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A rigid space admitting compact operators
by

PAUL SISSON (Shreveport, La.)

Abstract. A rigid space is a topological vector space whose endomorphisms are all
simply scalar multiples of the identity map. The first complete rigid space was published
in 1981 in [2). Clearly a rigid space is a trivial-dual space, and admits no compact en-
domorphisms. In this paper a modification of the original construction results in a rigid
space which is, however, the domain space of a compact operator, answering a guestion
that was first raised soon after the existence of complete rigid spaces was demonstrated.

Rigid topological vector spaces made their first appearance in the liter-
ature in 1077 with an example by Waelbroeck, in the paper [7]. This first
example was, however, an incomplete space, and the first complete rigid
space appeared in Kalton's and Roberts’ paper [2], based on a construction
of Roberts from 1977 which followed Waelbroeck’s space. The published ver-
sion differed slightly in form from the unpublished example, and extended
the result to obtain a complete space that was not only rigid, but also
quotient-rigid and a subspace of Lg[0, 1] {quotient-rigid meaning that every
quotient of the space inherits the rigid character). Roberts’ original method
of construction appeared in print in 1984 in the book [1], and it is this ver-
sion that is used as the starting point for the rigid space in this paper. The
following construction is based on part of the author’s PhD dissertation, [5].

The question of the existence of compact operators with trivial-dual
domain spaces was answered not long before the appearance of rigid spaces,
in the paper [3] of 1975. Of course, the lack of continuous linear functionals
on & space implies the absence of the simplest compact operators, those of
finite rank. Following the work in 1973 of Pallaschke [4] and Turpin [6], in
which a variety of spaces (including L,[0,1] for 0 < p < 1) were shown
to have no compact endomorphisms, Pelczyniski asked whether any trivial-
dual space- possessed compact endomorphisms. Since these early papers,
some progress has been made in constructing trivial-dual spaces admitting

1001 Mathematics Subject Classification: Primary 46A186; Secondary 54G15.

The author is grateful to James Roberts for the suggested use of crimped F-norms in
the construction. '

[213]



214 P. Sigson

compact operators, and a few large classes of spaces have been shown to be
bereft of compact operators, but a general characterization of trivial-dual
spaces admitting compact operators is still not known. A characterization
of separable p-Banach spaces admitting compact operators appears in [5],
and this characterization motivated the construction of the rigid space to
follow (which is a p-Banach space, for some fixed 0 <p < 1}.

The paper is organized into three sections, the first consisting of some
definitions and simple lemmas which shall be needed, the second containing
the construction of the space, and the third the verification that the space
is rigid and does admit compact operators.

1. Definitions and lemmas, The rigid space to be constructed iy a p-
Banach space; that is, it is a complete locally bounded and locally p-convex
space. Although the topologies of p-Banach spaces are often described by
p-norms (which are sub-additive and p-homogeneous), the comstruction to
follow relies on a generalization of a p-norm called a super p-norm.

DEFINITION. Assume 0 < p < 1 is fixed and X i3 a vector space. A map
|1l : X — [0,00) is & super p-norm if

(1) llzfl = 04 2 =0,

(2) lle +yll < f=l| + iyl and

(8) for any & € X and any o € R with |a] < 1, |laz|| < lof?ljz|.

If condition (1) fails to hold, || - || is a super p-seminorm, and if (3) is
replaced with the weaker condition

(3) llaz|| < |jz!] whenever || < 1 and ||oz|| — 0 whenever |o} — 0
then || - |j is an F-norm.

The following definition introduces a method of constructing new F-
norms from old ones which will be employed cften.

DEFINITION. Let {(Xo, |- fia)} be a collection of F-normed vector spaces,
and let X = span{X,}. For x & X, let
T
o - L= qu,’:, ma‘- S X{\g“ ne N}-

ol = in { 3 e
i=1 i=1
| - I will be referred to as infnorm{{X,, | - |la)}-

LEMMaA 1.1, The real-valued map || - || : X ~ [0, 00) defined in the above
definition is an F-seminorm on the space X . Further, if each ||| i3 @ super
p-norm (for some fized p), then || - || will be a super p-seminorm.

The proof of Lemma 1.1 is almost immediate, and really only requires
conﬁrn.lation that || - || is subadditive. A discussion of inf-norms may he
found in [1]. Note, however, that without some further assumptions on the
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collection of F-normed vector spaces, || - | may not separate points in X,
as it may be possible to decompose a given z € X as x = 7oy + - - - + Za.,
in such a way that 3 ||z, ||a; is arbitrarily small. The next lemma gives us
some control over the resultant inf-norm.

Lemma 1.2. Let X3 C X3 C ... be a sequence of finite-dimensional vecior
spaces, each space endowed with an F-norm ||| .. Assume that ||l = |i-{la~1
on X Let ||+ || = infnorm{(X,, | - |n)}. Then

il 7
2 € Xng =zl = inf{i lzafi; 2 = Z:c z; € Xi}.
=1 =1

Further, this infimum s realized, so there exist x; € Xy, ..., Tp, € Xp,g for

which
ng no
=3z ond fz| = llwlli
q==} i=1 .
Proof. Let z € X, and let & > 0. By the definition of || - ||, there is an
meNandz; € Xyq,...,2;, € X, 50 that

m m
p=Y 2 and 3 Jali < o] +e.
i=1 i=1

Suppose that m > ng. Then by the embedded nature of the sequence of

subspaces,
m—1

Tp = T — Z x; € Xon—1
i=1
and so by hypothesis ||zm|\m = ||Zm|lm—1. If we define y; = z; for 1 < i <
m — 2 and el = Tm-1 + £m, we have

m—2

e
|l +& > Z il = Z sl + |zm=1llm—1 + [|Zmilm
fem] =l
m—2 m—1
> 5 Jzilli+lzmo1 + @mlmor = Y luills

Al . i=1
Continuing by induction, we obtain y; € X1,y ¥Yng € Xng with

ng 7

{)
e=Y w and Y lull<lel+e
i=1 i=1

As ¢ is arbitrary, this establishes the first claim. o . .
To see that the infimum is realized, we use the finite dimensionality of
the spaces and a compactness argument, as follows. For this same x € Xp,,
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let

o

ng
So={(@1 )iz =Y mand Y [loill < 20l .
=] i=1

Then 5, is compact, and the map taking
o
(mla ey Bng) E Hmz“%
fu=1

is a continuous function from S, inte R, and hence attaing its minimum, w

Note that this implies || - || is an F-norm. in this case, for given z € X,
there are elements 21, ..., Tn, 50 that
fin 7o
s=S s and fal =3 lul;
gz i=l
and it is clear that |z|| = 0 & | z;|}; = 0 for each ¢, and thus z; = 0 for
each i and so z = 0. Hence || - || separates points-on | J X, and thus on the
| - |l-completion of | X,
It is clear that if each || - |, is a super p-norm, then || - || will be a super
p-norm as well. The next two lemmas and the remark following them will
give us a bit more control over the inf-norms to be used in the construction,

LeMMaA 1.3. Let || - || be a norm on ¢ finite-dimensional vector space X,
and let || - |2 be a p~norm on X, for some fixed 0 < p < 1. Then there is a
1 >0sothat [-]1 < |2 on {z € X |zl < 61}, and @ 83 > 0 so that
[l =11z on {z € X: fiz]y = &2}

Proof Let my = max{|/z]j1 : ||z[lz = 1}, By the finite dimensionality
of X,0 < my < co. Let §; = mi'/(p_l). Then given y € X with |ylly = &,
there is a positive scalar A and an z € X so that y = Az and |jz[}s = 1.
Then M = &, so A =mi’ ™Y Hence

[ylie = Pzl = Azl € Ama =M = [Az]lz = ||yl
The fact that || - {1 < |- on {2z € X : |lz|l2 € 6.} now follows fromn

considering the type of homogeneity of the two F~1;:)r1ns.
The second claim is proved similarly, by frst letting sy = wax{||a|j; :

|lz|l1 = 1} and then letting by = mg_ll(?’h”. a

Lemma 1.4, With X, || - |l1, || - |2, 61 ond & defined as in Lemme 1.3,
construct the new F-norm | - || = inf-norm{(X, | -{[1), (X, || - |2)}- Then || - ||
is homogeneous on the set {z € X : [fx|| <&} for any 0 < & < &y. Also, || - ||
s asymptotically sub-p-homogeneous, i.e. given (0 > 1 there ¢s o constant
M so that |jz|| > M and |\ = 1 implies ||Az|| < C|A¥|z].
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Proof. To prove the first claim, fix such an ¢ and choose z € X with
llz|| <e. Then

inf{llzy|ly + |za)|s: 2 = &y + zo} < e < by,

and s0 we may as well assume the infimum is taken over those z3’s for which
|zaij2 < &1. Then by Lemma 1.3,

2]l = inf{jlesllx + Nzalle} 2 mt{|lzy s+ feali} > nf{{ar + zal]1} = )]s

By the definition of infnorms, ||| < ||+, on all of X, so we have ||-|| = | -||1
on {z € X : [z| <¢}, ie | -| is homogeneous on this set.

Now let €' > 1 be fixed. To prove the second claim, we will first show
that for some constant M, ||-| = C72||-|l2 on {z € X : ||z]| > M}. Suppose
this is not true for any M; that is, suppose there are arbitrarily large M’s
for which we can find an z with ||z|| = M and ||z|] < C~}| z||y. Then let a =
max{||z|[z : |z)l1 < 62}, and assume the existence of M > (CH(1-C")a
and z with ||z|| = M and ||z < C~*|z||2. By a compactness argument as
in Lemma 1.2, there is a decomposition of ¢ as ¢ = z; + =5 with =] =

lz1ll1 + [|z2]la- Note that ||lz11 < 6z, for otherwise by Lemma 1.3 we would
have

2l = llexla +llezllz > llzallz + llz2]l2 2 ||2]l2,
a contradiction to the fact that || || < ||-||2 on all of X. Then ||z ~||z2]lz <
|z = 22l2 = [lz1lla £ a, 50 [lz]la < [z2]lz + a. Also, [lzalla < M since

|zi)|1 + ||lz2i|s = M. This gives us
M = |a|| < CMizlls £ C7H{lloallz + @) < O7HM +a) < M,

a contradiction, indjcating such an M must exist.

Now, to complete the argument, choose any = with ||z|} > M and any
scalar |A| = 1. Then

el < [Azlls = APllzll2 < CIAP|lz]. =

Remark 1.1. Let us call an F-norm which is homogeneous on a neigh-
borhood of 0 a erimped F-norm. Then if || - ||1,...,] - {|» are all crimped
F-norms, defined respectively on finite-dimensional spaces X4,...,X,, an
argument gimilar to that of Lemma 1.4 shows that || - || = infnorm{(X,
1),y (Xus |- In)} is homogeneous on some O-neighborhood of the |f - |-
completion of | JI_, X, Le. || - || is also crimped. In addition, if each || - ||; is
agymptotically sub-p-homogeneous, then || - || will be asymptotically sub-p-
homogeneous as well.

As already mentioned, the rigid space to be constructed is a p-Banach
space, though the norm to be built up will be a super p-norm in the style
of Lemma 1.2. However, the unit ball of a super p-normed space is clearly



218 P, Sisgon

absolutely p-convex, and just as clearly a bounded neighborhood of {0}, and
50 a complete super p-normed space is in fact a p-Banach space.

One last basic lemma is required before we begin the construction of the
space. Since super p-norms do not necessarily have any sort of homogeneity
with regard to scalars, continuity of linear operators on such spaces is not
as easily discussed as in, say, p-normed spaces. The following inequality will,
however, be sufficient for our purposes.

LEMMA 1.5. Let 0 < p £ 1 and let (X, - ) be a super p-normed space.
Let T € L{X) and suppose that |lz]| = I = |T=| < 1/2. Then for any
NON-ZEro I,

e} < 1= [[Ta] < lfz|®.

Proof We first need a simple fact about F-norms: if o is a scalar with

la] <1, and if z is an element of X, then

(1) Jocal) 2 5o o]

This can be seen by choosing n € N so that || > 1/n > |a|/2 and then
noting that

ol > | 22| 2 Lt 2 Lo 1o

1
—
7

Now let z € X with ||z < 1. So for some y € X, = oy where lyl =1
and 0 € @ < 1. Then

Jell = Lol = Fla Iyl = 2

where the middle inequality is due to (1.1). Hence, o < 2||x||. This then
gives us

in

],

72 = laTy| < (o) (%) < (2’°“”“‘°)(%)

the desired inequality. w

2. Construction of the space. The rigid space to be made will be
the completion of the union of a monotonically increasing sequence of finite-
dimensional subspaces, X; © Xy C ... Each X, will represent the algebraic
sum of finite-dimensional subspaces Vi, Va,..., V,,, where each V; iy a sub-
space of V, the space of finitely non-zero real-valued sequences. ‘To begin,
let {en) be the usual basis of V, i.e. e, is the sequence with a 1 in the nth
slot and zeros elsewhere. Let

A={e;+en}p, U {e1~en}ilyU {ei}

and let (a,} be a sequence in 4 such that for each a € A, a = a, for infinitely
many 7. In what follows, F,, will represent a finite collection of elepients of
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V and V), will be the span of F,. Each V,, will be endowed with a super
p-norm | - |,,, where we are assuming that p is a fixed number in (0,1). X,
will be the space Vi + ... +V,, and X,, will be given the super p-norm
[+ |n = nfnorm{(V1,| - [1),...,(Vn,|- |a)}. For each n and non-negative r,
let B = {z € Xp: [|z], < r).

'The remainder of this section is concerned with showing the existence
of the above objects, along with a sequence of positive numbers {€n) and
numbers p = py < ps < ... < 1 so that the following five conditions hold:

(Wl 2 1 ne1/2 0n Xy,
2) by, € Vﬂ, alld (Vl + e -I" Vn-—l) N Vn C Ram
3) co B:p;l C B;’;\"_li/tln_g,

4
5

YIEF, = {21,...,5m} then |z;], < £,/4"! and a,, = (1/m) 30 s,
) If Moy = max{|F|,...,|Fo_;|} then M! 7P~ < 2,

Note that condition (3) implies that at the least £ < £,_1, and so {e,)
decreases to (.

The existence of the sequence {(Vi, Fn,| - fn,en,pn)) with the above
properties is verified via induction on n. To begin, let p1 = p and choose
0 <& < 1. It is now relatively easy to find Vi, Fy and |- |1 appropriately.
For instance, let Vi = span{a;} and let Fy = {a;}. Now define |- |t on ¥4
by |Aail} = BIA|P1, where 0 < 8 < g1 is fixed. The “t” in |- |! stands for
“temporary”, as each |- |, needs to be replaced with |- |,,, a erimped version
of itself, in order to obtain property (1) above. Accordingly, let | - | be any
norm on Vi, and let | - |y = infnorm{(V1,|-]), (V4,|-|1)}. Then |-|; is still a
super p-norm, and since |- |; < |- |t, (4) holds by the choice of 4. The other
properties hold vacuously.

Now assume that (Vi, Fi,| - |k, €5,pr) have been selected up to k& =
n—1. The space X, _; is finite-dimensional, and hence is locally convex. By
definition then, X, .1 has a base at {0} of convex neighborhoods, and it is
thus possible to choose an £, > 0 so that condition (3) holds. Define M,,_,
as in condition (5) and choose pp-1 < pn < 1 so that (5) holds, On the
one~cimensional space Ray, define a super p-norm |- g by |Aas|g = BIA[P~,
where 4 > 0 iy yet to be chosen. Note that by the subadditivity of all the
F-norms so far created,

(2.1)  infonorm{(Vi,| |0 s (Vacia |+ [n=1), (Ran, |+ [2)}
= infrnorm{ (X1, | - [[n-1), Ran, | [g)}

(
(
(
(

We now have two cases to consider.

Case 1: a, & Vi+...+V,_y. First, suppose z € X,,..1 and © = v+ Aay,,
where v € X,,—1. Then Mg, =z —v € X,,—1, and so A = 0. It is clear then
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that on X, _1,
(2.2) inf-norm{ (Xp-1, || - Jn=1)y Raem, |- )} = |« [lnn-1

for any § > 0. Now V,,, F,, and | - |,, can be easily chosen, by letting F,, ==
{an}, Vo = spanF, and |-|% = |- |5, where 0 < 3 < &,/4" . As before,
replace | - |&, with a crimped version, | - |o. Then by (2.1) and (2.2) (with 8
replaced by n and Ra, replaced with V;, in both cases), || [ln = || « [|ln—1
on all of X1, and so condition (1) is trivially satisfied. Conditions (3) and
(5) hold by the choice of &, and p,, above, and condition (2) is satisfied by
the definition of F,, and V;,. Finally, fixing # in the range specified allows
condition (4) to be satisfied.

Case 2 an € Vi + ... + V,~1. By the induction hypothesis, each
| - |i is a crimped super p-norm, for 1 € ¢ < n — 1. By Remark 1.1 then,
|- lla-1 is & crimped super p-norm, and there is a § > 0 for which | « ||,
is homogeneous on {z € X, 1 : ||2[[n~1 < }. Also, since py < ... < ppy,
Il lln—1 is asymptotically sub-p,.1-homogeneous, and there is an M for
which [[Az[ln—y < 2[N|P~4|5||n_1 whenever 2 € {z € Xy ¢ [|2]fn-1 > M}
and {A| > 1. Note that | - |g increases monotonically without bound on the
non-zero elements of Ra, as B increases, and so by Dini’s Theorem there is
a B for which |- lg > || ln-1 00 {z € Ran : § < ||z]p~1 € M}. Since [ P
is homogeneous on {2 € Ray, : ||z||n-1 < 8} and |- |4 18 p,-homogeneons, wo
also have |- |g 2 || ln-1 on {z € Ray : |[%n-1 < &} Finally, if ¢ € R,
iz]|n—1 = M and |A| = 1, we have

A2lln-1 < 2AP lz]la—y < 2P [e]lar < 2N |2]5 = 2 Ae],
that is, |z]p > [|2|n—1/2 whenever |[@||ln.; = M. In sum, |- |43 2 ||+ [n-1/2
on all of Ra,,.

Recall that p, has already been chosen. Let (£, || - [|,.) denote the
sequence space £, endowed with the p,-norm || - [|p,. On £, let

2 26 T

where, as usual, {e.) represent the coordinate vectors. Choose m € N so

that
En/dlﬂ‘l 1--py i
( 57 m = 1.

Now let V,, be any mn-dimensional subspace of ¥V such that a, ¢ V, and

such that (V14 ...+ V)NV, = Ray,. Define a bijective and linear map
T: &3 — V, in such a way that

1 m
T(E gﬁ;) = ay,.
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(Any such. map with this one restriction will suffice.) Now, for 1 < i < m,
let ; = T'f; and let Fy, = {z1,...,2,,}. Define |- | on V,, = spanF, in
the following manner: for each z € £, let |T'z|% = f||zll,,. Then for any
T € Fn:

1 Eq En
lzilh, = ITFL = Bl fillp, = (5) (4n_1> =gl
Also, by the choice of the map T,

m
1
Qp = — E Ty
m
i=1

and so condition (4) is satisfied for | - |%.
It now only remains to show that condition (1) holds. First, note that

m n—1
S S
ge=]

2

Since ||}, and |- [ are both p,-homogeneous, this implies that ||, > ]|z on
all of Ra,,. We have already shown that |- |g > || [n—1/2 on Ra,, and that
| - lln=1 is homogeneous on a neighborhcod of 0 in X,_;. The homogeneity
of || ||n1 for small elements means we can find a norm |- | on V;, (necessarily
dominating | - ||n—1/2 on Ray) so that |- [, = inf-norm{(V,, |- ), (Vp, | |£)}
satisfies ||, > ||+ {ln—1/2 on Ra,. Note that condition (4) still holds for |- |,.

Suppose now that z € X,,_y and 2 = v + v, where v € X,,_; and
vp € V,,. Then v, = 2 —v € X, and so it must be that v, = Aa,, for some

scalar A, since (Vi + ...+ Vn-1) NV, C Ray,. Then by (2.1) and the above,
” ’ ”Tb = inf—norm{ Vi, |1}= LR (Vn—lal ' ‘n—l): (V'm I ’ ]'n)}

ZHE )
= inf-norm{(V1, |- [1),- s (Va1 |- [n-1), (Ren, | - o)}
= inf-norm{{Xs-1, | * {ln-1), Ran, | - [n)}

Pn

> intoma { e, | ot (Ram 31 et ) } 2 31 s

By induction then, the existence of the sequence {(V,., Fu,| " |n,&n, Pn))
has been verified, and we can now define the space X. First define an-
other super p-norm ||| - [, = 47| - ln on each X,. Next let ||| - ||| =
inf-norm{{ Xy, ||| - |||»)), and finally define X to be the ||| - [|l-completion of
(J X, Then (X,]]| - |||} is the desired space.

In the next section, the claims that (X, |||-|||) is rigid and admits compact
operators will be justified, but we should first show that X as just defined
actually exists; that is, the super p-norm ||| - ||| is not trivial. This follows
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from condition (1), If z € X1, then

Dl = 4ol 2 (€ (F16lct) = 24 lallmr) = 2ol

and so the hypotheses of Lemma 1.2 are certainly satisfied.

3, Verification of the space. The goal of this section is to prove the
following.

THEOREM. The space (X, ||| - {l|) is o rigid space admitting non-trivial
compact operators.

We will show that (X, ||| |||} is rigid first. Accordingly, let T" € L(X) be
an arbitrary continuous linear endomorphism. The first goal is to show that
given any o € A there is a scalar A (depending on @) so that T'a = Aa. We
will then show that all the A's are in fact the same constant, and since the
linear span of A is dense in X this will imply T = AlI, proving the claim.

By considering a scalar multiple of I" if necessary, we can assume that
=] = 1 = [|T«||| < 1/2, and so Lemma 1.5 will apply. Fix n > 2 and let
F,, be represented by {z1,...,Zm}. By condition (4) we know that ||, <
en/4" ! for each ¢, and so

llzilll < lllzillln = 4° fzilln < 4" eiln < £n.

Thus by Lemma 1.5, z; € F, = ||[T'z:]|| < e. We can then choose § > 0 so
that

. eh

§< mln{mltp,aﬂ — I Tell, ... — ||T:cm|||}
By the definition of the sequence (@) and the construction of the se-
quence of subspaces (V3), V is dense in X . Therefore we can choose a collec-
tion {#1,...,2m} C V in such a way that |||T2; — || < § forall 1 <4 < m.

Define a map §: V,, = V by Sx; = 2;. Then
(3.1) M Sza|ll < T2l + & < F,

for all 1 <1 < m. By using condition (4) and the fact that {| - ||
p-norm, we obtain

I8 a super

1 ko
I Tl = |53 (8 - 72

1 & .
< 2_; |S2; — T || < 6m*.

Now §m! P < e” by the choice of §, so we have
(3.2) 11San — Tan|| < 22.
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For each 4, (3.1) implies the existence of ¥, . .

' ! ., &}, where sy € Vi+...+
Vi, Sz =ai+ ... +z}, and

k
> s < et
j=1

We can assume that the same upper index k holds for all i by allowing some
of the z}’s to be zero, if necessary. Note that k might very well be larger
than the fixed integer n. For the sake of argument, we may assume that this
is the case (by again throwing in zero terms if necessary). Also, for any fixed
i and for each 111teger J in the range from 1 to k, there exists 2’ ot
such that lmj eV, :r:j = 13:3 4.+ 7:1:3, and
sl = |1ij1 +oo 4 et

Equality is attainable here since Vi ... 4 V} is a finite-dimensional space,
and so0 a compactness argument as in Lemma 1.2 can be applied. Recall that
[lell; = 425, so that

R Ind

i
s = 4771 il
1=1
foreach 1 € j <k Wenow have, foreachi=1,...,m,
ko J
Soi =22 13
d=11=1
and
(3.3) 243 1Z|xj|l < &P
Fe=1

For the moment, fix 4. Cons1der now the element of Vi + ... 4+ V1

obtained by adding up all of the ;z%'s for which I < n — 1:

%k min{j,n—1}

Z L -—Z Z ,.'1:3

t<n—1
By the definition of inf-norms, and using subadditivity and {3.3), we obtain

& min{jn—1}
i
Z 1T

. k .'ﬂ j .
<Y D0 el < 204D Ll < eh
I<n—1 j=1 i=1 g=1 =1

As this holds for all 1 < i < m, condition (3) implies

S IPIE

=1 l<n~-1

n-—1

En—1

4’”“ '
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By definition then,

(3.4) m%i 3

i=11i<n—1

JEE S
i85

il K1

< Epeel.
-1

We also need to find a bound for the convex combination
1 m
EOID I

izl Lznedl
Again by the definition of inf-norms,

e

1 m : . 1 1:
-TT: Z Z il = _,n; Z RN
i=11pn+1 f=1 n+1
1 — ; )
+ W - Z(n-l—lmn—k'z + n+2$n+2) e
mimt n+2
1 ks
i " "
— Z(nﬂ% + @y F o )]
M= k
which in turn is less than or equal to
1 m
4° E Zﬂ-—\-lm:’t+1
je=l n+1
1 1 &
n+1 i ;
4 ((E Z n4+1%n42 + ‘_'rr; Z b2 Lo ) ..
i=1 n+i ) n-F2
1 ik 1 m 1 ™
k=1 7 i i
e (mw'{z““m’“ +’},’{Zn+zmk +"'+‘7}}'{Em\: )
i=1 n41 il n+2 el k

We are now in a position to apply condition (5). The constant m above
corresponds to [Fy|, and as j in the above sum takes on integer valuos from
n+ 1 to k, certainly m < M.y for all such j. Hence, for all j in this rango,

ey Lespy g
ml 7y < Mvjwa < 9,

@

We will use this fact by rewriting it as

1 2

mPi m,

for all n+1 < j < k. Recalling that each |- |; is a super pyenorm. and
sub-additive, the last expression is less than
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1) 2 = H
Gl s Y i Thialne
im=1

2 = ) 9 )
+ 4n+1 (;T-{ Z |n+1$2+21n+1 + E Z |n+2$:1+2|n+2) + PR

i=1 i=1
+ 45 3i| cH 1+3i| Thlnta + +—2—i| zh
m vt n+1%kInt m¢=1 n+2Lln+2 T - m £ kTkik )

which, when rewritten, is

9 ", k k]
j—1 )
w2 A7 el
i=1 j=nd1 i=n-|1
Applying (3.3) we then have the desired bound:

(3.5) H —%i T i

i=1 IZn+1

< 2e%.

At this point, the only ,;a:é,-’s which have not been considered are those
for which ! = n. Accordingly, let

Note that

Sty ~ Yn =

‘ o
The two preceding bounds, (3.4) and (3.5), have both been found in order

to show then that

1 ; 1 ;

5o =wil < 13 T i) ¢ 5
m i=11>n+l

i=1 1<n—1

< Ep—1 + 25,,’;.

Finally, we use (3.2) to obtain _ _
(3.6) 1T an = yulll < [[Tan — Sanlll + [[1Sen — ynll
< Eg +ep-1+ 25?,, < dey_1.

Recall now that for each a € 4, an = o for infinitely many n. Choose a
particular a € A and consider integers m and n for which 2 < m < n and
4 = Gm = Gy, Then from (3.6) we have

Hym = yalll < Mym — Tam|l + {ITan = gnlll < 4Em—1 -+ den—y < 86m-1.
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Since the sequence {(Xy, ||| - [|ln)) satisfies the hypothesis of Lemma 1.2, the
fact that ym — ¥ € V1 + ...+ Vi implies the existence of v; € V1 +... + ¥}
for 1 < § < nsothat yp, —¥n =vy + ...+ vy and

1)

Z Jws]lly < BEm—i
=1
Using the same argument as that preceding (3.3), for cach fixed j and for
1 <1< j there exists ;v; € Vi so that v; =0, 4 ... - yu; and
n J
(3.7) Z gi=1 Z ‘ﬂ}jll < 8Em1.
j=1 l=1

Note now that
Y — [(1v1) + (09 + gua) o (U + o 1)
= y?’b +11U:n, e (1/:‘1 —i- A + VN"“]) ﬂ VFL
and so
Y = [(ug) - (g oUs) + o+ (U )] = A
for some scalar A. Then
Nym — Aalll < Mpvgllls +[live + gvgllla 4 v A gu, -+ ooty [l
When we apply the definitions of the various inf-norms and (3.7) woe obtain

n i
mym - AGIH < 24:,“1 Z |£vj|l < Bepn-1.
i=]

: j=1
Finally, using this and (3.6) we obtain
|Ta — Aall| £ 1Tam — ymlll + llym — Aall| < dem-1 + BEmet = 126m1.

As we consider arbitrarily large m for which @ = am, €51 — 0 and so we
have shown that T'a € Ra, i.e. Ta = Aa for some scalar A.

The end is now in sight. Since e; € A we know that T'ey = Aey for sowe
A. The claim is that this same A works for all @ € A. The existence of scalars
Al and A7 for which T{e1+e,) = Af{er+e,) and T'(e; —e,) = A, (¢ -~ ey
has been shown. Now,

2Xer = T(2e1) = Tler + e,) + T(er ~ ey,)
=M (e1 +en) + A (61 —ey) = O+ A0+ (A - X))oy,

and so it must be that A7 = A7 = A. As span A4 is dense in X, 7 = A
on X.

The only remaining task is to demonstrate that (X, |||-1]|) aclmits compact

operators. The existence of such operators is based on the following theorem
from [5].

icm
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THEOREM 3.1. Let 0 < p < 1 be fized. Let (X, - ||o) be a separable p-
Banach space and let X < X3 C ... be any sequence of finite-dimensional
subspaces so that | } X, is |- ||o-dense in X. Then (X, (o) admits compact
operators (to other p-Banach spaces) if and only if for some subsequence
{Xn,) of {Xn) there is o corresponding sequence of p-seminorms (|| - [x})
{(with || - ||1 non-trivial) and a constant n > 0 so that

(J) H ' Hk+1 Z (1 +T))” : Hk' on Xy, , and
(2} inf-norm((Xn,, || - &)} s weaker than || - o on | Xn,.

The proof of this theorem will not be presented here, as the following
argument is sufficient for the task at hand.

In an arbitrary F-space (X, || - ||}, let H. (4, B) denote the Hausdorff
distance between two sets A and B with respect to the metric generated by
i - I The goal is to show the existence of another F-norm || - [{[* defined on
X for which

=)
(3.8) > Hye (Bry Bua) < o0,
n=1
where B, is the ||| - }j-unit ball of X,,. Since each B, is of course || - |||*-
relatively compact, it is easy to see that (3.8) implies |J Bn is also ||| - [||*-
relatively compact, and hence the ||| - |{|- unit ball B of X is ||| - |[| *-relatively
compact. This makes the identity map from (X, {| - |||} to (X, - [Ii*) a
compact operator. Of course, X will not be complete with respect to [[f - [l|™.
To construct ||| - |||*, begin by letting (§,) be any decreasing sequence
of positive numbers such that 3/2 < 8,/8n41 < 2. Now define ||| - |||, to be
bnlll- N and let |- [||* = infnorm{(Xy, ||| - |%)). Then given z € Xn41 with

llz]]] < 1, Lemma 1.2 implies the existence of z; € X; for L i< n+1so
that

n+l n+1
p=3Yw and [lofl= Y llaslls
3=1 =1
Soz =y, € Xy, [[T]f <1and
&~ F* = Nznrill” < l2zatilliry = bnpall@nstlings < G
This inplies H.jj- (Bn, Bat1) < br1 and by the choice of (), 3 & < co.
We also need to verify that the super p-morm ||| - |[[* is non-trivial, for

otherwise the compact operator just constructed would be identically zero.
This follows from the second restriction on the sequence (8}, since on the
space Xp-1,

-8 = 8alll - Hln 2 28alll - Hlnm1 2= Snalll - Hlaex = [+ [l

and so the hypotheses of Lemma 1.2 are met once more.
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Construction of standard exact sequences of power series spaces
by

MARKUS POPPENBERG (Dortmund) and
DIETMAR VOGT (Wuppertal)

Abstract. The following result is proved: Let A%(a} dencte a power series space of
infinite or of finite type, and equip A%(a) with its canonical fundamental system of norms,
R e {0,00}, 1 < p < oco. Then a tamely exact sequence

() 0 — A% (a) — AB{a) — AR ()™ — 0

exists iff o is strongly stable, Le. limn cop/on = 1, and a linear-tamely exact sequence
(%) exists iff v is uniformly stable, i.e. there is A such that limsup, agn/an < A < oo for
all K. This result extends a theorem of Vogt and Wagner which states that a topologically
exact sequence (*) exists iff o is stable, L.e. sup,, aop /o < cc.

An important tool in structure theory of power series spaces is the exis-
tence of exact sequences of the form

(*) 0 — Ai(a) — A%(a) — A%(a)N — 0.

Here A%{c) denotes a power series space of infinite type if R = co and of
finite type if R = 0, respectively, 1 < p < oo. A topologically exact sequence
(%) exists if and only if o is stable, i.e. sup, asn/o, < co; this result has
been proved for the nuclear case in [11] and in [6] for the general case. The
existence of such sequences has been used to characterize the subspaces,
quotient spaces and complemented subspaces of stable power series spaces
of infinite type (cf. [11]) and of finite type (cf. [7], [8], [6]).

The purpose of this note is the investigation of the existence of tamely
and linear-tamely exact sequences of the form () (for the concept of tame-
ness see below, or [1], [9], [4], [5]). We shall prove the following main result:
Let A%(c) be equipped with its canonical fundamental system of norms,
R € {0,00}, 1 € p < co. Then a tamely exact sequence () exists if and
only if v is strongly stable, i.e. limn agn/an = 1, and a linear-tamely ex-
act sequence (#) exists iff o is uniformly stable, ie. there is A such that
lim sup,, cen/om < A < oo for all K. We notice that we do not need any nu-
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