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Construction of standard exact sequences of power series spaces
by

MARKUS POPPENBERG (Dortmund) and
DIETMAR VOGT (Wuppertal)

Abstract. The following result is proved: Let A%(a} dencte a power series space of
infinite or of finite type, and equip A%(a) with its canonical fundamental system of norms,
R e {0,00}, 1 < p < oco. Then a tamely exact sequence

() 0 — A% (a) — AB{a) — AR ()™ — 0

exists iff o is strongly stable, Le. limn cop/on = 1, and a linear-tamely exact sequence
(%) exists iff v is uniformly stable, i.e. there is A such that limsup, agn/an < A < oo for
all K. This result extends a theorem of Vogt and Wagner which states that a topologically
exact sequence (*) exists iff o is stable, L.e. sup,, aop /o < cc.

An important tool in structure theory of power series spaces is the exis-
tence of exact sequences of the form

(*) 0 — Ai(a) — A%(a) — A%(a)N — 0.

Here A%{c) denotes a power series space of infinite type if R = co and of
finite type if R = 0, respectively, 1 < p < oo. A topologically exact sequence
(%) exists if and only if o is stable, i.e. sup, asn/o, < co; this result has
been proved for the nuclear case in [11] and in [6] for the general case. The
existence of such sequences has been used to characterize the subspaces,
quotient spaces and complemented subspaces of stable power series spaces
of infinite type (cf. [11]) and of finite type (cf. [7], [8], [6]).

The purpose of this note is the investigation of the existence of tamely
and linear-tamely exact sequences of the form () (for the concept of tame-
ness see below, or [1], [9], [4], [5]). We shall prove the following main result:
Let A%(c) be equipped with its canonical fundamental system of norms,
R € {0,00}, 1 € p < co. Then a tamely exact sequence () exists if and
only if v is strongly stable, i.e. limn agn/an = 1, and a linear-tamely ex-
act sequence (#) exists iff o is uniformly stable, ie. there is A such that
lim sup,, cen/om < A < oo for all K. We notice that we do not need any nu-
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230 M. Poppenberg and D. Vogt

clearity assumptions. Moreover, we construct sequences which enjoy an ad-
ditional lifting property (which makes e.g. so-called three-spaces-techniques
available).

In a forthcoming paper, this result will be combined with a tame splitting
theorem proved in [4] to set up a tame resp. linear-tame structure theory for
power series spaces based on a common proof both for the cases 2 = oo and
R = 0; this is in advantage compared with the topological situation whore
different methods have been applied for R = oo and R = 0, respectively,
since a general topological splitting result for power series spaces of finite
type fails (cf. [11], [7], (8], [6])-

The first section contains preliminaries and the notation. In the second
section, we prove necessary conditions for the existence of tamely and linear-
tamely exact sequences of the form (+). In Section 3 the basic lemma of
Vogt and Wagner [11], 2.2, is generalized to the case 1 < p < oo without
nuclearity assumptions; further we give precise continuity estimates and
prove the above mentioned lifting property of the sequence; this section is
of more technical nature.

Section 4 contains the most important part of our construction and the
main results. By means of the easy Lemma 2.3 we here only have to con-
sider strongly stable sequences c. A delicate combinatorial comstruction, in
particular a carefully created bijection N? — N, combined with Lomma 5.2
gives the result,

1. A Fréchet space E equipped with a fixed fundamental system of con-
tinuous seminorms || flo < ff |2 < || ]2 £ ... is called a graded Fréchet
space, the sequence of seminorms is called a grading. Graded gubspaces and
graded quotient spaces are endowed with the induced seminorms. If LF G
are graded Fréchet spaces and i : E — F, g: F —  are linear maps, then
the sequence

0-ELFSGg o0

is called linear-tamely exact if 1 is injective, ¢ is surjective, im.i = ker g and
there exist a > 1,b > 0 and constants ¢n, > 0 such that

1) lielln < enllelants, el < cullie]anss,

(2) ”q-fHﬂ < Cn”f||ﬂﬂ-+b= mf{WHn : Q’l/f = Q‘} < Gn”g”tm-{‘h

forall mand alle € B, f € F, g € G. The sequence Jy then called
(@)-tamely evact, and temely exact if o = 1. A linear bijection i : B — F' iy
called a linear-tame or (a)-tame isomorphism if (1) holds, it is called a fame
isomorphism if (1) holds for a = 1.

Let K = R or C. For any sequence 0 < ap < oy € ay < ... A oo,
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R e [0,00], and 1 < p € 00 we define
Ao} = {z = (z0,21,...) CK:|z|s < ooforall t < R}

where {z]; = (35, |#;"e”*)/P if 1 < p < oo and |z|; = sup; =]’ ?f
p = oo. The space AL(e) is called a power series space of infinite type if
R = co and of finite type if R < co, respectively. Any sequence rg < 71 <
rg < .../ R defines a grading on Af(e) by | [l» = | |», and makes it
a graded Fréchet space (as which we shall always consider A% (a) in this
paper). Note that

1/p
l||% = (Zkﬂjlpew"“:’) ifl<p<oo and
J
J&||x = sup lz;le™ if p=o0.
i

Most important are the gradings defined by r, = k on AZ () and by
ry = —1/k on Af(a), respectively.

The space A% (a) {or o) is called stable if sup, ooy /oz7:1 < o0, strongly
stable if im, g, /0, = 1, and uniformly stable if there exists A such that
limsup,, axn/tn S A < oo for all K.

We shall use Kolmogorov numbers (cf. [3]). For any linear space E and
absolutely convex sets A C B C E we define

6n(A,B) = inf{6§ >0: AC 6B+ F, FC E asubspace with dim F < n}.
For U; = {z € A%{a): |z]; £ 1} we then have (see e.g. (3], 9.3.1)
8 (Uny, Up ) = elli7m)on s <y < R
Throughout this paper, we shall not assume that A% (a) is puclear.
9. In this section we prove necessary conditions for the existence of
tarmely or linear-tamely exact sequences of the form
(%) 0 — Af(a) — Ap(e) & AR(a)" = 0.
The space A% ()" is equipped with the grading
b RN ¥
lols= (S Is'lz) " #lsp<os and
i=1
Jal = sup o i p= oo

; i th
for z = (z)2, € AB ()b, 2t € A% (). Further, for fixed K € N the space
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A5 (a)¥ is endowed with the grading
K \Up
el = (S_Is7i) © #1<p<co and
i=1

K ; .
ll[l& = Sup (AR if p = oo
=

2.1, LEMMA. Let 1 < p < oo, R € {0,00}, ry = k if R = oo resp.
ry=—1/k if R=0.

(i) If (%) is tamely ezact, then o s strongly stable.

(it) If (%) is linear-tamely exact, then o is uniformly stable.

Proof We write A = A (o). Let K > 2be fixed. Let Uy, © A, Vy ¢ AN
and Wy, C A¥ denote the corresponding neighborhoods of zero {z : z|is
<1}, Let g : AN — A be defined by (zx)3e, — (2x)is,. We have

mr(Virr) C Wi C W;{(Vpﬁ).
We now suppose that for suitable a,e > 1, b,d > 0 and constants cy > 0 we
have
9(Uaiys) C sV and  Vepra C exg(Us)

where ¢ = ¢ = 1 in the case (i), For the Kolmogorov numbers we conclude
that

&n (ch+d: Wm) =< ck,mﬁn((T"K o Q) (Uk): (TK @ Q(Ua-m-l-af\’”l“b)))
< Ck,mfsn(Uk; Uam+ﬂ»K+b)
for k > am+aK +b. The space A% (a)¥ is canonically isomorphic to AR ()

with @ = (ap,..., o0, v, .., 01, 03,...) where each oy occurs exactly K
times; in particular, we have Bin = 0. It follows that

g(rm —roh+a)Bn < Ck’me(Tum+aK+b"‘T‘k)mn
and therefore
E{E_ < Tekdd ™ Tm ka,m
Br = Tk~ Tamtak+b  Pn(Th = Tamtak+b)

If rp = k then we put m = 0 and obtain limsup, o, /fn < ¢, and thus
limsup,, xn/tn < €

. k>omoall 40D

For vy = —1/k we calculate
d "o
Tok+d —Tm 1 +'E"75 — ;;% 1 4 (L{;.mb
s — Tam+aeK+5b 1w9—kﬂim9~}.§”2ﬂ:§ L+'f'j;,"

and obtain by choosing & 3 m and both very large that lim sup,, ca/fn < ¢,
hence lim sup,, axn/e, < a, which proves the assertion.

With the same proof we can obtain the following more detailed results.
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2.2. LemMa. Let ro < <ry<... /S Re{0,0} and1 <p < oo,

(a) If A% (a) x AR(a) is tamely isomorphic to a graded quotient space
of A% () then
(1) limsup, asn/on < liminfy rgia/Te if R = co.
(il) limsup,, ean/om < liminfy, #m/rmes of R=0.
In particular, o s strongly stable if imy rprq/mr = 1 and R = oo resp.
limen o/ T = 1 and B =0,
(0) If A%(a)" ds linear-tamely isomorphic to o graded quotient space of
A5 (@) then
(i) limsup,, ezen/o < liminfy repqa/re for all K if R = co.
(ii) limsup, ogn/on < Uminfp rom /T gy1ym for oll K if R=0.
In particulor, o is uniformly stable if iminfy repqa/re < 00 and R = oo
resp. lim info, v /P ar1ym < 00 and R =0.

We end this section with comparing the two conditions: strong and uni-
form stability.

2.3. LeMMa (cf. [2], 4.4, 4.5). (1) There exists a sequence o / oo which
is uniformly stable but not strongly stable.

(i) If & / oo is uniformly stable and limsup,, Gxn/0n < ¢ < D for all
K then there exists a strongly stable sequence & / oo such that (1/ D)oy, <
O < Do, for large n.

Proof. (i) We can choose any increasing sequence o with ags = B and
f=(A,A% A% .. AF, ... A%, .. ) where A> 1 and each A7 occurs exactly
7 times.

(il) We put 8, = ag~ and define B, by 8, = DFiff Dk < B, < DFFL
We set my = min{n : Bn > DF} and L(k) = myy1 — mk. By assumption
we have limyg L(k) = oo. We set Q(n) = max{k : my < n} and define
B, = DR +n—mem}/L@Q1n) Then we get (1/D)8s < 8, < 3. < DB, <
DB, for large n and Bpy1/Bn = DVEAQR) for large 7 (consider the cases
Qn+1) - Q(n) € {0,1}), hence lim,, (Bn1/Bn) = 1. Finally, we put &on =
B, and for 1 € i < 2% we set Fgngs = (1 — T)Gign -+ Togn+r if Qany; =
(1 — 7)agn + Torgn+: and obtain the assertion.

We shall make use of the following easy remark.
94. Remark Letro<rm <rg< .../ Re&[0,00]and 1 < p < co.

(i) Tf limy, ot/ B = 1 then A% (c) and AR(5) are tamely isomorphic.

(i) Put 4 = Limsup,{an/Bn,Bnf/on} I A < ez Tektd/Th and
R = co resp. 4 < infyspg Pk/Tekra and J = 0 then A% () and A% (5}
are (c)-tamely, i.e. linear-tamely isomorphic.
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3. We now set up the construction of standard exact sequences of the
form (#).

Let J be an index set and A = (a;,m)jes,men be a Kéthe matrix, i.e. a
matrix satisfying 0 < aj.m < @y,m+1 for all 4, m and sup,, ;.. > 0 for all g
For 1 < p < 0o we define

AP(A) = {z = (z;)je5 CK:|[2]nm < oo for all m}

where ||zjlpm = (35, |o;[Pa? )17 if 1 < p < oo and |
p=0o0.

&|lm = sup; |2;la;,, if

3.1. LEMMA (cf. [11], 2.1). Lel A = (a,@'!m)q;@['mew and I3 == (bj‘-m,)j(_:.:J':,n.(':[:d
be Kéthe matrices, let M; C I, j € J, be disjoint subgets of 1 and
infiens; iy = bjm for all j and m. Let 1 < p, g < 0o with p+1/q= 1.
Ifp > 1 we assume that for every m there is s(m) such that

ay 1y

. Qim

Con == SUP — < 00,
i Niem, 04, 5(m)

tfp=1 we put s{m) =m and ¢, = 1. Then

Q= &) ., &= (Eherer(a),

1EM; i€t
defines a continuous linear and surjective map @ 1 AP(A) — NP(B) satisfying
[Q€lim < Cm”f”s(m) and  nf{[[¢][n : Q€ = 7} < 17212105

Proof. We prove the case 1 < p < oo, the same arguments give the case

P = o0. First we have
P P
o 3
Bm < ( > ‘E@"a/i,m) < A lIENT -

Ik =32 3 &

i ieM; i iEM;

Let 1 = (nj)jes € \P(B), let m € N and ¢ > 0. For each j with 1y # 0 we
ChOOSE gj >0 El,Ild Ly & Mj with a’?:j,'l‘ﬂ S bj,m 4 Ej- WQ I)L'lt Ei’; s ’f}-,' if’lf = 27
and & = 0 otherwise. Then we have Q¢ = 5 and ‘ '

oo N\ [/
Il = (3 16702,) " < (32 Imgicty + )" < il e
E i

if €5 > 0 are chosen suitably small. This gives the result.

3.2. LEMMA {cf. [11],2.2). Let 1 < p < 00,1 < g < 00 and 1/p+1/q=1.
Let A = (Gi,j,k;m)i,j,kEN,meN be a Kithe matriz, put Ay = (01,5, k) jeM meN

or every k € N ¢ = r o 14
J;hm: &N and A = (6] pon + 6y b)Y P )i mem e Suppose
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(l) Qg 7 Josk =5 1 for all 'i,j, k.

(2) Qi g kim > it 7,km fO'i" all i,j and m S k,
@i ¢ oy = Qit1,4.im for al i,7 and m > k.

(3) lim; Qi gkm =0 for all 7 and m < k.

{4) For every m there is s,(m) such that

ry 1/7
(LR .
c}msup( (—w—m—”' )) < ©Q, = mini{p, q;.
mir = U1 % PR {p. q}

Then there exists an ezoct sequence
0 — N(Ag) 5 2 (4) 2 T a(4r) — 0.
kel

Moreover, putting s.(m) = m, ¢m oo = 1, and defining sp(m), s4(m), cm.p,
Cm,q Gecording to (4) for g < oo, we obtain the continuity estimates
1@l < cmllelleyimys  10E{N2ln : @2 = ¥} < gl
fi€llm < z(p_l)/p”me: 1€lim < 21/pcmspcsp(vn),q”'ifl]sq(s;:(m))'
Proof. (a) For z = (@i ;%) € AP(4) we put Qz = (37, =i j.x)jken. With
bjm = 005 = 4 m <k,
dikim = L G km = 01 pm, M= K,

we obtain by means of the previous lemma a continuous linear and surjective
map @ : M(A) — [, AP(Ay) satisfying the desired estimates, where
[T AP(Ar) is equipped with the seminorms

m

I = (3 bl )

k=1 j
Note that the assertion on @ also holds for p = oo and

]|, = SUD SUP |5 k]2, 7,k
k=1 7

(b) By definition of @ we have
ker Q = {(m,;‘j,;ﬁ) € AP(A) ZCEi‘j,k == 0 for all j,k}.

Let e;45 denote the canonical unit vectors in AP(A). We shall prove that
the vectors gi jx = €ijk — €41,k € ker @ form a basis of ker @). For z =

(mi,k) € ker @ and 7; 55 = 35,01 Tvjh We have

n

(23 7
Z Mgk Fi.g.h = Z EifkCigk ( Z mv,j,k) €ntl.5.k
4=1 d=1

=1
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and we obtain from (2) the inequalities

|3 mll, = S s m,mwzw

IJ_-

“‘.ijzsﬂrk' ,J,km-l_ ‘

i=] ==n f—l
1+, Z @.4,6["a

We put Thz = Za‘,j,k<'n. Mi,5k8i5.k, % € ker Q. The above inequality shows
that -

Ly, k ‘ n+l,j,k;m

J Bigglm)®

ITnzllm < (1 B )2 2l oy m)

and hence the equicontinuity of {7, },,. We show that lim,, Tz = z for all z
in a total subset of ker Q, and thus for all ¢ € ker Q by equicontinuity. Since
1 < p < o0, the vectors @ € ker Q of the form z = ¥, &e; ;4 form a total
subset, and for such an # and m > k, n > 4,k we have

Iz — Tnel, = Z |&:lPal i

iz=n-2

o )
<2t Z &P aﬁjkm+2p—1‘ Z 133 pCﬂ

i=n-1 Vel

<M1, ) Z Pl o my = O

p=n+1

(c) We define i¢ = Z” k 66,5, kGigk Tor €= (& ;1) € N (Ag) and obtain
a continuous linear map i : \(Ag) -+ AP(A) satisfying

, _ 1/p
i ]lm < 2-1/P ( Z &3P0} 4 pom + ﬂf+1,j,k;m)) <

-’J.!ic

P
1,0,k

fn-l—l + Z & pﬁ'r
=1

B
n-1,9,kim

{n — oc).

2AP=D2 g

It is clear that ¢ is injective and imi ¢ ker Q. Let T o= (254) € ker Q and

put mi e = Y0, T, 5 4. We show that n = (Migw) € AP(Ag), which implies
i =z € imi by means of (b). For * = 4,7+ 1 we have

|7h,3,fc[a*,g,k im

{ ‘Zuuwlwvmﬂa*,mk m < Cm,q(Eu:u |~1|$v J,k| aV
‘Zuulmyﬂa |a’*:.7=k hug < cm)q(zu—-ll"n”:? k‘

and therefore E % SuD; 75 k[P a

P m >k,
m <k,

\F \Sq(m
,_1,k: sq( m)) p
< P

*J ksm S gl L(m)* We conclude from
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our nmuclearity assumption (4) that

“n”fn = Z lni,jaktp(azj,k;m + a’f-{nl,j,k;m) < ZCﬁ,pcip(m),q“wuiq(sp(m))'
L5k

‘We end this section with proving an additional lifting property of the
sequence in the previous lemma. Let

= {ne [T ¥ falln <1}
k=1

m = {€ € X(A): [€lm £ 1}
3.3, LEMMA. For 1 < p < oo we have
20(Vin N1Ving1) D Um NrUpyy for alim andr > 0.

Proof Let m € Nand r > 1, let n € iy AP(Ag) satisly finllm <1
and ||nlm+1 < 7, let £ > 0. We put i(j, k) = 1 if k¥ < m and choose z'(j,k.)
very large if & > m. We define &5 = mjz if 4 = i(j, k) and & 5% = O if
i#i(j, k). Then Q€ =n. For 1 £ p < co we obtain

1/p
€1m = (3 138060y goem) S 1HE
j’k

_ i/p
€l = (Z |’?j=kip@fu,k;,j,ac;m+1) sTre
7k

provided that i(j, k) is Iafge enough for k > m. Here we have used (1) and
(3) of 3.2. The same proof gives the case p = oo.

4. Tn this section we apply Lemma 3.2 to construct the desired sequences
of the form (%). By reason of 2.3(ii) and 2.4 we only have to consider strongly
stable sequences o.

Let 1 < @y < ag < .../ oo and assume that lim, cign /0, = 1. We put
ny =0, 41 = oy, Ay = max{es,2} and ng = max{n : an < Az}. If A; and
n; are already defined, then we put

Ajgr = max{ogn,, i +1} and nip1 = max{n : an < Asp1}

We observe that npy1 2 3%, hence ng<nit1, and A; 1 /A; < max{oan, /o,
(i +1)/4}, 1 = 2. We define

ﬁn = A;

For n; < n < nye we obtain

ifng <n < Myl

Asp1 4
By = Ai S om < gy LA = A; Ba,
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hence lim, &, /B, = 1 and limy, B2n /8, = 1. We set my = n;; — n,; and see
that m; > 2n; and m; < mypr, ¢ > 1. We define N : N? — N by

N(i,k) = nyqi1+k  where iy = min{j € N: m; > k}.

Then N is a bijection: The injectivity follows from N 4im1 + B < ngyy
which is true for i = 1 by definition of é; and follows for ¢ > 1 since m; is
increasing; if, conversely, n; < m < ny.y, then we can put & = m — n; and
t=J+ 1— ¢ since iy, < j because m; > k, which proves surjectivity.

We define a second bijection M : N* — N by M(j, k) = 25~1 + (j - 1)2¥
and obtain a bijection n : N® — N, namely n{i, 5, k) = N (i, M(j, k).

Now let 7p < r1 < 1y < ... and define

ai:jrk;m = e(Tlmmmk)ﬁn(id.M.
Then conditions (1)-(3) of Lemma 3.2 are clear, and (4) follows (e.g. for
sp(m) = m + 1) since

Bnig k) = Pritr 2 As = 4.

From Lemma 3.2 we hence obtain a tamely exact sequence. We now prove
that the K&the sequence spaces AP(-) in that sequence are tamely isomorphic
to A% () where R = sup, rp > 0 and 1 < p < oo.

We equip 4A%(e) and AR(8) with the gradings || [j; = | lm- Since
limy, ¢ /Bn = 1 we see that A% (o) and A% (B) are tamely isomorphic. A diag-
onal transformation with (e™Pn.5.k) )(,,-,j,k) induces an isometric isomorphism
AP(A) =2 A% (6). For every k, the diagonal transformation with (emwFnirim ),
gives an isometric isomorphism AP(Ay) = AR ((Bag1, g )i)-

We note that n; < (3/2)(n;—n;_1) = (3/2)m;_; implies that (2/8)n4,, <
Miy—1 < 7 by the definition of in,. We have n(1,j, k) = Nipe + M where
M = M(j,k); hence n;,, < 2m implies that 28427 — 1) < n(L5,k) <
3. 26-1(25 — 1). Since A is strongly stable, we conclude that A7(A4),) and
A%(B) are tamely isomorphic, and so are I[72: AP(44) and A (B)N.

It remains to determine the kernel of the sequence, By definition we have

M = M (5, k).

We distinguish the cases 0 < R < 0o and R = 0; if R > 0 we assume that
ro 2 0. We get for R > 0,

'Bﬂ-(id,k) = Az‘m+i-—-l: ﬂn(i—}-l,j,]g) = A-,',M_}...,;,

(P =T2)Bris,s
ellm (1.4,h) S ﬂ:-i,j’k;m +ai+1,j,k;m

Ay ot
= {rm="k}Bn (s 5o + e('ﬂm”rk)}ii“%‘—i'ﬁn(m.m

af i1
Ay .
iarti - .
ﬁ 28( aiME'l-—.l'-_:lrm T'k)ﬁ'ﬂ(’is.)‘:’ﬂ) < cme(f'm_}.q.-—:r"ﬂ)ﬁn”,jrk)
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since Ain+1/Airgpic1 < Ty /re, for all except finitely many (M, ). For
R =0 we get

erm =T} Pntit .0 = i gkm t Gigd, gk < 9eTmBniidm TR Bnlit1,4,8)

Adp il
< ZE(MEM_*M%’V)B”("‘“""’” < e, e Tm =TI Bt )

ipr+i

since (Aip4i-1/Aip+i)Tm S Trya for all except finitely many (M, ). In
both cases, a suitable diagonal transformation shows that AP (Ax) and A%, (5)
are tamely isomorphic.

‘We have proved:

4.1. TuporEM. Let o be strongly stable, let 1o < r1 <73 < ... /" RE
[0,c0], let 1 < p < co. Then there exists a tamely ezact sequence

(%) 0 — AR(a) 5 Ay(a) S A% (@)Y - 0.

Moreover, we can obiain the following continuity estimates. We write ¢ =
(qk)fmy - For every m and e > 0 there is a constant D = Dy, . > 0 such that

iiEIT‘m“E S D|€l7"m+57 E‘fl"'m_e S D|Z§|Tm+55
ki e )
Z ]Qk$|7-m-rz < DinrmA—s: inf{|z[rmws gz = y} <D Z |y |1‘m+E
Rzl k=1
for &,z € Ah(a) and y = (y*)2, € A% ()N, Furthermore, for
Vi={¢e Ala):|§y <1} and

Uy = {1= (") € (@™ : 3 "l < 1}
k=1

we hove

Dg(V,,, =N TV:.«m.,.l—E) O Unte N TUm+1,?‘m+1+E for all v > 0.

For the linear-tame case, by means of 2.3 and 2.4, from 4.1 we obtain
4.2, THEOREM. Let o be uniformly stable, let ro <rp <rp<... /" R€
{0,00}, let 1 € p < 0. Assume that
. Qren, liminfy repsa/re  for all K if R = oo,
Hmsup == <\ i infe re/rossa  for all K if R=0.
Then there exists a (c*)-tamely, 4.e. lincar-tamely ezact sequence
(*) 0— _/1%(.;\;) — A%(a) — A%(Q{)N — 0.

4.3. CoroLLARY. Let B € {0,00}. Assume that there is b such that
limg, rgi/re = 1. Then the following conditions on o are eguivalent:
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(i) A%(a) x AL (e) is tamely isomorphic to a graded quotient space of
AL (o) for (some or any) 1 < p < co.
(ii) There exists o tamely exact sequence () for (some or any) 1 <
p< oo,
(iil) o is strongly stoble.

4.4. COROLLARY. Let R € {0,00}. Assume that there are ¢ > 1 and
d > 0 such thot .

r .
1< liminf %% < 00 4f R=o0c
k Th
Tl o
resp, 1 < liminf L if R=0,
k  Toktd

Then the following conditions on o are equivalent:

(i) AB(a)N is linear-tamely isomorphic to a graded guotient space of
A% (&) for (some or any) 1< p < oo,
(ii) There exists a linear-tamely ewact sequence (x) for (some or any)
1<p<oo.
(i1} « s uniformly stable.

Of course, the assumptions on 7y, in 4.3, 4.4 are satisfied for the standard
gradings vy, =k if R =coresp. ryy = —1/k if R =10.
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