̃ : B ∪ |K(r+1)| → Sn so that ψ̃|B = h|B and ψ̃| |σ| = ψσ for each
σ ∈ K(r+1). Certainly ψ̃ is a well-defined function which is an extension of
g. Once we have proved the continuity of ψ̃ restricted to A ∪ |K(r+1)|, the
desired map ψ is ψ̃|A ∪ |K(r+1)|.

If x ∈ A ∪ |K(r)|, then ψ̃ agrees with h in a neighborhood of x, so ψ̃
is continuous at x. Any other x ∈ A ∪ |K(r+1)| must be in the interior
of an (r + 1)-simplex σ of K. Using (iii), find a neighborhood U of x in
A ∪ |K(r+1)| so that U ∩ A = ∅ and U ⊂ int(σ). Then ψ̃ = ψσ on U and
hence ψ̃ is continuous at x. This completes our proof.

2.7. Theorem. Let K be a locally finite-dimensional simplicial complex ,
and suppose K = K1,K2, . . . is a sequence of subdivisions of K such that
B = {stKi | i ∈ N} is a base for a metrizable uniformity U on |K| with
induced topology T ⊂ CW . Suppose that for each i ∈ N and v ∈ K

(0)
i ,

st(v,Ki) is open in |K|T and that whenever σ ∈ K, U| |σ| induces CW on
|σ|. Assume further that for each subcomplex L of K, |L| is closed in |K|T .
Then |K|T is an ANR.

P r o o f. Certainly the conditions (i)–(iii) of Lemma 2.6 prevail, so |K|T
is locally finite-dimensional. Since |K|T is metrizable it is paracompact, so
by Proposition 2.5, |K|T is locally contractible. Therefore |K|T is a locally
finite-dimensional, locally contractible metrizable space, so it is an ANR.
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Next we shall obtain a relation between the dimension of a given space
and the combinatorial dimension of a complex K under certain mapping
conditions.

2.8. Definition. Let K be a simplicial complex, T be a topology for
|K|, and f : X → |K|T be a map. We say that f is K-irreducible if for
each map g : X → |K|T such that g is a K-modification of f , we have
g(X) = |K|T . Since f is a K-modification of itself, K-irreducible maps are
always surjective.

2.9. Lemma. Let X be a normal space, K be a locally finite-dimensional
simplicial complex , and suppose that T is a topology for |K| such that T
induces CW on each simplex of K and such that for each subcomplex L of
K, |L| is closed in |K|T . If f : X → |K|T is a K-irreducible map, then the
combinatorial dimension of K is ≤ dimX.

P r o o f. Suppose the contrary, that there is a simplex σ of K with
dimσ > dimX. We may as well assume that σ is principal. Let A =
|K|\ intσ. According to the hypothesis, both A and σ are closed in |K|T .
Now dim f−1(σ) ≤ dimX < dimσ. Hence there is a map g : f−1(σ) →
|∂σ|T so that g equals f on f−1(|∂σ|). Take h : X → |K|T to be the
function which equals f on f−1(A) and g on f−1(σ). Then h is a map
which is a K-modification of f but is not a surjection. This contradicts the
K-irreducibility of f , and completes our proof.

3. Uniformities for polyhedra. Let K be a locally finite-dimensional
simplicial complex. We are going to describe a kind of uniformity for the
polyhedron |K| which will determine a topology T for |K| so that |K|T is
a metrizable, locally finite-dimensional ANR.

For any simplicial complex K, let us use β1K = βK to denote the
barycentric subdivision of K and βn+1K = β(βnK) to designate the (n+1)-
iterated barycentric subdivision of K.

Whenever L is a subdivision of K, then stL refines stK. If we let
V = st(β2K), then it is also true that V is a star-refinement of stK. Hence
we have

3.1. Lemma. If K is a simplicial complex and L is a subdivision of β2K,
then stL is a star-refinement of stK.

3.2. Definition. Let K = K0,K1, . . . be a sequence of subdivisions of a
simplicial complex K such that for each i ≥ 0, Ki+1 is a subdivision of β2Ki.
Applying Lemma 3.1, we see that {Vi}∞i=0 with Vi = stKi is a countable
base for a uniformity B on |K| having the property that Vi+1 star-refines
Vi for each i. We shall refer to B as the sequential star-uniformity for |K|
determined by {Ki}∞i=0.
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Before we get to the next proposition, let us state and prove technical
lemmas. The metric d′ on a polyhedron |K|, induced by K, yields a “linear”
metric on each simplex of K. We mean by this that for each n ∈ N, there
is a fixed simplex σn ⊂ Rn+1 such that if σ is an n-simplex of K, then
for any simplicial isomorphism % : σ → σn, the metric d′ on σ agrees with
the Euclidean metric on σn “pulled back” by %. We deduce from 3.3.12 of
[Sp] that when the n-simplex σ has such a metric, then for any σ′ ∈ βσ,
diamσ′ ≤ n(n+ 1)−1 diamσ. Hence we have

3.3. Lemma. Let K be a finite-dimensional simplicial complex and
{Ki}∞i=0 be a sequence of subdivisions of K = K0 such that for each i,
Ki+1 subdivides βKi. Then with respect to the metric d′, limi→∞meshKi

= 0.

3.4. Lemma. Suppose β is a sequential star-uniformity for |K| deter-
mined by {Ki}∞i=0, where K = K0 is a locally finite-dimensional simpli-
cial complex. Let F be a subset of |K| such that F is closed in |K|Td
and let x ∈ |K|\F . Then for each k ∈ N, there exists i ∈ N such that
stk(x, stKi) ∩ F = ∅.

P r o o f. Let v be a vertex of K such that x ∈ st(v,K). Then st(v,K)
is open in |K|Td and st(v,K) is finite-dimensional. Hence |st(v,K)|\F is a
neighborhood of x in |K|Td . By virtue of Lemma 3.3, one may find i ∈ N
such that stk(x, stKi) ⊂ st(v,K)\F .

3.5. Proposition. Let K be a locally finite-dimensional simplicial com-
plex with a sequence K = K0,K1, . . . of subdivisions as in Definition 3.2.
Let B be the sequential star-uniformity for |K| determined by {Ki}∞i=0 and
let T be the topology on |K| induced by B. Then

(i) for each i ≥ 0, stKi is an open cover of |K|T ;
(ii) Td ⊂ T ⊂ CW ;

(iii) for each σ ∈ K, B|σ induces the topology CW ;
(iv) T is Hausdorff and hence is metrizable;
(v) for each subcomplex L of K, |L| is closed in |K|T ;
(vi) |K|T is an ANR;

(vii) B is a complete uniformity ;
(viii) dim |K|T equals the combinatorial dimension of K.

P r o o f. (i) Let v be a vertex of Ki and let x ∈ st(v,Ki). From Theorem
36.6 of [Wi], we only need to find j so that st(x, stKj) ⊂ st(v,Ki). Let
m = dim st(v,Ki) <∞; let F = |lk(v,Ki)| (here, lk(v,Ki) is the link of v in
the complexKi). By Lemma 3.4, one can find j such that st(x, stKj)∩F = ∅.

On the other hand, st(x, stKj) is connected in |Ki|CW and F separates x
from the complement of st(v,Ki) in |Ki|CW . Hence st(x, stKj) ⊂ st(v,Ki),
and our proof of (i) is complete.
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(ii) Each stKi is an open collection in |K|CW . From (i) and Theorem
36.6 of [Wi], it follows that

⋃∞
i=1 stKi is a base for the topology T . Hence

T ⊂ CW . The inclusion Td ⊂ T follows easily from (i) and Lemma 3.4.
(iii) From (ii) we see that the induced topology is contained in CW .

Since the topology CW is that induced by the metric d, Lemma 3.3 shows
that CW is contained in the induced topology.

(iv) Let x and y be distinct elements of |K|. Using (i), find vertices vx and
vy of K such that x ∈ st(vx,K), y ∈ st(vy,K). Thus st(vx,K) ∪ st(vy,K)
is a neighborhood of {x, y} in |K|T . One sees that the finite-dimensional
subcomplex M = st(vx,K) ∪ st(vy,K) of K has the property that |M | is
a neighborhood of {x, y} in |K|T . It is therefore sufficient to prove that
x, y have disjoint neighborhoods in |M |, and for this we will use the finite-
dimensionality of M .

Applying Lemma 3.4 with F = {y} andK replaced byM , find i such that
st(x, stKi) ⊂ st(vx,K), st(y, stKi) ⊂ st(vy,K) and st3(x, stKi) ∩ {y} = ∅.
We then see that st(x, stKi) and st(y, stKi) are disjoint neighborhoods of
x and y in |M |, as required.

(v) For each subcomplex L of K, |L| is closed in |K|Td . Therefore an
application of Lemma 3.4 and (i) shows that |L| is closed in |K|T .

(vi) Items (i)–(v), along with Theorem 2.7, show that |K|T is an ANR.
(vii) Let F be a Cauchy filter on |K|T . It is sufficient to show that there

is a point x ∈ |K| such that the filter of T -neighborhoods of x belongs
to F .

For each i ≥ 0, there exists vi ∈ Ki such that st(vi,Ki) belongs to
F . If i ≤ j, then since st(vi,Ki) ∩ st(vj ,Kj) 6= ∅, the vertex vj must
lie in st(vi,Ki). Hence all vi belong to the finite-dimensional subcomplex
st(v0,K).

We claim that {vi}∞i=0 is a Cauchy sequence. Suppose j > 0; then we
need to show that there is k > 0 such that if p, q ≥ k, then vp, vq belong to
st(v,Kj) for some v ∈ K(0)

j .
There exists A ∈ stKj such that st(st(vj+1,Kj+1), stKj+1) ⊂ A since

stKj+1 is a star-refinement of stKj . Suppose p, q ≥ j+1. Then st(vp,Kp)∩
st(vj+1,Kj+1) 6= ∅.Surely st(vp,Kp) is contained in some element of stKj+1,
and so we have vp ∈ st(vp,Kp) ⊂ A. Similarly vq ∈ A, and so vp, vq ∈ A =
st(v,Kj) for some v ∈ K(0)

j .
Now two such vertices vp and vq in the Cauchy sequence cannot belong

to two different open simplexes of st(v0,K) of the same dimension. The
reader may obtain this from the following two basic facts.

Fact 1. Let M be a subdivision of β2K. Suppose σ is a simplex of K
and w is a vertex of M lying in intσ. Then there exists a vertex v of β2K
lying in intσ and such that st(w,M) ⊂ st(v, β2K).
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Fact 2. Let σ, τ be simplexes of K such that neither is a face of the
other. Let v, w be vertices of β2K with v ∈ intσ, w ∈ int τ . Then st(v, β2K)
∩ st(w, β2K) = ∅.

The dimension of st(v0,K) being finite, there must be a simplex σ of
st(v0,K) such that vi ∈ σ for all i. Using (iii), one sees that the Cauchy
sequence {vi}∞i=0 in σ converges to a point x ∈ σ. We complete the proof by
showing that x has a neighborhood base belonging to F .

Let j ∈ N. There is a k ≥ j + 1 such that vk ∈ st(x, stKj+1). Choose
A ∈ stKj+1 so that vk, x ∈ A. Note that vk ∈ st(vj+1,Kj+1). So x ∈
st(st(vj+1,Kj+1), stKj+1), and this latter is contained in an element B
of stKj . We then have B ⊂ st(x,Kj), leading to st(vj+1,Kj+1) ⊂ B ⊂
st(x,Kj). We already know that st(vj+1,Kj+1) is in F , and hence st(x,Kj)
∈ F . Our proof of (vii) is complete.

(viii) This comes from (iv), (iii), (v) and Lemma 2.6.

3.6. Corollary. Under the hypotheses of Proposition 3.5, the barycen-
tric coordinates βv : |K|T → [0, 1] (v ∈ K(0)) are continuous.

P r o o f. This follows from the fact that Td ⊂ T and that βv : |K|Td →
[0, 1] is continuous for all v ∈ K(0) (see, e.g., the appendix of [M-S]).

The next result can be proved by applying Theorem 4 of Appendix 1 of
[M-S]. We leave this to the reader.

3.7. Theorem. Let L be a subcomplex of a simplicial complex K. Let U
be an open cover of |K|CW such that stL refines U| |L|. Then there exists a
subdivision K̃ of K relative to L (i.e., L is a subcomplex of K̃) such that
stK̃ refines U .

4. Nerves and canonical maps. Let U be a collection of subsets of a
space X. Recall that the nerve N(U) of U is the simplicial complex whose
vertices are the non-empty elements of U and such that a finite subset F
of U determines a simplex of N(U) if and only if

⋂F 6= ∅. If V is another
collection of subsets of X and V refines U , then a projection of V in U is
a function λ : V → U such that for each V ∈ V, V ⊂ λ(V ). If λ is a
projection, then f uniquely determines a simplicial map ϕ : N(V)→ N(U)
whose vertex map is λ.

There is an “indexed” version of these concepts. Suppose that U =
{Uγ | γ ∈ Γ} is an indexed collection of subsets of a space X. Then its (in-
dexed) nerve N(U) is the simplicial complex whose vertices are the elements
γ of Γ such that Uγ 6= ∅ and such that a finite subset F of Γ determines
a simplex of N(U) if and only if

⋂{Uγ | γ ∈ F} 6= ∅. In the sequel, all
notions about nerves (e.g., canonical maps) have respective counterparts in
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an indexed version. We shall not explicitly make all the definitions, but shall
use them when needed, leaving it to the reader to fill in details.

Let us now state some results which occur in [M-U].

4.1. Lemma (Lemma 4 of [M-U]). Let f : X → σ be a σ-irreducible map
of a normal space X to a simplex σ. If τ is a proper face of σ, then the
restriction f |f−1(τ) : f−1(τ)→ τ is τ -irreducible.

4.2. Lemma (Lemma 6 of [M-U]). Let V be a normal open cover of a
topological space X. Then there exists a locally finite open cover U of X
which refines V and has the property that N(V) is locally finite-dimensional.

4.3. Theorem (Theorem 2 of [M-U]). Let f : (X,A)→ (|K|CW , |M |CW )
be a map of pairs, where X is a normal space, A is a subspace of X, K
is a simplicial complex and M is a full subcomplex of K. If the restriction
f |A : A → |M |CW is M -irreducible, then there exists a subcomplex L of
X, M ⊂ L, and a K-modification g : X → |L|CW of f such that g is
L-irreducible and g|A = f .

We have included Lemma 4.2, which could also have been derived from
[Do], only for the sake of completeness. This lemma is not adequate for our
purposes. The approach needed for our work, in the class of metric spaces,
will come to light in Section 5.

Let K be a simplicial complex, T be a topology for |K|, and f : X →
|K|T be a map. Suppose that K is the nerve of an open cover U of X.
Then one defines f to be U-canonical if f−1 st(U,K) ⊂ U for each U ∈ U ,
U-barycentric if f−1 st(U,K) = U for each U ∈ U , and U-normal if f is
both U-barycentric and K-irreducible. In the latter case we say that U is a
strongly normal cover of X.

4.4. Lemma. Let V be a locally finite open cover of a normal space X,
assume that N = N(V) is locally finite-dimensional , and suppose f : X →
|N |CW is a V-normal map. Let T be a topology for |N | such that T ⊂ CW
and T induces CW on each simplex of N . Then f : X → |N |T is a
V-normal map.

P r o o f. The continuity of f : X → |N |T is assured by the fact that
T ⊂ CW . Further, f−1 st(U,N) = U is true, so that f : X → |N |T is a
U-barycentric map. To show that it is N -irreducible, suppose that g : X →
|N |T is an N -modification of f which is not onto. Then there is a simplex
τ of N having a point x in int τ such that x is not in the image of g. Since
g is an N -modification of f , it carries f−1(τ) into τ . Hence one sees that
f |f−1(τ) : f−1(τ)→ τ is not an essential map and so is not τ -irreducible.

Since N is locally finite-dimensional, there exists a principal simplex σ
of N such that τ is a face of σ. We see, as above for τ , that g carries f−1(σ)
into σ. Now the map f |f−1(σ) : f−1(σ) → σ must be an essential map or
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else there would be an N -modification h : X → |N |CW of f which agrees
with f outside f−1(σ) and whose image contains no points of intσ. This is
impossible since f : X → |N |CW is V-normal and hence is N -irreducible.

Thus f |f−1(σ) : f−1(σ) → σ is σ-irreducible. According to Lemma 4.1,
the map f |f−1(τ) : f−1(τ) → τ must be τ -irreducible. This is a contradic-
tion to a previous statement about this map. Our proof is complete.

4.5. Lemma. Let X be a space, K be a simplicial complex , T be a topology
for |K| such that open stars of vertices are open in |K|T , and f : X → |K|T
be a K-irreducible map. Then the function θ : K(0) → f−1(stK) given
by θ(v) = f−1 st(v,K) induces an isomorphism of K onto the nerve of
f−1(stK). Using this relation to identify K with the nerve of f−1(stK),
we deduce that f is an f−1(stK)-normal map.

P r o o f. The K-irreducible map f is surjective. Whenever v, w ∈ K(0)

and v 6= w, then st(v,K) 6= st(w,K). Hence f−1 st(v,K) 6= f−1 st(w,K),
so θ is injective. If v0, . . . , vm are the vertices of a simplex σ of K, then⋂m
i=0 st(vi,K) 6= ∅, and so

⋂m
i=0 f

−1 st(vi,K) 6= ∅. This shows that θ is sim-
plicial. On the other hand, if

⋂m
i=0 f

−1 st(vi,K) 6= ∅, where each vi ∈ K(0),
then

⋂m
i=0 st(vi,K) 6= ∅ so that v0, . . . , vm are the vertices of a simplex of

K. This shows that θ is surjective.
We leave to the reader to see how this shows that f identifies with an

f−1(stK)-barycentric map which is K-irreducible, where K is the nerve of
f−1(stK) as previously indicated.

4.6. Lemma. Let X be a closed subspace of a normal space Y , let L be a
subcomplex of a simplicial complex K, and let g : (Y,X)→ (|K|CW , |L|CW )
be a map of pairs. Assume that for each y ∈ Y , there exists a finite subcom-
plex Ky of K and a neighborhood Uy of y in Y such that g(Uy) ⊂ |Ky|CW .
Suppose that f : X → |L|CW ⊂ |K|CW is a map which is a K-modification
of g|X : X → |L|CW . Then there exists a map F : Y → |K|CW such that
F is a K-modification of g and F |X = f : X → |L|CW .

P r o o f. For each i = 0, 1, . . . , let Yi = g−1(|K(i)|). Fix v ∈ K(0). On
g−1(v) ∩X the maps g and f must agree since f is a K-modification of g.
Let us define G0,v : g−1(v) → |K|CW to equal g on that set. Then define
F0 : Y0 → |K|CW to be

⋃{G0,v | v ∈ K(0)}.
Suppose we have defined maps Fi : Yi → |K|CW , i = 0, 1, . . . , n in such

a manner that Fi|Yi ∩ X = f |Yi ∩ X : Yi ∩ X → |L|CW and Fi is a K-
modification of g|Yi for each i ≤ n, and so that Fi+1|Yi = Fi : Yi → |K|CW
for each i < n.

To obtain Fn+1, first fix σ ∈ K(n+1)\K(n). Consider the two closed sub-
sets g−1(σ) ∩ Yn and g−1(σ) ∩X of g−1(σ), letting Qσ denote their union.
Define Gσ : Qσ → |K|CW to equal Fn on g−1(σ) ∩ Yn = g−1(∂σ) and to
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equal f on g−1(σ) ∩ X. Then Gσ is well defined and continuous on Qσ.
Since Fn is a K-modification of g on g−1(∂σ) and f is a K-modification of
g on g−1(σ)∩X, it follows that Gσ is a K-modification of g on Qσ; in fact,
Gσ(Qσ) ⊂ σ. Since σ is a compact absolute retract, there exists an extension
G′σ of Gσ to a map G′σ : g−1(σ) → σ. Surely G′σ is a K-modification of g
on g−1(σ) and G′σ equals Fn on g−1(σ) ∩ Yn = g−1(∂σ). Furthermore, G′σ
equals f on g−1(σ) ∩X.

We define the function Fn+1 : Yn+1 → |K|CW to be Fn ∪
⋃{G′σ | σ ∈

K(n+1)\K(n)}. The conditions Fn+1|Yn+1 ∩X = f |Yn+1 ∩X : Yn+1 ∩X →
|L|CW , Fn+1 is a K-modification of g|Yn+1, and Fn+1|Yn = Fn : Yn →
|K|CW are manifest from the construction. We need to check the continuity.

Let y ∈ Yn+1. Then g(Uy) ⊂ |Ky|CW , where Ky is a finite subcomplex
of K. So Fn+1(Uy) ⊂ |Ky|CW and Fn+1 is continuous on g−1(σ) ∩ Uy for
each σ ∈ Ky. So Fn+1 is continuous on Uy.

Finally, we set F =
⋃∞
n=0 Fn :

⋃∞
n=0 Yn = Y → |K|CW . This well-defined

function is continuous because for each y, there exists n such that F = Fn
on Uy. Surely F is a K-modification of g and F |X = f : X → |L|CW .

4.7. Lemma. Let X be a subspace of a normal space Y , L be a subcom-
plex of a locally finite-dimensional simplicial complex K, and f : (Y,X)→
(|K|CW , |L|CW ) be a map such that f |X : X → |L|CW is L-irreducible.
Assume that for each y ∈ Y , there exists a finite subcomplex Ky of K and
a neighborhood Uy of Y such that f(Uy) ⊂ |Ky|CW . Then there exists a
subcomplex M of K with L ⊂M and a K-modification g : Y → |M |CW ⊂
|K|CW of f such that g|X = f |X : X → |L|CW , and g is M -irreducible.

The proof of this lemma essentially mirrors that of Lemma 7 of [M-U], so
we shall not provide one. The main difference is that here the entire complex
K is locally finite-dimensional, whereas in [M-U], the complex was locally
finite-dimensional perhaps only outside L.

4.8. Lemma. Let N be a simplicial complex , T be a topology for |N |,
and f : X → |N |T be a map. If g : X → |N |T is an N -modification of
f , then g−1 st(U,N) ⊂ f−1 st(U,N) for all U ∈ N (0), and hence g−1(stN)
refines f−1(stN).

P r o o f. Suppose x ∈ g−1 st(U,N); then g(x) lies in the interior of a sim-
plex τ of N , where U is a vertex of τ . Now assume f(x) 6∈ st(U,N). Let σ
denote the simplex of N such that f(x) ∈ intσ; then U is not a vertex of σ,
but g(x) ∈ σ. This yields a contradiction since τ must be a face of σ.

4.9. Definition. Let W be an open cover of a closed subspace X of a
space Y . An expansion of W in Y is a function θ : W → U , where U is a
collection of open subsets of Y such that

(1) θ(W ) ∩X = W for all W ∈ W.
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Let us say that the expansion is progressive if

(2) U ∩X = ∅ whenever U ∈ U\θ(W).

Whenever we have an expansion θ : W → U , we shall identify N(W) as a
subcomplex of N(U) using the vertex map θ to induce the simplicial injec-
tion.

Using II 18.3 and IV 4.2 of [Hu] one can prove the following.

4.10. Lemma. Let W be a locally finite open cover of a closed subspace X
of a metric space Y . Let R be an open cover of Y and suppose λ :W → R
is a function with the property that W ⊂ λ(W ) for each W ∈ W. Then
there exists a progressive expansion θ :W → U of W into Y such that U is
a locally finite collection in Y and W ⊂ θ(W ) ⊂ λ(W ) for each W ∈ W.
Indeed , we may additionally choose U so that U refines R and U is a cover
of Y .

4.11. Definition. Let X be a metric space, and U be a locally finite
open cover of X. Then the standard U-barycentric map bU : X → |N(U)|CW
is defined as follows. For each U ∈ U , let gU : X → R be given by gU (x) =
d(x,X\U). We take the barycentric coordinate βU of bU (x) to be

βU = gU (x)
/∑{gW (x) |W ∈ U} .

It is easy to check that bU is indeed a U-barycentric map.

4.12. Lemma. Let X be a closed subspace of a metric space Y , W be a
locally finite open cover of X, U be a locally finite open cover of Y , and
θ :W → U be a progressive expansion of W in Y . Using Definition 4.9, treat
N(W) as a subcomplex of N(U). Then bU |X = bW : X → |N(W)|CW ⊂
|N(U)|CW .

4.13. Lemma. Let U be a locally finite open cover of a metric space X.
Then there exists an open cover V = {VU | U ∈ U} such that VU ⊂ U for
each U ∈ U (a so-called “precise” refinement) and so that there exists a
V-normal map f : X → |N(V)|CW .

P r o o f. The reader may obtain a justification of this using 4.11, 4.3,
and 4.5.

5. Dowker systems, fine normal extensions. We want to state a
result which is implicit in the proof of Lemma 3.2 of [Do]. One may con-
sult the proof of Lemma 5 of [M-U] to see another description of Dowker’s
construction. We leave it to the reader to verify details.

5.1. Lemma. There exists a triple (Φ,ϕ, ϕ0), where to every simplicial
complex L, Φ assigns an open cover Φ(L) of |L|CW and ϕ assigns a function
ϕ(L) : Φ(L)→ L(0) such that
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(1) Φ(L) is locally finite and has locally finite-dimensional nerve, and
(2) if U ∈ Φ(L), then U ⊂ st(ϕ(L)(U), L).

The element ϕ0 has the property that if L is a subcomplex of a simplicial
complex K, then ϕ0 = ϕ0(L,K) is a function ϕ0 : Φ(L)→ Φ(K) which is a
progressive expansion of Φ(L) in |K|CW having the property that ϕ(L)(U) =
ϕ(K)(ϕ0(U)) ∈ L(0) whenever U ∈ Φ(L).

5.2. Definition. We call a triple (Φ,ϕ, ϕ0) as in Lemma 5.1 a Dowker
system.

We fix a Dowker system (Φ,ϕ, ϕ0) for the rest of this paper.

5.3. Definition. Let X be a metric space and R be a locally finite open
cover of X. Let us use Φ(R) to denote Φ(N(R)). For each A ∈ Φ(R), let
TA = b−1

R (A). Then the refinement ψ(R) of R is {TA | A ∈ Φ(R)}, an
indexed open cover of X. We shall denote its nerve as Σ(R). Since Φ(R)
has locally finite-dimensional nerve, it is not difficult to see that Σ(R) is
locally finite-dimensional. Similarly, ψ(R) is an indexed locally finite open
cover of X which refines R.

Using (2) of Lemma 5.1 and the fact that bR is R-barycentric, one de-
duces that ψ(R) is a refinement of R in a special way.

5.4. Lemma. For each TA ∈ ψ(R), that is, for each A ∈ Φ(R), one has
TA ⊂ b−1

R st(ϕ(N(R))(A), N(R)) ⊂ ϕ(N(R))(A) ∈ N(R)(0) = R.

P r o o f. This is true because TA = b−1
R (A), and hence by (2) of Lemma

5.1, A ⊂ st(ϕ(N(R))(A), N(R)).

By the absolute version of Theorem 4.3, there exists a subcomplex E(R)
of Σ(R) and a map h0 : X → |E(R)|CW ⊂ |Σ(R)|CW which is
E(R)-irreducible and is a Σ(R)-modification of bψ(R). By Lemma 4.8,
h−1

0 st(V,Σ(R)) = h−1
0 st(V,E(R)) ⊂ b−1

ψ(R) st(V,Σ(R)) ⊂ V for each V ∈
E(R)(0) ⊂ Σ(R)(0) = ψ(R).

5.5. Definition. Let us refer to E(R) ⊂ Σ(R) as a principal complex of
R and to any E(R)-irreducible map h0 : X → |E(R)|CW which is a Σ(R)-
modification of the standard ψ(R)-barycentric map bψ(R) : X → |Σ(R)|CW
as a principal map.

5.6. Lemma. Let R be a locally finite open cover of a metric space
X. Then there is always a principal complex E(R) ⊂ Σ(R) of R and
a principal map h0 : X → |E(R)|CW . For such h0, one observes that
h−1

0 stE(R) refines ψ(R) and hence R. Indeed , h−1
0 st(V,E(R)) ⊂ V for

each V ∈ E(R)(0) ⊂ Σ(R)(0) = ψ(R). Furthermore, each principal complex
is locally finite-dimensional.
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5.7. Definition. We shall call each open cover W = h−1
0 stE(R) as in

Lemma 5.6 a principal refinement of R associated with E(R). We usually
treat E(R) as the nerve of W as in Lemma 4.5, so the nerve of W is locally
finite-dimensional.

5.8. Definition. There is an induced projection λh0 : W → R given
as follows. Let W = h−1

0 st(V,E(R)); then V is uniquely determined and
W ⊂ V ∈ ψ(R). Now such V = TA for some unique A ∈ Φ(R) = Φ(N(R)).
By Lemma 5.4, TA ⊂ ϕ(N(R))(A) ∈ R. We define λh0(W ) = ϕ(N(R))(A).
Note that W ⊂ λh0(W ), so λh0 is a projection.

We are now going to develop some concepts leading up to our next
lemma. Let R be a locally finite open cover of a closed subspace X of a
metric space Y , let S be a locally finite open cover of Y , and let µ : R→ S
be a progressive expansion of R in Y . According to Definition 4.9, µ induces
a simplicial injection of N(R) into N(S), by which we take N(R) to be a
subcomplex of N(S).

Using Lemma 5.1, we have the respective open covers Φ(R) and
Φ(S) of |N(R)|CW and |N(S)|CW and the progressive expansion ϕ0 =
ϕ0(N(R), N(S)) : Φ(R) → Φ(S) in |N(S)|CW . Also, there are functions
ϕ(R) = ϕ(N(R)) : Φ(R) → N(R)(0) and Φ(S) = ϕ(N(S)) : Φ(S) →
N(S)(0) such that ϕ(R)(U) = ϕ(S)(ϕ0(U)) ∈ L(0) whenever U ∈ Φ(R).
Additionally, (1), (2) of Lemma 5.1 are satisfied.

By Lemma 4.12, bS |X : X → |N(R)|CW ⊂ |N(S)|CW is the standard
R-barycentric map bR. Applying Definition 5.3 we get the locally finite (in-
dexed) open covers ψ(R) and ψ(S) of X and Y respectively, giving rise to
the nerves Σ(R), Σ(S), which are locally finite-dimensional.

Assume that ψ(R) = {TA | A ∈ Φ(R)} and ψ(S) = {SB | B ∈ Φ(S)}.
This means that (bS |X)−1(A) = TA and b−1

S (B) = SB , A ∈ Φ(R),B ∈ Φ(S).
Since ϕ0 is a progressive expansion, A = ϕ0(A)∩|N(R)|, so TA = Sϕ0(A)∩X.
If B ∈ Φ(S)\ϕ0(Φ(R)), then since ϕ0 is progressive, we have B∩|N(R)| = ∅.
Hence SB ∩ X = ∅. This yields an (indexed) progressive expansion ϕ1 :
ψ(R) → ψ(S) in Y given by ϕ1(TA) = Sϕ0(A). By means of this expansion
ϕ1, let us treat Σ(R) as a subcomplex of Σ(S) (use an indexed version of
Definition 4.9).

By Lemma 4.12, bψ(S)|X = bψ(R) : X → |Σ(R)|CW ⊂ |Σ(S)|CW . Ap-
plying Lemma 5.6, let E(R) be a principal complex of R and h0 : X →
|E(R)|CW be a principal map. According to Lemma 4.6, there exists a map
F : Y → |Σ(S)|CW which is a Σ(S)-modification of bψ(S) and such that
F |X = h0 : X → |Σ(R)|CW . Next apply Lemma 4.7 to F to get a sub-
complex E(S) of Σ(S) such that E(R) ⊂ E(S), and a Σ(S)-modification
h : Y → |E(W)|CW ⊂ |Σ(S)|CW of F such that h|X = F |X = h0 : X →
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|E(R)|CW and h is E(S)-irreducible. Note that E(S) is a principal complex
of S with h an associated principal map.

Let W = h−1
0 stE(R) and U = h−1 stE(S) be the respective principal

refinements of R and S. We are going to obtain a certain progressive expan-
sion θ : W → U in Y which will have the property that for each W ∈ W,
µ ◦ λh0(W ) = λh ◦ θ(W ) ∈ S.

Let W ∈ W be arbitrary. Then W = h−1
0 st(V,E(R)) for some V ∈

E(R)(0) ⊂ E(S)(0) ⊂ Σ(S)0 = ψ(S). We define θ(W ) = h−1 st(V,E(S))
⊂ b−1

ψ(S) st(V,E(S)). Of course, θ(W ) ∈ U . Since st(V,E(S)) ∩ |E(R)| =
st(V,E(R)) and h(X)⊂|E(R)|, it follows that θ(W )∩X=h−1 st(V,E(S))∩
X = W . For any V ∈ E(S)(0)\E(R)(0), st(V,E(S)) ∩ |E(R)| = ∅ and so
h−1 st(V,E(S))∩X = ∅. This shows that for any B ∈ U\θ(W), B ∩X = ∅.
We therefore conclude that θ :W → U is a progressive expansion ofW in Y .

By Definition 5.8, λh0(W ) = ϕ(N(R))(A) ∈ R for a certain unique
A ∈ Φ(R), where V = TA. Similarly λh ◦ θ(W ) = ϕ(N(S))(B) ∈ S for a
certain unique B ∈ Φ(S), where V = SB . The identification of Σ(R) as a
subcomplex of Σ(S) is obtained via the indexed progressive expansion ϕ1,
by which we see that B = ϕ0(A).

By Lemma 5.1, we have ϕ(N(R))(A) = ϕ(N(S))(ϕ0(A)) ∈ N(R)(0) ⊂
N(S)(0). But N(R)(0) = R and N(S)(0) = S, and the latter “inclusion”
is in reality induced by the progressive expansion µ : R → S. Putting it
formally, µ ◦ϕ(N(R))(A) = ϕ(N(S))(ϕ0(A)), i.e., µ ◦ λh0(W ) = λh ◦ θ(W ),
as required. Since θ(W ) ⊂ λh ◦ θ(W ), one has θ(W ) ⊂ µ ◦ λh0(W ).

Let us put all this information into a lemma.

5.9. Lemma. Let X be a closed subspace of a metric space Y , R be
a locally finite open cover of X, S be a locally finite open cover of Y ,
and µ : R → S be a progressive expansion of R in Y . Treat Σ(R) as a
subcomplex of Σ(S) according to the preceding discussion using the vertex
map ϕ1 : ψ(R) → ψ(S). Then for each principal complex E(R) ⊂ Σ(R)
of R and each principal map h0 : X → |E(R)|CW , there exists a principal
complex E(S) ⊂ Σ(S) of S with E(R) ⊂ E(S) and there is a principal
map h : Y → |E(S)|CW such that h|X = h0 : X → |E(R)|CW . Let W =
h−1

0 stE(R) and U = h−1 stE(S) be the respective principal refinements of
R and S. Then there exists a progressive expansion θ : W → U such that
for each W ∈ W, µ ◦ λh0(W ) = λh ◦ θ(W ) and θ(W ) ⊂ µ ◦ λh0(W ). (We
note that this remains true for any choice of E(S) and h.)

5.10. Definition. A collection C of strongly normal covers of a space
X will be called central for X if for each locally finite open cover R of X
consisting of non-empty sets, there exists a non-empty subset λC(R) of C
such that for each W ∈ λC(R), W refines R. A projection λ∗ : W → R,
in this case, will be called a central projection. If for each W-normal map
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f : X → |N(W)|CW there is prescribed a central projection λ∗f : W → R,
then we shall say that C is projectedly central . We shall abbreviate the latter
to proj-central .

Now suppose X is a closed subspace of a metric space Y , C is proj-central
for X and D is proj-central for Y . Assume that whenever R is a locally fi-
nite open cover of X, S is a locally finite open cover of Y and µ : R → S
is a progressive expansion of R in Y , then for any W ∈ λC(R) and any
W-normal map f : X → |N(W)|CW there exists U ∈ λD(S), a progressive
expansion θ : W → U in Y and a U-normal map g : Y → |N(U)|CW with
g|X = f : X → |N(W)|CW ⊂ |N(U)|CW and for each W ∈ W, θ(W ) ⊂
µ ◦ λ∗f (W ) = λ∗g ◦ θ(W ). Then we call D a fine normal extension of C in Y .

An application of Lemmas 5.6 and 5.9 yields the next theorem.

5.11. Theorem. Let X be a closed subspace of a metric space Y , C be
the collection of all principal refinements in X and D be the collection of
all principal refinements in Y . Then D is a fine normal extension of C in
Y . (Here we take λC(R) to be the collection of all principal refinements of
R and λ∗f to be the induced projection of 5.8, and similarly for D.)

5.12. N o t e . Recall that a collection D of open covers of a space Y is
called cofinal if for each open cover V of Y , there exists U ∈ D such that U
refines V. Thus in the absolute case of Definition 5.10, i.e., when X = ∅, the
defining property of D is that D be central. In fact, though, it is sufficient
that D be cofinal. Hence we have the following result.

5.13. Corollary. Let Y be a metric space, X = C = ∅, and D be a
cofinal collection of strongly normal covers of Y . Then D is a fine normal
extension of C in Y .

In conjunction with this, let us state the following fact which comes from
an application of Lemma 5.6 and Definition 5.7.

5.14. Lemma. Let Y be a metric space. Then the collection D of all
principal refinements in Y is cofinal.

6. Irreducible representations, definitive systems. We shall give
the definition of a representation and its associated properties in the manner
that will be required in this paper (ref. [Ru]).

6.1. Definition. Let P = (Pi, πi,i+1,N) be an inverse sequence of spaces
Pi and X be a space. A sequence (gi)∞i=1 of maps gi : X → Pi with πi,i+1 ◦
gi+1 = gi for each i ∈ N will be called a representation of X in P if the
map g =

∏∞
i=1 gi : X → ∏∞

i=1 Pi embeds X onto a dense subspace of
lim P. Call the representation polyhedral if each Pi, having a completely
metrizable topology Ti ⊂ CW making it a locally finite-dimensional ANR,
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can be endowed with a locally finite-dimensional triangulation Ki such that
Ti induces CW on each simplex of Ki and stKi is an open cover of |Ki|Ti .
If, in addition, each gi and bonding map πi,i+1 is Ki-irreducible, let us say
that the representation is irreducible, and simplicially irreducible if πi,i+1 is
simplicial from Ki+1 to some subdivision of Ki.

6.2. Theorem. Let X be a metrizable space. Then X has a simpli-
cially irreducible representation (gi)∞i=1. If X is completely metrizable, then
we may choose (gi)∞i=1 and P so that (gi)∞i=1 is a simplicially irreducible
representation of X in P and g =

∏∞
i=1 gi : X → lim P is a homeomor-

phism. In case X is compact , each Ki is finite; if X is separable, then
each Ki is countable and locally finite; in both instances the topology Ti is
precisely CW .

P r o o f. Suppose X is compact. Then each open cover g−1
i st(Ki) has a

finite subcover Vi. We may treat N(Vi) as a subcomplex of Ki. There is a
canonical map hi : X → |N(Vi)|CW and since Ti ⊂ CW , we may take hi as
a map of X to |N(Vi)|Ti ⊂ |Ki|Ti . This latter map is a Ki-modification of
the Ki-irreducible map gi : X → |Ki|Ti , which shows that Ki must be finite.

In case X is separable, first obtain a countable subcoverWi of g−1
i st(Ki).

Then find a precise locally finite refinement Vi of Wi whose nerve is locally
finite, and proceed with the same argument as for the compact case.

In both instances, since Ti ⊂ CW , the identity function from |Ki|CW to
|Ki|Ti is continuous. Now if v is a vertex of Ki, then |st(v,Ki)| inherits the
same topology from Ti as it does from CW since st(v,Ki) is finite and both
topologies agree on simplexes. Since stKi is an open cover of |Ki|Ti , the iden-
tity function from |Ki|Ti to |Ki|CW is also continuous. Therefore Ti = CW .

We delay the remainder of our proof of this theorem, as we need some
preliminaries.

Let K be a simplicial complex and f : X → |K| be a function. Surely if T
is a topology for |K|, f : X → |K|T is continuous, and stK is an open cover
of |K|T , then f−1(stK) is an open cover of X. If f : X → |K|T happens to
be also a U-barycentric map, where K is the nerve of U , then U = f−1(stK).

Suppose we have a collection of functions πi,i+1 : Xi+1 → Xi, i ∈ N.
Then we shall denote compositions of the form πi,i+1 ◦ . . .◦πk,k+1 as πi,k+1.

6.3. Definition (compare with 3.2 of [J-R]). Suppose we are given a met-
ric spaceX and a sequence P1, P2, . . . of polyhedra with respective topologies
T1, T2, . . . and locally finite-dimensional triangulations K1,0,K2,0, . . . , such
that for each i ∈ N:

(1) there is a sequential star-uniformity Bi for Pi = |Ki,0| determined by
{Ki,j}∞j=0 and yielding the topology Ti for Pi;

(2) there is a map fi : X → Pi;
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(3) the cover f−1
i+1(stKi+1,0) refines f−1

i (stKi,1);
(4) mesh(f−1

i (stKi,0)) < 1/2i;
(5) there are maps τi,i+1, πi,i+1 : Pi+1 → Pi and hi : Pi → Pi such that

for some κ(i) ∈ N, hi is a Ki,κ(i)-modification of the identity, τi,i+1 is simpli-
cial from Ki+1,0 to Ki,κ(i) and is induced by a projection of f−1

i+1(stKi+1,0)
to f−1

i (stKi,κ(i)), and πi,i+1 = hi ◦ τi,i+1;
(6) whenever k ∈ N, there exist l ∈ Z≥0, m, p ∈ N, m, p > i, such that

(a) stKi+1,l refines π−1
i,i+1(stKi,k),

(b) stKm,0 refines τ−1
i,m(stKi,k), and

(c) f−1
p (stKp,0) refines f−1

i (stKi,k).

Then we shall say that these data determine a definitive system S for X or
that X supports the definitive system S. Each such definitive system induces
an inverse sequence P = (Pi, πi,i+1,N) of polyhedra Pi with topologies Ti.
According to Proposition 3.5, these topologies are metrizable, the uniformi-
ties Bi are complete, and Pi is in fact an ANR. We endow

∏∞
i=1 Pi with the

(complete) product uniformity from the Bi’s and lim P with the uniformity
inherited from this product uniformity.

Let us state that in the current paper, the maps hi in (5) will always be
the identity, and thus in the applications herein will not even be mentioned
because in this situation πi,i+1 will be the same as τi,i+1. But in future ap-
plications of these techniques, this will not be the case, and we have included
this information for that purpose.

6.4. Lemma. Given a definitive system S for X and i, k ∈ N, the fol-
lowing properties are satisfied :

(7) πi,i+k is a Ki,κ(i)-modification of τi,i+k, and
(8) πi,i+k ◦ fi+k is a Ki,κ(i)-modification of fi.

P r o o f. Suppose that (7) is true and, in addition,

(9) τi,i+k ◦ fi+k is a Ki,κ(i)-modification of fi.

For any x ∈ X, τi,i+k(fi+k(x)) lies in a face σ0 of the simplex σ of Ki,κ(i)
where fi(x) ∈ intσ. But then by (7), πi,i+k(fi+k(x)) lies in σ0, so (8) is true.
We therefore intend to prove that (7) and (9) hold.

To prove (7), note first that it is certainly true in case k = 1. We can say
even more since τi,i+1 is simplicial from Ki+1,0 to Ki,κ(i): if σ is a simplex
of Ki+1,0, then πi,i+1(σ) is contained in the simplex τ = τi,i+1(σ) of Ki,κ(i).

Let k ∈ N and assume inductively that for any simplex σ of Ki+k,0,
πi,i+k(σ) is contained in the simplex τ = τ(σ) of Ki,κ(i) which is minimal
with respect to containing τi,i+k(σ), i.e., which contains it and has the same
dimension. Now let σ0 be a simplex of Ki+k+1,0 and consider the simplex
γ = τi+k,i+k+1(σ0) of Ki+k,κ(i+k). Then γ is contained in a minimal simplex
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σ of Ki+k,0. Surely πi+k,i+k+1(σ0) ⊂ γ ⊂ σ. Hence by the inductive assump-
tion, πi,i+k(πi+k,i+k+1(σ0)) is contained in τ(σ). However, τ(σ) is the same
as τ(σ0) by consideration of the fact that each τj,j+1 is simplicial and that
γ contains at least one point of intσ. So our statement above is true.

We get (7) from this easily. Consider x ∈ Pi+k and let σ be the simplex
of Ki+k,0 with x ∈ intσ. One sees that τi,i+k(x) lies in int τ(σ), for otherwise
the simplex which is the image of τi,i+k(σ) would lie in a proper face of τ(σ).
From the preceding, we get πi,i+k(x) ∈ τ(σ), and we are finished with (7).

To prove (9), inductively assume that τi,i+k◦fi+k is aKi,κ(i)-modification
of fi and show that τi,i+k+1 ◦ fi+k+1 is also a Ki,κ(i)-modification of fi. Let
x ∈ X and consider the simplex σ0 of Ki+k,0 such that fi+k(x) lies in
intσ0. Let τ be the simplex of Ki,κ(i) containing fi(x) in its interior. Then
τi,i+k(fi+k(x)) lies in the interior of some face δ of τ . The simplicial structure
of the bonding maps given by (5) yields that τi,i+k carries σ0 into δ. Hence
our proof will be complete if we show that τi+k,i+k+1(fi+k+1(x)) lies in σ0.

Let γ :f−1
i+k+1(stKi+k+1,0)→f−1

i+k(stKi+k,κ(i+k)) be the projection of (5)
which induces τi+k,i+k+1. Denote γf−1

i+k+1(st(v,Ki+k+1,0)) as f−1
i+k(st(α(v),

Ki+k,κ(i+k))), with v a vertex of Ki+k+1,0; then f−1
i+k+1(st(v,Ki+k+1,0)) ⊂

f−1
i+k(st(α(v),Ki+k,κ(i+k))).

Let x ∈ X and σ be the simplex of Ki+k,κ(i+k) such that fi+k(x)
lies in int(σ), and let w1, . . . , wr be the vertices of σ. Now σ ⊂ σ0 and,
moreover, w1, . . . , wr are the only vertices w of Ki+k,κ(i+k) such that x ∈
f−1
i+k(st(w,Ki+k,κ(i+k))).

The map fi+k+1 carries x into the interior of a simplex τ of Ki+k+1,0

with vertices, say, v1, . . . , vr. Since x ∈ f−1
i+k+1(st(vs,Ki+k+1,0)), 1 ≤ s ≤ r,

it follows that α(vs) must be an element of w1, . . . , wk. Since τi+k,i+k+1

is simplicial from Ki+k+1,0 to Ki+k,κ(i+k), we get τi+k,i+k+1(fi+k+1(x)) ∈
τi+k,i+k+1(τ) ⊂ σ ⊂ σ0, as desired.

6.5. Lemma. Let P be the inverse sequence induced by a definitive system
S for a metric space X (with notation as in Definition 6.3). Then for each
i ∈ N, (πi,j ◦fj)j>i is a Cauchy sequence of maps into the complete uniform
space (Pi,Bi). Defining gi = limj→∞(πi,j ◦ fj) : X → Pi we find that gi
is a Ki,κ(i)-modification of fi and πi,i+1 ◦ gi+1 = gi; furthermore, gS =∏∞
i=1 gi : X → lim P is an embedding of X into lim P. If each fi : X → Pi

is Ki,0-irreducible, then dimPi ≤ dimX and gS(X) is dense in lim P; if in
addition the metric for X is complete, then gS(X) = lim P.

P r o o f. Fix i and k. Choose m as in (6b), and suppose j ≥ m. Let
x ∈ X. We want to show that τi,j(fj(x)), τi,m(fm(x)) lie in an element of
stKi,k. From this and 6.4(7) it follows that πi,j(fj(x)), πi,m(fm(x)) lie in an
element of st2Ki,k, which will prove that (πi,j ◦fj)j>i is a Cauchy sequence.
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Using (7), one sees that πm,j(fj(x)) lies in a simplex σ of Km,κ(m) hav-
ing the property that fm(x) lies in int(σ). Hence there is a vertex v of σ
such that πm,j(fj(x)), fm(x) lie in st(v,Km,κ(m)). This implies that there is
a vertex w of Km,0 with πm,j(fj(x)), fm(x) ∈ st(w,Km,0). Our choice of m
in (6b) yields that stKm,0 refines π−1

i,m(stKi,k). Thus, πi,m(πm,j(fj(x))) =
πi,j(fj(x)) and πi,m(fm(x)) lie in an element of stKi,k, as needed.

From the definition of gi and (7), it is immediate that gi is a Ki,κ(i)-
modification of fi. Now πi,i+1 ◦ gi+1 = πi,i+1 ◦ liml>i+1 πi+1,l ◦ fl =
liml>i+1 πi,i+1 ◦ πi+1,l ◦ fl = liml>i πi,l ◦ fl = gi. This of course shows that
the map gS carries X into lim P.

Suppose that fi is Ki,0-irreducible. Since gi is a Ki,κ(i)-modification of
fi, it is also a Ki,0-modification of fi. Hence gi is surjective. So for any
non-empty open subset U of Pi, choose x ∈ X with gi(x) ∈ U . Then the
thread gS(x) ∈ lim P lies in the basic open set π−1

i (U) of lim P. Hence
gS(X) is dense in lim P.

Let us now prove that gS is injective. Let x, y ∈ X, x 6= y. Using (4),
choose i so that mesh(f−1

i (stKi,0)) < d(x, y). Let σx, σy be simplexes of
Ki,0 with fi(x) ∈ intσx, fi(y) ∈ intσy. We claim that σx ∩ σy = ∅. If not,
then there is a common vertex v of σx and σy and fi(x), fi(y) ∈ st(v,Ki,0).
Then x, y ∈ f−1

i (st(v,Ki,0)), but since diam(f−1
i (st(v,Ki,0))) < d(x, y) this

is impossible. Since gi is a Ki,0-modification of fi, we have gi(x) ∈ σx,
gi(y) ∈ σy. Hence gi(x) 6= gi(y), and gS is injective.

To prove that gS is an embedding and indeed a surjection if gS(X) is
dense in lim P and the metric for X is complete, we shall make use of uni-
formities. Let us designate by Ui the open cover f−1

i (stKi,0) of X.
Recall that stKi,1 star-refines stKi,0. From this and (3) we see that Ui+1

star-refines Ui. Taking into account (4), we find that {Ui} is a base for a
uniformity on X yielding the metric topology. This uniformity is complete
if the metric is complete. Now lim P bears the uniformity inherited from
the product uniformity, which is complete since lim P is closed in

∏∞
i=1 Pi,

which is complete since each Bi is complete.
The maps πi,i+1 are uniformly continuous because of (6a). The maps fi

are uniformly continuous because of (6c). It follows then that each gi, being
the limit of a Cauchy sequence of uniformly continuous maps, is uniformly
continuous. Since

∏∞
i=1 Pi has the product uniformity (uniformity of uni-

form convergence), we find that gS is also uniformly continuous. If we can
prove that g−1

S : gS(X) → X is uniformly continuous, then we shall know
that gS is a uniform embedding of X onto a subset of lim P. Therefore in
case gS is dense in lim P and the metric for X is complete, we will have
gS(X) = lim P, and our proof will be finished.

For an inverse sequence of uniform spaces, each with a given base for its
uniformity, and such that the bonding maps are uniformly continuous, there
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is a base for the uniformity induced on the limit which comes from these
data. In the current case this base consists of all sets π−1

i (stKi,l) ∩ limPi,
l ∈ N, where πi : lim P→ Pi is the coordinate projection, and is connected
to the fact that for each i, {stKi,l}∞l=1 is a base for the uniformity on Pi.
The subspace gS(X) of lim P thus has a uniform base consisting of all sets
π−1
i (stKi,l) ∩ gS(X), i, l ∈ N.

To show that g−1
S : gS(X)→ X is uniformly continuous, it is sufficient to

prove that for each uniform base element Uk for X, there exist i, l ∈ N with
the property that Wi,l = π−1

i (stKi,l)∩gS(X) refines (g−1
S )−1(Uk) = gS(Uk).

Since gS is injective, it is sufficient to show that g−1
S (Wi,l) refines Uk.

But g−1
S (Wi,l) = g−1

S (π−1
i (stKi,l)) and since πigS = gi, this latter set is

g−1
i (stKi,l). It remains then to prove that

(8) for each k ∈ N there exist i, l ∈ N with the property that g−1
i (stKi,l)

refines Uk = f−1
k (stKk,0).

Choose i = k and l = 1. Note that stKk,κ(k) star-refines stKk,0. Let W ∈
stKk,κ(k) and consider g−1

k (W ). For some v ∈ Kk,κ(k), W = st(v,Kk,κ(k))
and st(W, stKk,κ(k)) lies in an element V of stKk,0. We claim that g−1

k (W ) ⊂
f−1
k (V ).

To see this, suppose there exists x ∈ g−1
k (W )\f−1

k (V ). Let τ be the sim-
plex of Kk,κ(k) with gk(x) ∈ int(τ) and σ be the one with fk(x) ∈ int(σ).
Now v is a vertex of τ and we know that fk(x) 6∈ st(W, stKk,κ(k)). Hence
σ ∩ τ = ∅. But we have already shown that gk is a Kk,κ(k)-modification of
fk, so gk(x) ∈ σ, a contradiction. This finalizes the proof.

6.6. Corollary. Let a metric space X support a definitive system S
where the maps fi in (2) are Ki,0-irreducible. Then the sequence (gi)∞i=1 of
maps gi : X → ∏∞

i=1 Pi is a simplicially irreducible representation of the
space X in the inverse sequence P = (Pi, πi,i+1,N) induced by the definitive
system S. Each Pi = |Ki,0|Ti is a completely metrizable ANR, Ti ⊂ CW ,
Ki,0 is locally finite-dimensional , stKi is an open cover of |Ki|Ti , dimPi ≤
dimX, and gS : X → lim P is a homeomorphism if the metric for X is
complete. Consequently , Theorem 6.2 is true if every metric space supports
such a definitive system.

P r o o f. Since each Ki,0 is locally finite-dimensional and Ti is induced
by a star-uniformity Bi on Pi = |Ki,0|, Proposition 3.5(vi) yields that Pi is
an ANR, (ii) gives us that Ti ⊂ CW , and (i) that stKi is an open cover
of |Ki|Ti . The preceding lemma shows that (gi)∞i=1 is a representation of X
in P. From Definition 6.3(5) one has the simplicial property. Now each gi
is a Ki,κ(i)- and hence Ki,0-modification of fi. Since fi is Ki,0-irreducible,
so is gi. Since πi,i+1 ◦ gi+1 = gi, it is easily seen that if πi,i+1 were not
Ki,0-irreducible then gi would not be either. Hence the corollary is true.
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As a result of this corollary, we will get Theorem 6.2 provided we can
show that each metric space X supports a definitive system S with the
maps fi being Ki,0-irreducible. This is going to be accomplished in the next
section in Theorem 7.4.

7. Obtaining definitive systems. In this section we shall demonstrate
that every metric space supports a definitive system. We shall do more
though, by laying the groundwork for results to come in later sections. For
a metric space X and ε > 0, let Cov(X, ε) be the open cover X consisting
of all open balls of radius ε.

7.1. Lemma. Let X be a metric space and W1,W2, . . . be a sequence
of strongly normal covers of X having respective locally finite-dimensional
nerves L1,0, L2,0, . . . Suppose that for each i ∈ N,

(1) Wi refines Cov(X, 1/2i+2),
(2) a Wi-normal map fi : X → |Li,0|CW has been chosen,
(3) there is a collection {Li,j}∞j=0 of subdivisions of Li,0 which deter-

mines a sequential star-uniformity Bi for Pi = |Li,0| with induced topol-
ogy Ti,

(4) f−1
i+1(stLi+1,0) refines f−1

i (stLi,1),
(5) there is a simplicial map πi,i+1 : Li+1,0 → Li,1 which is induced by

a projection ψi,i+1 of Wi+1 = f−1
i+1(stLi+1,0) to f−1

i (stLi,1),
(6) for all j ∈ N, stLi+1,j refines π−1

i,i+1(stLi,i+j), and

(7) f−1
i (stLi,0) refines f−1

s (stLs,k) whenever s < i and k ≤ i+ 1.

Then the data generated by these conditions satisfy the requirements for a
definitive system S for X as stated in Definition 6.3, where we replace CW
on |Li,0| by Ti for each i ∈ N and where the maps fi are Li,0-irreducible
(hi = id and τi,i+1 = πi,i+1).

P r o o f. Condition 6.3(1) is given by (3). Since by (2), fi : X → |Li,0|CW
is Wi-normal and by (ii), (iii) of Proposition 3.5, Ti ⊂ CW and Ti induces
CW on each simplex of Li,0, it follows that fi : X → |Li,0|Ti = Pi is Wi-
normal. This shows that fi is Li,0-irreducible, so we have 6.3(2) with the
additional condition requested above. One gets 6.3(3) from (4), and 6.3(4)
from (1) and the fact that, fi being Wi-normal, f−1

i (stLi,0) = Wi. Also,
6.3(5) comes directly from (5).

As for (6) of 6.3, suppose k ∈ N. To get (6a), suppose first that k = 1.
Then since πi,i+1 : Li+1,0 → Li,1 is simplicial, it is easy to see that stLi+1,0

refines π−1
i,i+1(stLi,k), so choose l = 0. If k > 1, choose l = k − 1. Then

i + l ≥ k, so surely st(Li,i+l) refines stLi,k, and hence π−1
i,i+1(stLi,i+l) re-

fines π−1
i,i+1(stLi,k). However, (6) shows that stLi+1,l refines π−1

i,i+1(stLi,i+l).
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Now for (6b) of 6.3. We have just used the fact that stLi+1,0 refines
π−1
i,i+1(stLi,1), so if k = 1, then choose m = i + 1. In case k = 2 we see

that stLi+2,0 refines π−1
i+1,i+2(stLi+1,1). From (6) one deduces that stLi+1,1

refines π−1
i,i+1(stLi,i+1), which surely refines π−1

i,i+1(stLi,2) = π−1
i,i+1(stLi,k).

Hence stLi+2,0 refines π−1
i+1,i+2(π−1

i,i+1(stLi,k)) = π−1
i,i+2(stLi,k). So in this

case take m = i+ 2. In general, one chooses m = i+ k; we leave the details
to the reader.

Finally, we need to show (6c) of 6.3. We must find p ∈ N, p > i, such
that f−1

p (stLp,0) refines f−1
i (stLi,k). Take p = i+ k. Then surely i < p and

k ≤ p+ 1. So (7) applies and we get the needed relation.

7.2. Definition. Let X be a metric space and C be a collection of
strongly normal covers of X each having locally finite-dimensional nerve
and F = {(Wi, Li,j , fi, Ti, πi,i+1, ψi,i+1) | i ∈ N, j ≥ 0} be a set of data
satisfying the conditions of Lemma 7.1, where Wi ∈ C for each i ∈ N. We
shall call F a determining system for C.

A sequence {(Ri, λi, ψi) | i ∈ N} will be called a filtering for F if for
each i ∈ N,

(1) Ri is a locally finite open cover of X,
(2) Wi refines Ri,
(3) Ri refines Cov(X, 1/2i+2),
(4) Ri+1 refines f−1

s (stLs,k) whenever s < i+ 1 and k ≤ i+ 2, and
(5) there are fixed projections λi :Wi → Ri and ψi : Ri+1 → f−1

i (stLi,1)
such that ψi,i+1 of (5) of Lemma 7.1 is the composition ψi ◦ λi+1 : Wi →
f−1
i (stLi,1).

7.3. Lemma. Let X be a closed subspace of a metric space Y and C,D
be respective collections of normal covers of X, each having locally finite-
dimensional nerve and such that D is a fine normal extension of C in
Y . Let λC , λL, λ∗ be as in Definition 5.10. Suppose that F = {(Wi, Li,j ,
fi, Ti, πi,i+1, ψi,i+1) | i ∈ N, j ≥ 0} is a determining system for C with fil-
tering F0 = {(Ri, λi, ψi) | i ∈ N} for F subject to the conditions that for
each i ∈ N, Wi = λC(Ri) and λi = λ∗fi . Then there exists a determining

system G = {(Ui,Ki,j , gi, T̃i, π̃i,i+1, ψ̃i,i+1) | i ∈ N, j ≥ 0} for D along with
a filtering G0 = {(Si, λ̃i, ψ̃i) | i ∈ N} for G such that for each i ∈ N,

(1) Ui = λD(Si),
(2) λ̃i = λ∗gi ,
(3) Li,j is a subcomplex of Ki,j , j = 0, 1, . . .,
(4) π̃i,i+1|Li+1,0 = πi,i+1 : Li+1,0 → Li,1 ⊂ Ki,1, and
(5) gi|X = fi : X → |Li,0|CW ⊂ |Ki,0|CW .
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P r o o f. This will be obtained via a construction by induction on N. For
n = 1, proceed as follows. Using Lemma 4.10, we find a progressive expan-
sion µ1 : R1 → S1 of R1 in Y in such a manner that S1 refines Cov(Y, 1/22)
and S1 is a locally finite open cover of Y . According to Definition 5.10,
there is a progressive expansion θ1 : W1 → U1 = U(S1) in Y such that
for each W ∈ W1, θ1(W ) ⊂ µ1 ◦ λ1(W ), and there is a U1-normal map
g1 : Y → |K1,0|CW such that g1|X = f1 : X → |L1,0|CW ⊂ |K1,0|CW , where
K1,0 = N(U1). Here we treat L1,0 as a subcomplex of K1,0 via θ1.

Recursively extend each of the subdivisions Li,j of β2L1,j−1 to a subdi-
vision Ki,j of β2K1,j−1, j ∈ N. Choose λ̃1 = λ∗g1

.
As far as the determining system G and its associated filtering are con-

cerned, we have constructed all applicable objects for n = 1. Namely, the
elements of {(U1,K1,j , g1, T̃1) | j ≥ 0} satisfy (1)–(3) of Lemma 7.1 and
(S1, λ̃1) satisfies (1)–(3) of Definition 7.2. Also, our construction meets the
requirements of (1)–(3) and (5) of the current lemma. Everything else is true
vacuously.

Proceeding inductively, assume that n ∈ N and for each 1 < i ≤ n we
have constructed {(Ui,Ki,j , gi, T̃i, π̃i,i+1, ψ̃i,i+1) | j ≥ 0} and (Si, λ̃i, ψ̃i) so
that (1)–(7) of Lemma 7.1, (1)–(5) of Definition 7.2, and (1)–(5) of the hy-
pothesis hold true for all applicable indexes. We want to produce the data
for index n+ 1.

Consider the finite collection of open covers of Y consisting of
Cov(Y, 1/2n+3) and all g−1

s (stKs,k), s < n + 1 and k ≤ n + 2. By (3)
of 7.2, Rn+1 refines Cov(X, 1/2n+3) = Cov(Y, 1/2n+3)|X, therefore it re-
fines Cov(Y, 1/2n+3). Similarly, but this time using (4) of 7.2 and (5) of the
hypothesis, one sees that Rn+1 refines each of the covers g−1

s (stKs,k) just
mentioned. Let Ω be the open cover of Y which is the intersection of these
g−1
s (stKs,k) and Cov(Y, 1/2n+3).

We have ψn : Rn+1 → f−1
n (stLn,1) from 7.2(5); let us denote ψn(R) as

f−1
n st(vR, Ln,1) ⊂ g−1

n st(vR,Kn,1), R ∈ Rn+1. Since ψn is a projection, we
have R ⊂ ψn(R) ⊂ g−1

n st(vR,Kn,1). Choose an element λ′(R) ∈ Ω such that
R ⊂ λ′(R) ⊂ g−1

n st(vR,Kn,1). We then apply Lemma 4.10 to get a locally
finite open cover Sn+1 of Y and a progressive expansion µ : Rn+1 → Sn+1

of Rn+1 in Y such that R ⊂ µ(R) ⊂ λ′(R) for each R ∈ Rn+1. Moreover,
we choose Sn+1 so that Sn+1 refines Ω.

Define ψ̃n : Sn+1 → g−1
n (stKn,1) in the following way. If S = µ(R) ∈

µ(Rn+1) ⊂ Sn+1, then S ⊂ λ′(R) ⊂ g−1
n st(vR,Kn,1), and we let ψ̃n(S) =

g−1
n st(vR,Kn,1). So we infer that ψ̃n(µ(R)) = g−1

n st(vR,Kn,1) if and only if
ψn(R) = f−1

n st(vR, Ln,1). For an element S of Sn+1\µ(Rn+1), just choose
arbitrarily an element ψ̃n(S) of g−1

n (stKn,1) which contains S. Thus, ψ̃n :
Sn+1 → g−1

n (stKn,1) is a projection.
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One can see that as far as this choice of Sn+1, we have certainly satisfied
the conditions (1), (3), (4) of Definition 7.2. Applying Definition 5.10, we
choose Un+1 = λD(Sn+1) and a Un+1-normal map gn+1 : Y → |Kn+1,0|CW
such that gn+1|X = fn+1 : X → |Ln+1,0|CW ⊂ |Kn+1,0|CW , where of course
Kn+1,0 is the nerve of Un+1. Also keep in mind that we use the progressive
expansion θ = θn+1 :Wn+1 → Un+1 of 5.10 to treat Ln+1,0 as a subcomplex
of Kn+1,0.

Since Un+1 refines Sn+1 which refines Ω, (2) of 7.2 and (1), (4) and (7)
of 7.1 are true. Obviously, 7.1(2) is satisfied. Setting λ̃n+1 = λ∗gn+1

: Un+1 →
Sn+1, one sees that (1), (2) and (5) of this lemma are also satisfied.

Next let us define ψ̃n,n+1 : Un+1 → g−1
n (stKn,1) to be the composition

ψ̃n ◦ λ̃n+1. Thus ψ̃n,n+1 is a projection. By means of this projection, we
induce the simplicial map π̃n,n+1 : Kn+1,0 → Kn,1, thus simultaneously
obtaining 7.2(5) and 7.1(5). Hence all parts of 7.2 have been checked with
these new data.

We want to ascertain the truth of (4) of this lemma. Consider a vertex
W of Ln+1,0, i.e., W ∈ Wn+1. Then πn,n+1(W ) is the unique vertex xW
of Ln,1 such that ψn,n+1(W ) = f−1

n st(xW , Ln,1). We need to show that
π̃n,n+1(W ) = xW . Note that by (5) of 7.2, we have f−1

n st(xW , Ln,1) =
ψn,n+1(W ) = ψn ◦ λn+1(W ) = ψn ◦ λ∗fn+1

(W ).
When we treat Ln+1,0 as a subcomplex of Kn+1,0, we do so via the

progressive expansion θn+1 : Wn+1 → Un+1 of 5.10, where µ ◦ λ∗fn+1
(W ) =

λ∗gn+1
◦θn+1(W ), W ∈ Wn+1. Hence showing π̃n,n+1(W ) = xW really means

showing that π̃n,n+1(θn+1(W )) = xW . This is equivalent to proving that
ψ̃n,n+1(θn+1(W )) = g−1

n st(xW ,Kn,1).

One has ψ̃n,n+1(θn+1(W )) = ψ̃n ◦ λ̃n+1(θ(W )) = ψ̃n ◦ λ∗gn+1
(θ(W )) =

ψ̃n ◦ µ ◦ λ∗fn+1
(W ). Let S = µ ◦ λ∗fn+1

(W ) and R = λ∗fn+1
(W ), and apply

the definition of ψ̃n. We have ψ̃n(S) = g−1
n st(vR,Kn,1), where ψn(R) =

f−1
n st(vR, Ln,1). Thus ψ̃n,n+1(θn+1(W )) = g−1

n st(vR,Kn,1). We need to
show that vR = xW . But from a previous determination, ψn(R) = ψn ◦
λ∗fn+1

(W ) = f−1
n st(xW , Ln,1). If vR 6= xW , then st(vR, Ln,1) 6= st(xW , Ln,1).

And since fn is a surjection, then f−1
n st(vR, Ln,1) 6= f−1

n st(xW , Ln,1), which
shows that ψn(R) 6= ψn(R), a contradiction. Hence we have proved (4).

In order to get (3) of the current lemma, it is necessary to select com-
plexes Kn+1,j , j = 1, 2, . . . , so that Ln+1,j is a subcomplex of Kn+1,j . On
the other hand, we must also do this so that (3), (6) of 7.1 are true relative
to the complexes of type Ki,j . The procedure we use is recursive.

Consider the open cover π̃−1
n,n+1(stKn,n+1) of |Kn+1,0|CW (the function

π̃n,n+1 is simplicial and hence is continuous in CW ). Use Theorem 3.7 to
find a subdivision Kn+1,1 of Kn+1,0 which refines β2Kn+1,0, extends the
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subdivision Ln+1,1 of Ln+1,0, and has the property that stKn+1,1 refines
π̃−1
n,n+1(stKn,n+1). One makes use here of the fact that Ln+1,1 is a subdivi-

sion of β2Ln+1,0 by definition of sequential star-uniformity, and that since
πn,n+1 is the restriction of π̃n,n+1 to |Lm+1,0|, it follows that stLn+1,1 refines
π̃−1
n,n+1(stKn,n+1). This is the first step in a process which can be continued

inductively to produce (3), (6) of 7.1 and (3) of this lemma.
Our proof is complete.

7.4. Theorem. Every metric space Y supports a definitive system in
which the maps fi of Definition 6.3(2) are Ki,0-irreducible.

P r o o f. Let X = C = ∅ and let D be the collection of all principal
refinements in Y . Then by 5.14 and 5.13, D is a fine normal extension
of C in Y . From Lemma 5.6, one sees that each element of D has locally
finite-dimensional nerve.

We choose the determining system F for C in which all entries are empty.
Then there is a filtering for F in which all entries are empty. By Lemma 7.3,
there is a determining system G for D. By Definition 7.2, the determining
system G induces the data in Lemma 7.1, and so by Lemma 7.1, there exists
such a definitive system S for Y .

An analysis of this proof shows even more.

7.5. Theorem. Let D be a cofinal collection of strongly normal , locally fi-
nite covers of a metric space X, each having locally finite-dimensional nerve.
Then there is a sequence W1,W2, . . . of elements of D so that all the data of
7.1 can be satisfied. Hence there is a definitive system S for X where each
Li,0 is the nerve of an element of D, and fi : X → |Li,0|Ti is a Wi-normal
map.

We want to explore a further ramification of Lemma 7.3. The determin-
ing system F for C and its associated filtering F0 appear to have a certain
extension property. This manifests itself in that whenever D is a fine normal
extension of C in Y , one gets a determining system G for D along with a
filtering G0 which are of the same type relative to D as their predecessors
were relative to C. Furthermore, there are certain extensions of maps and
polyhedra which also occur. We put this now into a definition.

7.6. Definition. Let X be a metric space, C be a collection of normal
covers of X each having locally finite-dimensional nerve and so that C is
central for X. A pair (F ,F0) will be called an extendable filtered determining
system for C if F = {(Wi, Li,j , fi, Ti, πi,i+1, ψi,i+1) | i ∈ N, j ≥ 0} is a
determining system for C with filtering F0 = {(Ri, λi, ψi) | i ∈ N} for F
such that for each i ∈ N, Wi = λC(Ri) and λi = λ∗fi .

Let us apply this definition and Lemma 7.3 to a specific situation.
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7.7. Lemma. Let X be a closed subspace of a metric space Y and C
be the collection of all principal refinements of X. Then there exists an
extendable filtered determining system (F ,F0) for C. Let D be the collection
of all principal refinements of Y . Then there exists an extendable filtered
determining system (G,G0) for D, dependent upon (F ,F0), so that (3)–(5)
of Lemma 7.3 are true.

P r o o f. We know from Theorem 5.11 that C is central for X, and from
Definition 5.7 that each element of C has locally finite-dimensional nerve.
Our proof of Theorem 7.4 shows that there is an extendable filtered deter-
mining system (F ,F0) for C.

Now, Theorem 5.11 yields that D is a fine normal extension of C in Y ,
and of course each element of D has locally finite-dimensional nerve. Lemma
7.3 then produces the required pair (G,G0).

8. Representations of strongly countable-dimensional spaces.
Let us recall that a normal space is called strongly countable-dimensional if
it can be written as a countable union of closed, finite-dimensional subspaces.
The survey article [E-P] deals with countable-dimensional spaces in general,
and is a good source of information on this subject. The next result is easily
seen to be true.

8.1. Lemma. Every subspace of a strongly countable-dimensional metriz-
able space is strongly countable-dimensional.

8.2. Definition. Let (gi)∞i=1 be a polyhedral representation of a space
X in an inverse sequence P = (Pi, πi,i+1,N) of metrizable polyhedra Pi each
having triangulation Ki as in Definition 6.1. We shall call the representation
strongly countable-dimensional if for each x ∈ X we have sup{dimσi(x) |
i ∈ N} <∞, where by σi(x) we mean the carrier of gi(x) in Ki.

Let us now state our characterization of strong countable-dimensionality
for metrizable spaces.

8.3. Theorem. Let X be a metrizable space. Then X is strongly coun-
table-dimensional if and only if X has a strongly countable-dimensional
representation.

We shall need to lay some groundwork before proceeding to prove this
theorem.

8.4. Lemma. If a space X has a strongly countable-dimensional repre-
sentation, then X is a strongly countable-dimensional metrizable space.

P r o o f. Let us assume the notation of Definition 8.2. Since the polyhedra
Pi are metrizable, so is lim P. Hence the space X, which embeds in lim P,
is metrizable.
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Now let us determine a strongly countable-dimensional subspace of lim P
which contains g(X), where g is the embedding

∏∞
i=1 gi : X → lim P. If we

can do this, then Lemma 8.1 will yield the desired conclusion.
Fix n ∈ N. Let Y1,n = |K(n)

1 |T1 and inductively, for i ∈ N, let Yi+1,n =
π−1
i,i+1(Yi,n) ∩ |K(n)

i+1|Ti+1 . From 3.5(v), each |K(n)
i | is closed in Pi. It follows

that Yn = lim(Yi,n, πi,i+1 | Yi+1,n,N) is a closed subspace of lim P. From
3.5(viii), dimYi,n ≤ n for each i. By 27.9 of [Nam], dimYn ≤ n. Our proof
will therefore be complete if we can show that g(X) ⊂ ⋃∞n=1 Yn.

Let x ∈ X and let τi ∈ Ki be the carrier of gi(x), i ∈ N. Then for
each i ∈ N, dim τi ≤ n = sup{dim τj | j ∈ N} < ∞. Clearly g1(x) ∈ Y1,n.
Suppose inductively that gk(x) ∈ Yk,n, 1 ≤ k ≤ i. We need to show that
gi+1(x) ∈ Yi+1,n.

Now πi,i+1gi+1(x) = gi(x) ∈ Yi,n. Hence gi+1(x) ∈ π−1
i,i+1(Yi,n). But

also gi+1(x) ∈ |K(n)
i+1|. This shows that gi+1(x) ∈ Yi+1,n, and our lemma is

proved.

This lemma, of course, proves the necessity part of Theorem 8.3. For the
sufficiency we need to develop some additional ideas.

8.5. Lemma. Let X be a strongly countable-dimensional metric space.
Then there exists a function n : X → Z such that every open cover U of
X has an open refinement V covering X with ordx V ≤ n(x) + 1 for each
x ∈ X (ordx V means the number of elements of V that contain x).

P r o o f (extracted from the proof of the necessity part of Theorem 5.3
of [Nat]). Let X =

⋃∞
k=1 Fk, where each Fk is a closed subset of X and

dimFk = nk < ∞. For each x ∈ X let l(x) = m(x) +
∑m(x)
k=1 nk, where

m(x) = min{k | x ∈ Fk}. Define n(x) to be l(x) − 1. Since dimFk = nk
there is an open cover Uk of Fk with ordUk ≤ nk+1 and Uk precisely refines
U ∩ Fk. Suppose Uk = {Uα | α ∈ Γ}. For each x ∈ Uα we find ε(x) > 0
such that the ε(x)-ball B(x, ε(x)) ⊆ Sα ∈ U and B(x, ε(x)) ∩ Fk ⊆ Uα. Set
U ′a =

⋃{B(x, ε(x)/2) | x ∈ Ua} and let U ′k = {U ′α | α ∈ Γ}. Then U ′k refines
U and ordU ′k ≤ nk + 1.

Now Vk = {(X\⋃k−1
i=1 Fi) ∩ U ′α | α ∈ Γ} is a collection of open sets cov-

ering Fk\
⋃k−1
i=1 Fi such that Vk refines U , ordx Vk ≤ nk + 1 for x ∈ ⋃∞i=k Fi,

and ordx Vk = 0 for x ∈ ⋃k−1
i=1 Fi.

Thus V =
⋃∞
k=1 Vk is the desired open cover of X.

8.6. Lemma. Let U = {Uα | α ∈ A} and V = {Vβ | β ∈ B} be open
covers of a space X such that V refines U . Then there exists an open cover
W of X such that W is a precise refinement of U and ordxW ≤ ordx V
for each x ∈ X.
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P r o o f. Define a function ϕ : B → A by assigning to each β ∈ B an α ∈
A such that Vβ ⊆ Uα. For each α ∈ A let Wα =

⋃{Vβ | ϕ(β) = α}; then each
Wα is open, Wα ⊆ Uα, and X ⊆ ⋃β∈β Vβ =

⋃
α∈AWα. Hence the collection

W = {Wα | α ∈ A} is a precise refinement of U andW is an open cover of X.
Further, to each α ∈ A such that x ∈Wα (x ∈ X) there corresponds at least
one β ∈ B so that x ∈ Vβ ⊆Wα. Hence ordxW ≤ ordx V for each x ∈ X.

8.7. Lemma. Let X be a strongly countable-dimensional metric space.
Then there exists a function n : X → Z such that for every open cover U of
X there is a locally finite open cover V of X refining U having the property
that the nerve of V is locally finite-dimensional and such that ordx V ≤
n(x) + 1 for all x ∈ X.

P r o o f. Let n : X → Z be as guaranteed by Lemma 8.5. Let W1 be a
locally finite open cover of X refining U . Apply Definition 5.3 to obtain a
locally finite open cover W2 of X refining W1 such that the nerve of W2 is
locally finite-dimensional. Using Lemma 8.5, select an open cover W3 of X
refining W2 such that ordxW3 ≤ n(x) + 1 for all x ∈ X. Now Lemma 8.6
guarantees the existence of an open cover V of X such that V is a precise
refinement of W2 and ordx V ≤ ordxW3 ≤ n(x) + 1 for all x ∈ X. Note
that V refines U and sinceW2 is locally finite with locally finite-dimensional
nerve, it follows that V, being a precise refinement of W2, is also locally
finite with locally finite-dimensional nerve, as desired.

8.8. Proposition. Let X be a strongly countable-dimensional metric
space. Then there exists a function n : X → Z such that for every open
cover U of X there is a locally finite open cover V of X refining U such
that ordx V ≤ n(x) + 1 for all x ∈ X, the nerve N of V is locally finite-
dimensional , and there is a V-normal map f : X → |N |CW .

P r o o f. Let n : X → Z be as in Lemma 8.7, and U be an open cover of
X. Let V ′ be a locally finite open cover of X refining U as granted by Lemma
8.7. Hence the nerve of V ′ is locally finite-dimensional and ordx V ′ ≤ n(x)+1
for all x ∈ X.

By Lemma 4.13, there is a precise refinement V of V ′, covering X, having
nerve N and a V-normal map f : X → |N |CW . Being a precise refinement
of V ′, V surely also enjoys the property ordx V ≤ n(x) + 1 for all x ∈ X and
N is locally finite-dimensional.

P r o o f o f T h e o r e m 8. 3. As indicated earlier, Lemma 8.4 yields the
necessity. For the sufficiency, let n : X → Z be a function as in Proposition
8.8. Let C2 be the collection of all open covers V of X having the properties
that ordx V ≤ n(x) + 1 for all x ∈ X, V is locally finite, its nerve N is
locally finite-dimensional, and there is a V-normal map f : X → |N |CW .
From Proposition 8.8, one sees that C2 is cofinal.
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By Theorem 7.5, there is a definitive system S for X where each Ki,0

is the nerve of an element Wi of C2 and fi : X → Pi is a Wi-normal map.
Since ordxWi ≤ n(x) + 1, the carrier of fi(x) in Ki,0 has dimension at most
n(x) for each x ∈ X and i ∈ N. An application of Lemma 6.5 shows that gi
is a Ki,0-modification of fi, which in turn shows that dimσi(x) ≤ n(x) for
all x ∈ X (see Definition 8.2). Putting this together with Corollary 6.6, our
proof of the sufficiency is complete.

9. Extendable inverse sequences. In Section 3 of [J-R] it was shown
that every metric compactum has an extendable inverse sequence of finite
polyhedra. We are going to generalize those results to the case of arbitrary
metric spaces. It is necessary to provide definitions.

9.1. Definition. Let P = (Pi, πi,i+1,N), Q = (Qi, θi,i+1,N) be inverse
sequences of metrizable polyhedra. We shall say that Q is an extension of P
if for each i ∈ N, Pi is a closed subspace of Qi and θi,i+1|Pi+1 = πi,i+1 : Pi+1

→ Pi.

9.2. Definition. Let (gi)∞i=1 be a simplicially irreducible representation
of a metrizable space X in an inverse sequence P, where for each i, Ki

is the given triangulation of Pi and πi,i+1 carries Ki+1 simplicially to the
subdivision Li of Ki. We shall say that (gi)∞i=1 is extendable if whenever X
is a closed subspace of a metric space Y , then there exist Q such that Q is
an extension of P and a simplicially irreducible representation (hi)∞i=1 of Y
in Q so that hi|X = gi : X → Pi ⊂ Qi for each i ∈ N, requiring also that,
if K̃i denotes the given triangulation of Qi, and L̃i is the subdivision of K̃i

such that θi,i+1 is simplicial from K̃i+1 to L̃i, then Ki is a subcomplex of
K̃i and Li is a subcomplex of L̃i. We shall refer to (hi)∞i=1 as an extension
of (gi)∞i=1 to Y .

9.3. Definition. Let E denote the class of all extendable representations.
There is a subclass RE of E which may be described as follows. Suppose X
is a closed subspace of a metrizable space Y and (gi)∞i=1 is a representation
of X lying in RE . Then we may choose an extension (hi)∞i=1 of (gi)∞i=1 to
Y in such a manner that (hi)∞i=1 also lies in RE . Let us call the elements of
RE recursively extendable. (Of course, we mean for RE to be the maximal
class with this property, and similarly for RFE in Definition 9.4 below.)

9.4. Definition. Let FE denote the subclass of E such that if (gi)∞i=1
is in FE then it is a representation of a completely metrizable space X
and the embedding

∏∞
i=1 gi is actually a homeomorphism. These will be

called the faithful representations. There is a subclass RFE of FE which
may be described as follows. Suppose X is a closed subspace of a completely
metrizable space Y and (gi)∞i=1 is a representation of X lying in RFE .
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Then we may choose an extension (hi)∞i=1 of (gi)∞i=1 to Y in such a manner
that (hi)∞i=1 also lies in RFE . Let us call the elements of RFE recursively
faithfully extendable.

9.5. Theorem. Every metrizable space X has a recursively extendable
representation. If X is completely metrizable, then it has a recursively faith-
fully extendable representation.

P r o o f. Fix a metric forX and choose it to be complete ifX is completely
metrizable. Using 7.7, take (F ,F0) to be an extendable filtered determining
system for C, the collection of all principal refinements of X. Let us write
F = {(Wi, Li,j , fi, Ti, πi,i+1, ψi,i+1) | i ∈ N, j ≥ 0}.

Now Lemma 7.1 yields that the data in F satisfy the requirements of a
definitive system SX . For each i ∈ N, let gi = limj→∞(πi,j ◦ fj) be as in
Lemma 6.5. Then (gi)∞i=1 is a representation of X in lim P, where P is the in-
verse sequence induced by SX . In fact, by Corollary 6.6, this representation
is simplicially irreducible and is faithful if the metric for X is complete.

Now suppose X is a closed subspace of a metrizable space Y . Extend
the given metric on X to one for Y . In the case that X has been given
a complete metric and Y supports a complete metric, make the extended
metric for Y also complete (see [Ba]). Let D be the collection of all princi-
pal refinements of Y , and use Lemma 7.7 to choose an extendable filtered
determining system (G,G0) for D so that (3)–(5) of Lemma 7.3 are true.

Let us write G = {(Ui,Ki,j , f̃i, T̃i, π̃i,i+1, ψ̃i,i+1) | i ∈ N, j ≥ 0}. Then
all appropriate maps, topologies and triangulations for G are extensions of
those for F . For example, then, if we define g̃i = limj→∞(π̃ij ◦ f̃j), then
we get g̃i|X = gi. Since (G,G0) has the same properties as (F ,F0), one
could carry this procedure out indefinitely. Hence (gi)∞i=1 lies in RE , i.e., it
is recursively extendable.

Finally, if the metric for Y were complete, then of course (g̃i)∞i=1 would
be faithful, and we could carry this procedure out indefinitely upon exten-
sion to complete metrics. Therefore, in this instance one sees that (gi)∞i=1
lies in RFE , meaning that (gi)∞i=1 is recursively faithfully extendable.

References

[Ba] P. Bacon, Extending a complete metric, Amer. Math. Monthly 75 (1968), 642–
643.

[Do] C. H. Dowker, Mapping theorems for non-compact spaces, Amer. J. Math. 69
(1947), 200–242.

[E-P] R. Enge lk ing and E. Pol, Countable-dimensional spaces: a survey , Disserta-
tiones Math. 216 (1983).

[Fr] H. Freudentha l, Entwicklungen von Räumen und ihren Gruppen, Compositio
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[M-U] S. Marde š i ć and N. Ugle š i ć, On irreducible mappings into polyhedra, Topology

Appl. 61 (1995), 187–203.
[Nam] K. Nagami, Dimension Theory, Academic Press, New York, 1970.
[Nat] J. Nagata, On the countable sum of zero-dimensional metric spaces, Fund. Math.

48 (1960), 1–14.
[Ru] L. Rubin, Irreducible representations of normal spaces, Proc. Amer. Math. Soc.

107 (1989), 277–283.
[R-S] L. Rubin and P. Schapiro, Cell-like maps onto non-compact spaces of finite

cohomological dimension, Topology Appl. 27 (1987), 221–244.
[Sp] E. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
[Wi] S. Wi l lard, General Topology, Addison-Wesley, Reading, Mass., 1968.

DEPARTMENT OF MATHEMATICS DEPARTMENT OF MATHEMATICS

UNIVERSITY OF NORTH DAKOTA UNIVERSITY OF OKLAHOMA

GRAND FORKS, NORTH DAKOTA 58202 601 ELM AVENUE, ROOM 423

U.S.A. NORMAN, OKLAHOMA 73019

E-mail: MILLSPAU@PLAINS.NODAK.EDU U.S.A.

E-mail: LRUBIN@UOKNOR.EDU

DEPARTMENT OF MATHEMATICS

LANGSTON UNIVERSITY

LANGSTON, OKLAHOMA 73050

U.S.A.

E-mail: SCHAPIRO@CHAOS.LUNET.EDU

Received 28 April 1994;
in revised form 12 June 1995


