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Derivability, variation and range of a vector measure

by

L. RODRIGURZ-PTAZZA (Sevilla)

Abstract. We prove that the range of a vector measure determines the o-finiteness of
its variation and the derivability of the measure. Let F and G be two countably additive
measures with values in a Banach gpace such that the closed convex hull of the range of
F ig a translate of the closed convex hull of the range of &; then F has a o-finite variation
if and only if & does, and I has s Bochner derivative with respect to its variation if and
only if & dues. This complements a result of [Ro] where we proved that the range of a
measure determines its total variation. We alse give a new proof of this fact.

Answering a question of Anantharaman and Diestel [AD], we proved in
[Ro] that if the ranges of two measures with values in & Banach space have
the same closed convex hull, then they have the same total variation. So we
can say that the range of a vector measure determines its total variation.
The purpoese of this paper is to show two other properties of a. vector measure
which are determined by its range: the o-finiteness of its variation, and the
Bochner derivability.

In Section 1 we introduce the notation and collect some known results
we will use throughout the paper. We first establish some properties of the
Bartle integral and vector measures with scalar density with respect to an-
other vector measure; and we finish with a result about the determination of
real-vaiued symmetric measures defined on the euclidean unit sphere (The-
orem 1.4).

The fact that the range determines the total variation does not imply
divectly that the range determines the o-finiteness of the variation. If we
koow that 2, the ¢losed eonvex hull of the range of a vector measure F, is
also the closed convex hnll of the range of another vector measure of o-finite
variation, what we know i that Z can be decomposed as Z = 3, -y Zn,
where each Z,, is the closed convex hnll of the range of a measure of finite
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166 L. Rodriguez-Piazza

variation. We need a good representation of each Zy,, in terms of F, to allow
1s to conclude that F also has o-finite variation. This representation is given
in Theorem 2.1, and particularly Corollary 2.2, of Section 2. We will refer
to them as the decomposition theorem(s).

In Section 3, these decomposition theorems are used to give a new proof
that the range of a vector measure determines its total variation, and to
prove that it also determines the o-finiteness of the variation (Theorem 3.1).
We also show that there is no infinite-dimensional Banach space in which
the condition that the range of F' is included in the range of a measure of
o-finite variation implies that F has o-finite variatiorn.

In Section 4 we study the average range of a vector measure in order
to prove, using a result of Rieffel and the decomposition theorem, that the
range determines the Bochner derivability of a vector measure. In Section
b we give a different proof of this fact. We obtain it ag a consequence of a
factorization theorem (Theorem 5,2), and the fact that the range determines
the total variation.

1. Preliminary results. Notation. Throughcut this paper X is a
real Banach space, X™ is its topological dual and Bx its closed unit ball.
Given a subset K of X, c0 K (resp. aco K) denotes the closed convex {resp.
absolutely convex) hull of K.

Let ({2, A) be a measurable space (that is, A is a o-field of subsets of 2).
A function F: A — X is a meosure if it is countably additive. The range of
F will be denoted by rg F', that is, rg F' = {F(A) : A € A}. It is a relatively
weakly compact set in X with $F(£2) as centre of symmetry.

A subset Z of X will be called a zomoid if it is the closed convex hull
of the range of an X-valued measure. If Z = ¢o(rg F'), we will say that the
measure ' generates the zonoid Z. This definition agrees with the usual
finite-dimensional one [B]. Actually, thanks to a construction of Kluvdnek
and Knowles KK, p. 128], [DU, p. 274], every zonoid is the range of an X-
valued measure. As each zonoid is a convex set having a centre of symmetry
it is obvious that a zonoid Z, is a translate of another zonoid Zj if and ounly
21 -2y =2y — Zy. _

We will denote by |F| the variation of F', which is the (extended) positive
measure defined for every A in A by

|F|(A) = Sup{ Z IF(C)]| : P is a finite partition of A in A},
CeP
where we allow the supremum to be co. The total variation of F is |F|(£2).
The measure F' has finite variotion if |F|(£2) < oc, and has o-finite variation

if there exists a sequence (A,) of measurable sets covering {2 such that
|F|{An) < oo for every n.
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Despite the fact that a measure may have infinite variation, thanks to
a result of Bartle, Dunford and Schwartz [BDS], [DU, p. 14], there always
exists a finite positive measure which controls it, that is, a finite positi‘ve
measure ;4 defined on A satisfying

im F(A)=0.
fe(A)=~0
Such a g is ealled o control measure for F. A fnite positive measure p
defined on A is a control moasure for F' if and only if p{A) = 0 implies
F(A) =0, [or every 4 in A [DU, p. 10].

A useful tool for studying the properties of a vector measure, and, in
particular, for deseribing the zonoid it generates is the Bartle integral. Tt is
defined in a straightforward fashion [DU, p. 6]. If f: 2 — R is a measurable
simple function and f = E}::l HjX A;, we define

[rar=3"o;F(4;),
g=1

which depends only on f and not on the representation as a linear corbi-
nation of characteristic functions thanks to the additivity of F. Since the
range ol F'is bounded, and every simple function with values in [0,1] is a
convex combination of characteristic functions, it is easy to see that there is
aconstant K > 0 such that || [ f dF | € K||f||eo for every simple function f.
This inequality allows us to define by density the integral [ fdF for every
hountded measurable function f.

The Bartle integral is linear in f and F, and if T: X — ¥ is a bounded
linear operator, thew

[ 1dToF = T( f de).

If F' has a Bochner density with respect to a positive measure v defined on
A, that is, if there exists p € L1 X) such that F(4) = [ 4 0dv for every
A in A, then obviously we have

[ rdr = [ fodv
for every real-valued hounded moeasurable funetion f.

1 g2 i & control measnre for F| then clearly [ f dF depends only of the
clags of [ i L™ (p), and so the integral defines a bounded linear operator
Ip from L™ {p) to X, The following proposition states several known results
about T, the Bartle integral and the range.

PROPOSITION L1, Let B be an X -ualued measure defined on (12, A), and
foa control measure for F. Define Ip o L®(u) — X by Ip(f) = [ fdF.
Then: :
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(a) Iy is a continuous operator from the weak® topology of L {u) (con-
sidered as the dual of L*(n)) to the weak topology of X.

(b) B(rg F) = {[ fdF : f : 2 — [0,1] measurable}.

(c) @(rg F — rg F) = eo(rg F) — Co(rg F) = {[ fdF : f : £2 — [-1,1]
mensurable}.

Proof. A detailed proof of (a) and (b) can be found in [DU, Lemma
IX.1.3]: {(a) follows from the fact that [fa* = du*ol/du € L!(u) for every
z* € X*, and (b) follows from {a) and the fact that the convex hull of the
characteristic functions is norm dense in {f € L™ (u) : 0 £ f < 1}, a weak*
compact convex set. The first equality in (¢} is a consequence of the weak
compactness of €6(rg F'), and the second is immediate from (b). w

The integral allows us to define new vector measures from [ If f 1 2 —
R is measurable and bounded, it is proved in {BDS] that the map

AHfde=fXAde, Ac A,
A

is a measure. We will denote it by fF. So, for instance, if Ay is a measurable

set then x4, F' is the measure restriction of F to Ag, that is, the map A —
F{ANAp). From the definition of fF" it follows that for any simple function g,

JodiF = [gfaF;
and, by density, this equality remains true for every bounded measurable ¢
Therefore g(fF) = (fy)F

The foliowing proposition relates the variations of F' and fF. It is due to
Lewis [L, Theorem 4.2] in the setting of a more general theory of integration.

ProrogiTiON 1.2, A measurable set A has fF-finite variation if and
only if xaf € LX({F]). In that case we have

FFIA) = [ Fld|F).

A

As we sald our aim is to prove that the range determines the total vari-
ation, the o-finiteness of the variation and the derivability of a vector moa-
sure. The key will be the following theorem on determination of syimmetric
measures on the euclidean unit sphere. If 2,y are two vectors in B", then
{x,y) denotes their scalar product, and S, _1 is the euclidean unit sphere of
R™, that is, 8,1 = {z € R : (z,z) = 1}. A measure ¢ defined ou the Borel
subsets of §,-1 is symmetric if ¢(A) = o{—A) for every Borel set A.

THEOREM 1.3, Let o and 7 be two real-valued symmetric measures de-
fined on the Borel subsets of S, 1. If
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S leado@y=" [ |e,a)| dr(z)

Bt Sn—1

Jor every e € R™, then o = 7.

This theorem goes back to Aleksandrov [A]. Several other authors have
reproved it: for instance, Petty [Pe] and Rickert [R1] using spherical harmon-
ics as Aleksandrov did; Choquet [C, p. 53] using an elementary argument of
differentiation of positive quadratic forms; and Matheron [M] via a theorem
on integral representation of functions of negative type. This result has been
used extensively in the study of zonoids in R” (see [B], [R2], [N] or [SW]).
Here we give a proof that we have not found in the literature.

Prool of Theorem 1.3, The result is trivial if n = 1, so let n > 2.
We can agssume that T = 0 and we have to prove that ¢ = 0 if, for every
e & H'R'”’,

(1) flea:|dcr

mn__.j

The variation || is a positive finite measure. If V C R” is a linear
subspace of dimension < n — 2 such that |o](V NS,-1) = 0, it is easy to
gee that there exists a subspace W with dim W = dimV + 1 such that
(W N 8,.1) = 0: pick two linearly independent vectors x,y in V4 and,
for every ¢ € R, let W, be the subspace generated by z+ty and V. We have
Wi W, =V for ¢ 5 s. Since || is finite, we can find the desired W in the
uncountable family {W;}iep. Beginning with V' = {0}, and iterating this
procedure, we conclude that there exists a hyperplane H (a linear subspace
of dimengion n — 1) such that |¢[(H NS,-1) = 0. We can and will asswume
that # = {{zy1,...,z,) € R" : @, = 0}.

Let G = {(x1,...,2%) €Sp-1: &, >0}; we have Sp_1 = GU-GLU{HN
§"), and by the symmcetry of o, we only have to prove that the restriction
o) ¢ I8 null. From (1), taking into account that ¢ and the function z — |{e, x|
are symunelric, we know that, for every e € R™,

(2) f](.t:(lﬂ' f—{—f“Qf (e, z)| do(x)

“n -1 e (7

Consider the map ¢ : G~ R~ defined by
[/)(J i T ) ml m'n.—l )
WEELy -y B Ly ) = L =0y .
¥ ¥ b ¥ .’,En m”

Then 1 iy a homeomorphism with inverse

=t i Yn-t L
pH y) = (\/1+Jy U VTR VI yy))



icm

170 L. Rodriguez-Piazza

for y = (v1,...,Yn—1)- Let 4 be the measure in R~ which is the image of
o|g by . Since ¢ is a homeomorphism, 4 = 0 if and only o|¢ = 0, thuy if

and only if o = 0. The condition (2) become

[ e )l duly) =0, VeeR",

Rn—l
that is,
(3) j’ |€n -+ E:.( 1 f;Uk' dy(y) — U \7’(1-’11., L ,ﬁn-) e R".
Wy

R’ru--l
As 1/4/1+ (y,y) # 0 for every y € K1, the measure v defined by

= {1/+/1+ (g, 4)) dp(y)

is null if and only if u is. By (3),

(4) f lale, ) + Bldv{y) =0, VYee R™! Vo,B &R,
Rn—l
We now prove that (4) implies that the Fourier transform of v is null.

For ¢ € ™1, let v, be the measure on the real line which i the image of v
under the projection y — {c,y). By (4), we have

(5) [ lot+ Bidve(t) =0, Vo,feR
R

For a < b, let
fap(t)=1/2+(t—b[ — [t —al)/2(b—0a)), teR

From (5), [ fadve = 0. It is easy to see that, for every ¢ € R, limymq fa,5(t)
= X({-o0,q](t), and the convergence is dominated by 1. We sce that
ve((—00,a]) = 0 for every real ¢, so v, = 0. This, in particular, yields

f exp(t{c,y)) dv(y) f exp(it) dv,(t) = 0, Yee R" L
Rt I
Therefore the Fourler transform of » is null, and then » = 0. The thooremn
follows from the previous considerations. m

2. Decomposition of zonoids. In this section we deal with the follow-
ing problem: suppose that a zonoid Z of the Banach space X is generated
by the measure F, and that Z is the sum of two other zonoids Z = Z| + Zs.
How can the measure F reflect this decomposition?

A first type of decomposition of Z in terms of F which naturally comes
to mind is the following: if F' is defined on the measurable space (2, X)),
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then for every measurable set A we have the decomposition
(%) Z =To(rgF) = @{F(B): B € Z,B C A}
+T{F(B): Be X,Bc 2\ A).
More generally, if ¢ @ £2 -— [0, 1] is a measurable function we also have
(k) Z =To(rg ¢F) + wolrg(l — ¢)F).

One can wonder whether every decomposition of Z can be represented ag
in (x), or, at least, as in (s*). Examples in R" immediately refute such
a conjecture. Neyman, in [N], characterizes geometrically the zonoids Z
in R™ for which there exists some measure generating Z such that every
decomposition can be represented as in (x), or equivalently, for any measure
generating Z cvery decomposition can be represented as in (#+). Let us
examine an example for which this is not possible.

ExAampLE (A decomposition of the bexagon). Identify the plane with C,
the complex numbers. For o = exp(27i/3), let f: [0,3] — C be the function

F =X+ exag + o*xeg

and consider the measure F on [0,3] with density f with respect to the
Lebesgue measure. The range of F' is the regular hexagon H determined
by the sixth roots of unity, We can decompose H as the sum of the two
hexagons
B

Hy = w\/;lwi -+ »H and Hy = —ﬁ + —H
Hy and Hy are zonoids., For mbtmce, H; is the range of the measure with
density

1
fi = :j(?\’,[u,j/z] ~ X2, X, = 0¢2X(2,3])-
The decomposition H = Hy + Hy cannot be represented as in (). If

¢ : [0,3] = [0,1] is a weasurable function, it is easy to see that there exist

AL, Agy Ag € [0, 1] saeh that
e GF = [() A1] -+ [0 )\g]cx e [U )\3](:\:2,

a compact convex seb, [ 18 included in the upper closed half plane, so if
Hy were rg(ol'), then Ay should be 0, and in this case rg(¢F) would be a
seguont or quadrilateral, bul never a hexagon.

However, there exists a real bounded function ¢y = fy/f such that Hy is
the range of ¢ . This Is a general fact for non-atomic R™-valued measures
(see the remark alter the proof of Theorem 2.1). This is not the case if we
consider the measure & defined on the subsets of {0,1,2} as G({J}) = o,
F=0,1,2 This measure also gencrates F. The measures of type ¢ generate
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the zonoids
[0, 1A + [0, 1)Aze + [0, Yrza?  with A, e, A € R

All these zonoids contain 0 either as an interior point or as an extreme
point. H; is none of them because it contains 0 in the middle of the edge
[~1/4,1/4].

In the following theorem we prove that, up to translations, every decom-
position of Z is represented as in (#*); that is, if Z;, Z, are mnmds such that
Z is a translate of Zy + Z4, then there exists ¢ : 2 = [0, 1] measurable such
that Z; is a translate of G(rg ¢F") and Zy is a translate of &5(rg(l — ¢) 1),
It is easy to check that in the previous examples ¢ == 1/2 has this property.
Note that Z1 4+ Z; can always be realized as a decomposition of type (x) for
some G: if, for j = 1,2, Z; is generated by the measure (75 defined on the
measurable space (4;,B;), consider the disjoint union A = A, LJ Ay, and
define G as G(A1U Ag) = G1{4;) + Ga{Ap); then G generates 7 -+ Zy, and
we can take Ay for A in (%), but now with respect to . This explains the
statement of the following theorem, which is more analytic than geometric,
and which we will need in Sections 3 and 4.

THEOREM 2.1. Let (£2,.4) and {4, B) be two measurable spaces, and X
be o Bonach space. If F: A — X and G : B — X are two measures such
that

WrgF —rgF) =@(gG —1gG),

then, for every measurable function v : A — [0, 1], there exists a measurable
function ¢ : 2 — [0,1] such thot

(6) o(rg pF —1g ¢ F) =
and

(1) el - ¢)F —rg(l - ¢)F) =w0(xg(l - ¥)G — rg(l —¥)).

Proof First observe that, as we are dealing with cloged convex sets,
@(rg F'—rg F) and ©3(rg G —rg G) are equal if and only if every linear func-
tional z* &€ X* achieves the same supremum in them. By Proposition 1.1, if
& is any control measure for F', we have

sup{z*(a) : a € TO(rg F' — 1g I)}
= sup {m*( f hdF) thif2—[~1,1] mensurablm}
2

W(rgvG - 1gY Q)

= sup{fhda:*oF th 2 —[-1,1] measurable}

dz*oF . de*o
w { [ e he 120, e <1} = |42

di

il

LA ()
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by the duality between L'(u) and L% (u). Therefore the hypothesis of the
theorem yields, for any control measure v for @,

de*oF dz*o@@
®) fdp dv

= for every z* € X*.
L) Li{v)
For the same reasons, since da”oypG/dy = +dz*oG/dy, we have to prove
the existence of a measurable function ¢ : 2 — [0, 1] such that
dr*olf dm oG
(9) ‘ b

dv

LY () L ()

IF (9) is checked for some control measures p and ¥, we will have (6). The
analogue of (9) for 145 and 1 - will be a consequence of (8) and (9), and
then we will also obtain (7).

We first establish (9) for X = R* We use a standard technique in the
study of zonoids (see [R2] or [B]). Recall that the linear functionals on X are
the maps @ > (e, @), for e € R™. In this case we can use as control measures
the variations of F' and & with respect to the euclidean norm in R™. Let £ be
the Radon-Nikodym derivative of F' with respect to its euclidean variation
|F|; then £ : 2 — §,..1 almost everywhere, and we can assume this is
true everywhere. bnmlarly, let g = dG/d|G|, and let o (resp. 7) be the
image measure on 8, of |[F| (resp. |G|) under the map f (resp. g); that is,

a(A) = |F|(£~1(A)) for every Borel subset A of 8,1, and similarly for T.

In this situation, since die, F) /d|F| = {e, 1), (8) yields

for every z* € X*.

(10) f|€” }| deor(a f|f’ Wt d|F|(w)
de, F) _ Hd(e, G)
AF| dogey B Al ey

f He,z)|do(z) for every e € R™.
Hu--- 1
If & is the symmetrization of o (F(A4) = $(0(A) + o(~A)) for every Borel
subsiel A of 5, 1), then for any measurable symmetric function b : Sy —
R, we have [ hdd = [ hde, and so, by (10}, if 7 is the symmetrization of 7,

f |(e, )| dF (i) = f He, @) dF(x)  for every e € R™,
B o1
and by Theorem 1.3, we have & = T,
Now consider the moeasure 7 on the sphere defined by
Ti(A) = f P d|(| for every Borel subset 4 of $,,—1.
ga)
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Since 0 < 7 < 7, we also have 0 £ 7y £ 7 = 7. Then, by the Radon-
Nikodym theorem, 7 has a derivative g with respect to 7. Clearly o takes
values in [0,1] and is symmetric F-almost everywhere ou 8,,-.1; assume this
is true everywhere. The following equalities prove that if we define ¢(w) =
o(f(w)) for w € £2, then ¢ satisfies (9). As a measure and its symimetrization
give the same integral for a symmetric function, we have, for every o € R™,

dle, F) = [ olt())l{e, ) dIF ()

H¢ dIF lgey 3
= [ olz)le, a)|dol(z) = ‘fé'(w)|(¢a-’l"f>ldﬁ(w)

sn—] kg -~ L

= [lealdaE = [leo)ldn()

Sn._. 1 Kibyy, = |

) 3 )d(e,G)
_!;b(&)l(e,g(&))[dlal(‘s)‘ L’/ did]

This finishes the case X = R™.

For a general Banach space X we will use a compactness argument to
establish the existence of ¢ satisfying (9) for some (any) control measure
- We will look for ¢ in 1°°(), identifying functions with their classes. For
every z* € X*, let

dz*o }
dp Li(w)

He={6ere(i0s g2, [

Any function ¢ in (. cx« He» will satisfy (9), and we only have to see that
this intersection is not void. Every Hy« is weak® compact in Lo°(u), so it is
enough to check that the intersection of every finite family of the Hy« is not
void. '

Let 2%,..., 2% be in X*, and consider the operator T : X -+ R™ defined
for € X by T = (2}(2),...,z5{2)). Evidently the measures T'ol" and
T'ol satisfy the hypothesis of the theorem. Ag they are R™-valued, we have
proved that there exists a measurable function ¢ : 2 — [0, 1] such that

@ (rg ¢rToF — g drToF) = Tlrg YToG — rgTodd),
or eguivalently,
die, ToF)
11 — L.
(11) ‘QbT m

If{e1,...,en} is the canonical basis in R™, clearly we have {ey, Tz} = 2} (=)
forz € X and k= 1,...,n; 80 (e, ToF) = ztoF and (e, ToG) = z}ol.
Thus, by (I1), ¢r € Hye NN Hgs . w

LY &)

dx*old
v

dr= |3

¢d(e, ToG)

: i [y . i
o for avery e & R™.

Lt () ’ Li{w)
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Remark. Let I" be a non-atomic R™-valued measure. By Lyapunov’s
theorem, is range is compact and convex, and so is the range of the measures
of type ¢F, since they are also non-atomic, If Z1, Z3 are two zonoids such
that rg F' = Z1 + Z,, then by Theorem 2.1, there exists ¢ : 2 — [0, 1] such
that Zy is a translate of rg dF and Z5 is a translate of rg(l — ¢)F. But
for a non-atomic R"-valued measure F, every zonoid translate of rgF is
the range of a measure of type (x4 + xna)F for a measurable set A (see
[B, Lemma 1.3]). Using this, we conclude that there exist two measurable
functions @i pg @ 2 - R such that |o4] + 2| = 1 and Z; = g wi F,
Jo= 1,2, The same s true if Z) + Zy is a translate of rg F. This can be
gencralizad, for an arbitrary Banach space X, to measures satisfying the
“Lyapunov convexity theorem in the weak topology” DU, p. 263].

Theoromn 2.1 concerns decomposition of a zoneid into the sum of two
zonotds. An iterative procedure allows us to extend it to sums of a finite
number of zonoids, aud of a sequence of them. This is done in the following
corollary.

COROLLARY 2.2, Let (2, A) and (A, B) be two measurable spaces, and
X be a Banach space. If I': A— X ond G : B — X are two measures such
thed
O(rg F' —rg F') = ®(rg G ~ 18 G),
then, for every sequence of measurable functions vy, + A — [0,1] such that
Some W = 1 pointwise, there exists a sequence of measurable functions
b 2 02> [0,1] such that oo . ¢y = 1 pointwise, and
CO(rg pnd” — 18 @ F') = T(rg thnG — 1g YnG)
Proofl First we use Theorem 2.1 for F, G, and v to obtain ¢y : 2 —
{0,1] satisfying
C(rg g1 b~ 15 1 1) = wo(rg 91 G — rg 1 G).
Suppose that, for some m, we have found ¢y, .. ., ¢y, satisfying
{12) FO(ry g B 1@ ¢y 17} = TS (xg 4, G — 18490, &)
for == 1,00 i, and 370 1 ¢y < 1 pointwise, Then we apply Theorem 2.1
to the meastires (1~ 357" iy ) B and (X;Tim L )G, and the function 1 =
Wit/ 3 precon 11 ¥ {(With the convention 0/0 = 0), We obtain ¢ : 2 — [0, 1]
such that

forevery n=1,2,...

Hi Nk

[¥5 (l?g‘ ¢ (] - Z (/5,,,) F g fﬁ(l - Z an)F) = TO(1g Ym+1G — 18 V41 &)

phis] oz |
Tﬂ.].(.iilig Bt = (1~ S eby) we get (12) for m = m -+ 1, and we still have
E:J“z:] c/’n < L
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So inductively we have found a sequence ¢, of functions satisfying (12)
for every n € N, and Y0 ; ¢n < 1. We now show that, if g =137 ¢
then the measure @F is null, and so we can add ¢ to one of the functions
¢n, without changing the measure ¢, F, which will finish the prool.

Suppose that there exists A € A such that oF(4) #£ 0, and take 2* ¢
X* such that z*{pF(A)) > 0. Since @(rg & — rg () is weakly compact,
there exists & € @{rg G — rg G) such that z*(x) is the maximum of 2* in
€6(rg G ~ rg G). By Proposition 1.1, there exists & : 4 — [—1, 1] measurable
such that

00
z= [hdC =" [ htjdG.
sl
The series converges in the weak topology of X by the dominated conver-
gence theorem applied to the measures z*o(, * € X* (by the Orlice Pottis
theorem, it is also convergent in norm; but we do not need this).

Using again Proposition 1.1 and (12) we have, for every m, a measurable
function f, : 2 -+ [~1,1] such that A, dG = [ f,é,, dF. Then §f =
XaP+ 27 o satisfies —1 < f < 1, and so [ FdF iy in @6(rg I —rg F),
and it is easy to see that [ fdF = @wF(A) + . This contradicts the fact
that €0(rg F' —rg F') is equal to To(rg G — 1z (), since 2* achieves different
supremums in each. m

3. Range and variation. We begin by showing that the range of a
vector measure determines its total variation and the o-finiteness of its vari-
ation. We have done almost all the work in the previous section; the following
theorem is a consequence of Corollary 2.2. Part (a) was proved in [Ro]; here
we include a different proof.

THEOREM 3.1, Let X be a Banach space, and let F' and G be two X-
valued measures such that

w(rg F —rg F) = @(g G —rg G)

(that is, the zomoid generated by F i3 o translate of that generaled by G).
Then:

(2) F' and G have the same total variation.
(b) F has o-finite variation if and only if G does.

Proof. Suppose F is defined on the measurable space (2, 4), and ¢
on (A, B). To prove (a), that is, | F|(£2) = |G[(A), by symmetry we only
need to check the imequality |F|(2) > |G|(4). If |F|(2) = oo there is
nothing to prove, so we assume that F has finite variation. Take a partition
{B1,-.., B} of A in B, and apply Corollary 2.2 to the sequence (¥n)
where . = xg, for n < m, and ¥, = 0 for n > m. We obtain a sequence
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of measurable functions ¢, : 2 — [0, 1] such that P ome1 P =1 and
co(rg dul” — 18 F) = Wrg v G — 14, @)  for every n = L,2,...
In particular, G{(B,) € T(rg ¢, L — rg $uF) for n = 1,...,m, and, by
Proposition 1.2, there exists hy, : 2 — [~1,1] measurable such that
G(B) = [ b dpy F = [ hudn dF = hog F(02).

By Proposition 1.3, we obtain

16U S oo 1(2) = [ hndul dF| < [ ¢ dlF),
£ 7
and thus,

Z':\va‘(Bﬂ)fl < Z JoudiF| < [ diF| = |F|(2).
ns=1 (=N £

Taking suprenun over all partitions we get |G|(A) < |F|(£2) as desired.

Again to prove (h) we ouly need to show that F has o-finite variation if
G does. Suppose that (B,,) is a sequence of pairwise disjoint sets in B with
union 4. Applying Corollary 2.2 to {xp,), we obtain measurable functions
B 2 2 - [0,1] such that 35, . ¢, = 1 and

TO(rg o I = rg o, 1) = W(rg G — 18 4p,G)  foreveryn=1,2,...

By (a) this fmplies ¢, £ has finite variation, and, by Proposition 1.3, thn €
L&), Thus [F|({¢n 2 1/k}) < oo for every k € N. Therefore |F| is
o-finite sinee 2 == | J,  {¢n 2 L/k}. w

Remark. Actually in [Re] it is proved that F and G have the same total
variation if @5(rg /') = Trg ). But (a) of the theorem can be deduced from
that since rg ' — rg F' (resp. rg G — 15 G) is the range of a measure F' (resp.

G) whose tolal variation is 2| F|(£2) {resp. 2|G|(4)). Take as F the measure
defined on the disjoint union 21162 by F{Ay L Ag) = F({A;) — F(As).

Sowe Bauach spaces have o remarkable property of monctonicity of to-
tal variation with respect to the range. Anantharaman and Diestel [AD] ob-
served that, thanks to noresult of Grrothendieck, if 7 and G are two measures
with values in (s subspace of) an 1D gpace such that F has finite variation
and g €7 ¢ rg 8, then €7 has finite variation. We proved in [Ro| that, in
fact, this property charncterizes the Banach spaces which are isomorphic to
a subspace of an L' gpace.

There 18 nothing similar for the o-finiteness of variation, except in the
irivial case of fnite-dimensional spaces, For every infinite-dimensional Ba-
nach space X, there oxist two Xevalued measures F, G such that F has
o-finfle variation, ¢ does not have o-finite variation, and rg & C rg F. This
will be shown in Theorem 3.3, For the proof we will need the following
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lemma based on known results about p-summing operators; we refer to the
first chapter of Pisier’s book [P]. Recall that for an operator T': X — ¥, ity
p-summing norm is defined by

(1) = SUP{(ZHTMHP) }

where the supremum, which may be oo, is taken over all finite sequences
Z1,..., Ty in X satisfying 3 p_; |0 (k)P < 1 for all «* in the unit ball
of X*.

LEMMA 3.2. Let n be o natural number, and X a Banach space of di-
mension > n®. There exists a measurable function f:[0,1] — X such that:

(a) |[F()|| = n for all t € [0, 1].

(b) || for F@) dt]l < 1/n? for all measurable sets M C [0, 1].

Proof. As the 2-summing norm of the identity in X is Vdim X, and
the l-summing norm is greater than the 2-summing norm, we see that the
identity in our Banach space X has a l-summing norm strictly greater than
n?. By the definition of this norm we easily get the existence of a finite
subset {Z1,...,Zm} of X \ {0} such that 3 ;. ; |lzx| = 1, and
(13) Z |z* {z)]| € HE for every z* in the unit ball of X*,

k=1

Fork=0,1,...,mlet t; = 2 "1 |z5]]. Then ¢ty = 0, &y, = 1, and the finite
sequence (tk) is increasing. Défine f at 1 as any vector of norm n, and in

[0,1) by
T ey,
F= 0 i Xitemnt)-
2 Jal K
It is clear that f so defined satisfies (a). To check (Ib), take a measurable

set M and pick z* in the unit ball of X* such that z*(f, f) = || [\, . By
(13} we have, for A belng the Lebesgue measure,

H JF® dtH - Z -Hﬁ;—a:*(x;ﬂ),\(l\xfﬁ RS)
M

< Z el

|z

L

J‘ix}‘ < ’H‘)'“ "

THEOREM 3.3. Gwen an mﬁmte—dzmenswnal Banaah space X, there
exist two X-valued measures, F and G, such that:

(a) rgGCrg P,

(b) F has o-finite variation.

(c) G does not have o-finite variation.
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Proof. Take a basic sequence (e,) in X, and let ¥ be the closed subspace
of X gpanned by it Take zm increasing sequence (m.,) of natural numbers
satisfying M. ) - my > nf for every n € N, and let ¥, be the subspace of
Y spauncd by 1.hv basic vectors {e; :m, +1 < J < Mpt1}. There exists a
gonstant ¢ > 0 such that the natural projections P, 1 Y — ¥, have norm
|Pull < C fm every .

By the previous lenima, for each n € N, there exists a measurable func-
tion fp, ¢ [0, L] =+ ¥, such that

(14) “ rn H B
{(15) H Ju () dt

for all ¢ € [0, 1],

I .
“,a for every measurable M C [0,1].

Let f1,, he Llw meanure defined ou [0, 1], with density f,, with respect to the
Lebesgue measure. By the Lyapunov theorem, the range of H,, is compact
and convex and, by Proposition 1.1(b), [ h{t) £, (¢) dt belongs to rg H, for
every measurable funetion b : [0, 1] - [0 1].

Consider the product space A = [0,1]9, with the product probability
IF obtained by taking the Lebesgue measure in each factor. Let B be the
o-algebra where [ iy delined, Weo define 7 : B — Y by

(16) sy = 57 [ fulta) APt

nal B

For every £ & B, wwiug the conditional expectation of x5 with respect to
the nth coordinate, there exists a measurable function h, : [0,1] — [0,1]
such that

[t PGt
I3}

Y, BeB

== [ fo(tn) f () dP(t1, 1, - )

= [ ho(t) fu(t) dt € g H,.

This finplies, by (15}, thal the series in (16) converges absolutely, and that
Gsa well defined monsre,

To see that ¢ does not have o-finite variation it is enough to check that
G|(B) = > lor every 13 in B with P(B) > 0. This a c.onsequeme of (14),
sluce for every 7 & B, woe have

u,,r;m B) L

nlP(B)
-

ty ) ||dP = —

The measure # will be the d:sjomt s of the measures H,,, which we
can define on the Lobesgne ealgebra of [1,00) by

EBY=Y" [ fult-m)dt

wg b facifagn 1)

for every measurable B € [1, 00).
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As above, (15) yields the convergence of the series and that F'is a measure.
This measure has o-finite variation since | F|([r, n+1]) == n. To check 1g G C
rg F, take B in B, and observe that, by (17), for every n, there exists a
measurable set A, C [0, 1] such that

[ fultn) dP(t1,t,..) = fult) dt.
B An
Then the set A = |, 5, n-+A, satisfies F(A) = G(B), andso G(B) € rg F. m

4. Range and derivability. Average range. In this section we prove
that the range determines the Bochner derivability of a vector measure. This
will be done through the study of the average range. In the next section we
give a different proof which involves factorization of linear operators.

Let F' be a vector measure defined on (£2,.4), and let p be a control
meagsure for F; we will say that F 4s derivable with respect fo p il there
exists ¢ = dF/du € L (u, X) such that

FA) = f odu  for every A € A
A
In that case, I’ has finite variation and also has a derivative with respect
to |F|, namely ¢/||¢|. Conversely, if F has a derivative with respect to its
variation, then it has one with respect to any control measure. Thus we only
need to deal with derivability with respect to variation.
If F' is a measure of finite variation, the average range of F' with respect
to its variation, or simply the average range of F, denoted by Ave(F), is
the subset of X defined by

Ave(F) = {F(A)/|F|(4): A€ A},

where we adopt the convention 0/0 = 0. If C' € A, Aveg(F) denotes the
average range of the measure restriction of F' to C, the measure y ¢ F; thus

Avec(F) = Ave(xoF) = {F(A)/|FI(A): Ae A, AC O}
The relation between these average ranges and the derivahility of F' is given

by the following theorem due to Rieffel [Ri], [DU, Th. II1.2.6, TIL2.7]; we
state it in the context of derivability with respect to variation.

THEOREM 4.1. Let F be a vector measure of finite variation. Then I?
is derivable with respect to its variation if and only if Jor every measurable
set A with |F|(A) > 0, there exists ¢ measurable set B ¢ A such that
|F|(B) > 0 and Aveg{F') is relatively compact.

We will need two lemmas. The second one states that the range of a
vector measure determines the absolutely convex closed hull of its average
range. Recall our convention 0/0 = 0.
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LiMMA 4.2, Let (82, A) be a measurable space, ' 1 A — X o measure of
findte variation, and I {2 - R a measurable bounded function. We have:
J_— . | ffdF

(a) BEO(Ave( ) = T {wr‘w,wm;—

S F

(b) weB(Ave(h ') € aco{Ave(F).

Ji02 - [-11] measumble}.

Proofl The right; hand side of (a) is the closed convex hull of a symmetric
set, and so it iy absolutely convex and closed. As it containg F(A)/|F|(A)
for every A in A, Il contains Gco( Ave(F)).

For the reverse inclusion, by density, it is enough to check
[ ]dF
18 bt € ac0( Ave( 7
(18 g € eothveli)
for overy measurable simple function f : 2 — [-1,1). If f = 3 e CRX AL
with evg € [« 1, 1] for k== 1,...,n, and {A, ..., A,} being pairwise disjoint,
then

Jrdar 3R eF(Ar) o, F(AR)
=3 0
Rzl

SUTAE ™ Sy Tkl FI(Ax) P|(Ax)’

where = ap|F{Aw)/ 2:;11 oo || I (Ay). Since 3 |8k < 1, we get (18),
and (a) follows.
Now (b) I8 casy from (o) and Proposition 1.3, If K > 0 is such that
Ih(w)| & K and g == /K, we have, for every measuzable f: 2 — [~1,1],
[fdne [ fhdF [ fqdF
JULdnE]  fIfRldlF] — [{fgldlF|’

which is in 866 Ave(F)), as fg has values in [-1,1]. »

LeMMA 4.3, Let Found G be two vector measures of findte variation such

that
colrg I~ rg #) = Wy G —rg G

Then aco{Ave(1) = aeo{Ave()). _

Proof. Suppose /s delined on (2,4) and & on (4, B), and take f
A = [ 1, 1] measurablo, We apply Theorem 2.1 0 4 = | f|. This produces
a meastrable funetion ¢ 0 £ ~+ [~1,1] such that
(19) colrg gl - vy pF) = 66rg | f|G ~ rg | FIG).
This implies, by Theorem 3.1, that the total variations of ¢F and |f|G are
the satne, acl by Proposition 1.2, we have [ @ diF| = [|f[d|G].

From Proposition 1.1 we see that [ f dC s in €6(rg {f|G—1g | f|G). Again
by this proposition and (149), there exists A 1 £2 — [=1, 1] measurable such
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that [ fdG = [ h¢ dF. Thus

[£dG _ [hgdF _ [ |hgld\F| [ hdF
SIF1dGL JedFl — [edF|  [lhgldF|
which is in ac6(Ave(F)), by the previous lemma, since [ |hg| d|F|/ [ ¢ d|F|
is in [—1,1]. We have proved that 8c5(Ave(()) C 8¢6(Ave(F)). The other
inclusion is proved in the same way.

Now we are ready to prove that the range of a vector measure determines
its derivability.

THEOREM 4.4. Let X be a Banach space, and let F ond &G be fwo X -
valued measures such that

o(rgF —1g F) =W(rg G — g &).

Then I is derivable with respect to |F| if and only if G is derivable with
respect to |G.

Proof. We only have to prove that G has a derivative if # does. In that
case F' has finite variation, and so does & by Theorem. 3.1. Then we can
apply Rieflel’s characterization (Theorem 4.1) to establish the derivability
of Gi. Let A be in B with |G|(A) > 0. Theorem 2.1 gives us ¢4 : 2 — [0, 1]
measurable such that

corg pal — 154 F) =T(rg x4 G — rg x4 G).
Obviously ¢4 F has a derivative with respect to | #|, and so too with respect
to b4 F|. As, by Theorem 3.1, 1A F|(£2) = [G|(A) > 0, Theorem 4.1 pro-
vxdeg us with a set € € A, with [¢aF|(C) > 0, such that Avec(paF) is
relatively compact in X. Then aco(Ave(xcpaF)) is compact.

Applying Theorem 2.1 again, but now to ¢4 F and y 4G, we obtain Yo !
A — {0, 1] measurable such that

(18 xohalF ~ rgx0daF) = W(reYoxaC — rgvoxaG).
So, by Lemma 4.3, ac6(Ave(1)oxaG)) is compact, and, by Theorem 3.1,
YexaGl(4) = |¢4F|(C) > 0.
By Proposition 1.3, f4exad|G| > 0; so for some r > 0, the set B3 =
{t € A yo(t)xalt) > v} satisfies |G|(B) > 0. Let & be defined by
h(t} = 1/9¢(t) for t € B and zero elsewhere. The function b is Imeasur-
able, bounded, and hpcxa = x5. Thus Lemma, 4.2(b) vields
aco(Aver(@) = Eﬁ(AVG(h’!/JcXAG)) C aco(Ave(voxa@)),
and Avep(G) is relatively compact. So (7 satisfies Rieffel’s condition and is
derivable. =

Rem ar k. The proof of this theorem also gives some information about
the essential ranges of the derivatives. If g = dF/d|F|, and € = dG/d|G|, let
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K be the (closed) essential range of £, that is, the closed subset of the unit
gphere defined by

K ={z X |G| V) > 0 for every open set V 3 x}.

Then the essential range of g is contained in K U —K:

Let ¢ be in the essential range of g, so ||z] = 1; for £ positive, consider
the closed ball D(x,¢) of centre # and radiug £, and the measurable set
(= p~ Y (D(z,€)). We know that |F|(C) > 0, and it is easy to see that

aco(Aveq(F)) C o(D(w,e) U D(—=,&)).

Sirnilar arguments to those in the proof of the theorem produce a measurable
set B3 € B such that |G|(B) > 0 and

T Ave s (C)) € T6(Aves(F)) C 36(D(a,e) U D(—z, ).

This implies that £(t) € &@(D(z, &) U D(—z,¢)) for almost every ¢t € B. But
€]l = 1 almost everywhere, and every y € To(D(x, £)UD(~=,¢)) with |ly|| =
1 is included in D(z, 2e) U D(~=, 2¢), s0 |G|(¢ (D (=, 2¢) UD(—z,2¢})) > 0.
As e was arbitrary, we conclude that z or —z is in K.

5. Range and derivability. Factorization method. In this section
we give a second proof of Theorem 4.4, We will not use Theorem 2.1 on
decomposition of zonoids; actually, of the previous results in the paper,
we will only need the fact that range determines total variation (Theorem
3.1(a)), which was already proved in [Ro].

We will exploit the relation between the properties of a vector mea-
sure and the properties of the underlying integration operator. An example
of this relation is the following theorem which goes back to the works of
Grothendieck [G], Diestel [D], and Tong [T] o operators defined on a C{K )
space. Recall that a bounded operator T' : X — Y is said to be nuclear if
there exist two sequences, () in X* and (y,) in Y, such that

o 0
Z |l ] lymll < 00 and Tz = Z ak (z)yn for allz in X.
o] n=1
The statement of the following theorem is a particular case of Theorem
VI4.4 in [DUL

TrroneM 5.1. Let X be o Banach space, F' an X ~yalued mesure, and
a control measure for . The integration operator Ir : L>° () — X defined
by Ipf = [ fdF for [ € L2(u) is nuclear if and only if F has bounded
variation and F has a Bochner derivative with respect to |F|.

If two measures F', (7 generate the same zonoid in X, and F is deriv-

able, then the integration operator Ip factorizes, as every nuclear opfara’ﬁor,
through a diagonal operator from £ to £1. But a priori this factorization
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has nothing to do with G. We need a kind of factorization more related to
the range which, being equivalent to the fact of having a derivative, allows
us to conclude that (& also has a derivative. This is done in Theorem 5.2,
We need to introduce some notations.

If ¢' is a bounded absolutely convex closed set of a Banach space X, we
will denote by X¢ the linear subspace of X generated by C, that is,

Xe={z:zeC, A>»0}

Provided with the Minkowski functional || - | ¢ of C, X¢: becomes a Banach
space whose closed unit ball is C. In general the norm topology in X¢ iy
finer than the one induced by the norm topology of X, aud the same i true
for the weak topologies (X is not necessarily closed in X). If K is a subset

of Xp, we will denote by "Xx its closure in X, and by _I?XC’ its closure in X¢r.

If F is an X-valued measure whose range is included in X¢, we can
consider F' as having values in X¢; but, in general, I is only finitely additive
in Xg. F will be a measure in X¢ if (and only if) rg I is relatively weakly
compact in X¢: in that case the weak topology of X and the weak topology
of X coincide on rgF, and then F ig countably additive for the weak
topology of X¢ and, by the Orlicz—Pettis theorem, for the norm topeology of
X . In the following theorem we characterize the measures with a Bochner
derivative as those having a good factorization through the injection X —
X for a suitable C.

ToHeoreEM 5.2. Let X be a Banach space, and F' an X -vaelued measure.
The following properties are equivalent:

(a) F has finite variation and o Bochner derivative with respect to |F|.

(b) There exists an absolutely conver compact subset C of X such thot
o™ (xg F —rg F) is compact in X¢, and F has finite variotion in Xo.

(c) There exists an absolutely conver weakly compact subset C of X such
that rg F' is relotively weakly compact in Xg, and F has finite variotion
" Xc.

Proof. It is obvious that (b) implies (¢). Let us show the implication
(¢)=(a). Suppose F satisfles (c). As 1g F' is relatively weakly compact in
X¢, F is a measure (countably additive) when considered as having values
in Xg. We will denote this measure by Fe. If p is a control measure for £,
it is still a control measure for F since pu(A) = 0 still implies Fe(4) = 0,
for every measurable set A. :

Since C' is weakly compact in X, the injection X o — X is a weakly com-
pact operator. Thanks to the Davis-Figiel-Johnson-Petezyiski factorization
lemma [DFJP], [DU, p. 250], this injection factorizes through a reflexive Ba-
nach space; in particular; there exist a reflexive Banach space R and two
bounded operators § : Xo — B and T : R — X such that F = TcSoF.
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Let H be the measure defined in R by H = SoFg. As Fe has finite variation,
so does H; but H has values in a space with the Radon-Nikodym property,
therefore H has a derivative with respect to u, which is a control measure
for A. This implies that F = ToH also has a derivative with respect to p,
thus F has finite variation, and a Bochner derivative with respect to |F|,
and (a) follows.

(a)=>(b). Let 4 be a control measure for F. If I satisfies (a), then by The-
orent 5.1, the integration operator Ip : L% (i) — X is nuclear, so it factors
through a diagonal operator {rom £, to £;. Thus we have a factorization

Lo () 22> x
(20) sl TT
by —E2—s 4

where the diagram is commutative, S and T" are bounded operators, and D
is a diagonal operator, that is, there exists a sequence (d,,) of real numbers
guch that
o0
Z ‘d’rhj < oo and D((%)nkl) = (d'nan)nzl for (an)nzl € beo.
nuznl
We can assume that T in (20) is compact. For, take a sequence (A,) of
positive real nuwmbers tending to infinity such that we still have
oo
)\n;dn| < Q.
n=zl
If D is the diagonal operator associated with (A.d,), and Ty : £y — X is
the operator defined in the canonical basis (e,) of £ by Tie. = Te, /Ay, for
every n € N, then TyeDy = TolD, and T is compact.

Since T' is a compact operator, C' = T(By,) is absolutely convex and
compact In X. Let us show that C satisfies {(b). The range of T is contained
in Xe; write T¢r for the operator T' considered as having values in X . Then
Ter : £y =+ X is hounded since Ter(By, ) is included in C, the unit ball of X¢.
Note that as I is a nuclear operator, it is compact; then K = DoS(Bye }
is compact in £¢. By Proposition 1.1{c) we have

&% (rg B~ vg F) = Iy (Broo ()
= ToDoS(BLwx) = TgoDoS(Bre) C Te{K).
Thus &% (rg £ — rg F) is compact in X since it is closed in X, hence in
X, and it is contained in Te(K), a compact subset of Xg.

Write Fer for F considered as having values in X¢. Then u is also a
control measure for Fe. It is easy to see that the integration operator /g, :
Lo (1) — X factorizes as g, = TooDoS, thus Iy, is nuclear since so is D.
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By Theorem 5.1, F¢ has bounded variation (actually it has a derivative with
respect to |Fg|). The theorem follows. m

Using the equivalence {a)¢>(b) in the last theorem we can give a new
proof of the fact that range determines derivability.

Second proof of Theorem 4.4, It is enough to prove that G has
a derivative if F does and &(rg F —r1g F') = T(rg G~ rg &). Then I satisfies
(b) of Theorem 5.2: there exists an absolutely convex compact sek Cin X
such that €6% (rg I — 1g F) is compact in X, and [ has finite variation in
Xe. Now, @ also satisfies these conditions for the same . The first one is
ohvious since we know that

¥ (tgF —1g F) =" (15 G — 15 7).

To check that (@ has finite variation in X first note that, as T" (xg F' —
rg F) is compact in X, on this set the norm topology of X and the norm
topology of X¢ coincide. So the convex hull of rg F' — rg F' is also dense in
@6~ (rg F —rg F) for the topology of X, and the same is true for the convex
hull of rg G — rg . Therefore,

wXe(rgF —rgF) =" (1g F —1g F)
=@ (1gG —1g @) =B (g G —1g ),
and, by Theorem 3.1{a), the variation of & in X¢ is finite since ¥ and

have the same total variation in X . Now we see that G has a derivative
using again Theorem 5.2. =

ol

We have shown that the total variation, the o-finiteness of the variation,
and the Bochner derivability of a vector measure are determined by the
zonoid it generates. It is a natural question to look for more properties that
might also be determined by the range. It would also be interesting to find
geometrical properties characterizing those zonoids for which any measure
generating them has bounded variation, o-finite variation, or a derivative.
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