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solution u of the eguation Pu = f has the asymptotic expansion

oo 3

q
ZZZ s;+pz(z 5o (lnaw, Yo == l)fm,
p=0 j=1

r=0  a=r

where fipr € M (I #, 5)) forw' < —2. This means that for every N € N,

ki—1 fj—1

u~2iw +2PZ(Z Frp(lnws) )f”,,

p=0 =1 r=0  m=r .
€ M, (R(61) x I(@,8))  forwe Rell.
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Holomorphic functions and Banach-nuclear
decompositions of Fréchet spaces

by

SEAN DINEEN (Dublin)

Abstract. We introduce a decomposition of holomorphic functions on Fréchet spaces
which reduces to the Taylor series expansion in the case of Banach spaces and to the mono-
mial expansion in the case of Fréchet nuclear spaces with basis. We apply this decomposi-
tion to obtain examples of Fréchet spaces E for which the 7, and 75 topologies on H{E)
coincide. Our result includes, with simplified proofs, the main known results—Banach
spaces with an unconditional basis and Fréchet nuclear spaces with DN [2, 4, 5, 6]—
together with new examples, e.g. Banach spaces with an unconditional finite-dimensional
Schauder decomposition and certain Fréchet-Schwartz spaces. This gives the first exam-
ples of Fréchet spaces, which are not nuclear, with 7y = 75 on H(E).

In this article we introduce a new decomposition method for holomor-
phic functions on domains in ¥Fréchet spaces which admit a Banach-nuclear
decomposition {Proposition 1). This decomposition reduces to the Taylor
series expansion for Banach spaces and to the monomial expansion in the
case of Fréchet nuclear spaces with basis. This allows a unified treatment
of topological problems on a variety of Fréchet spaces—including Banach
spaces and Fréchet nuclear spaces. We apply this decomposition to obtain
exammples of Fréchet spaces E for which the 7, and 75 topclogies on H(E) co-
incide. Our result includes, with simplified proofs, the main known results—
Banach spaces with an unconditional basis and Fréchet nuclear spaces with
DN [2,4, 5, 6]—together with new examples, e.g. Banach spaces with an un-
conditional finite-dimensional Schauder decomposition and certain Fréchet—
Schwartz spaces (see the examples given below). Combined with results in
[7] this gives the first examples of Fréchet spaces, which are not nuclear,
with 75 = 75 on H(E).

The proof is quite technical and we could not avoid some complicated
notation. To keep the technicalities to a minimum we confined ourselves in
Propositions 3 and 4 to entire functions and indicated afterwards the mod-

1991 Mathematics Subject Classification: Primary 46G20, 46A07; Secondary 46A06,
32A05.
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44 5. Dineen

ifications needed to obtain more general results. Our methods also include
a description of a fundamental system of compact sets using decreasing se-
quences of seminorms and the use of polynomials which are homoegeneous
in each even variable and in the combined odd variables. We refer to [5] for
definitions and properties of holomorphic functions on infinite-dimensional
spaces.

Let A:= A(A) denote a Fréchet nuclear space with Kéthe matrix A and
let {E,}, denote a sequence of Banach spaces. We let E := A{E,}n) :=
{(za)n : zn € By and (Jlzafl)n € A(A)} and endow E with the topology
generated by the semi-norms

oo
(1) Handnlle = anpllznl, k=1,2,...
=l
It is easily checked that (E, {||-|{x)x>1) is a Fréchet space and that {E, },
is an unconditional Schauder decomposition of F.

ExamPLES. 1. Let By = F and B, = {0} for n > 1. Then A\{E,},) & E.

2. If dim(E,) = 1 for all n then AM{E,},) = A(A).

3. Let (bn)n denote a sequence of positive integers such that
> bl k/@n ey = oo for all k and j. Let B, = £° for all n. Then
A({Fn}n) is a Fréchet-Schwartz space which is not a Fréchet nuclear space.
A concrete example is obtained by letting a, ; = n?* and b, = n?".

4. The space A({E.}n) is a Schwartz or Montel space if and only if
dim(E,) < oo for all n.

Let Wn.denote the canonical projection from E onto E, for each positive
integer n. If B is a subset of E = A{E.},) then the following are easily
seen to be equivalent:

{(a) B is a relatively compact subset of £,

(b) 7.(B) is a relatively compact subset of F, for each n and B is a
bounded subset of E,

{¢) wn{B) is a relatively compact subset of E, for each n and
(supep |70 (2)])n € AA).

It Uy is a balanced open subset of E, for each n and @, Uy, == {{zn)n €
E .z, €U, for all n} then U is a balanced open subset of E which we refer
to as a bolanced open set of polydisc type. In Example 1 above all balanced
open sets are of polydisc type while in Example 2 the balanced open sets of
polydisc type are the open polydiscs. ' .

The equivalent conditions above show that a fundamental system of com-
pact subsets of €p,, U, is given by sets of the form

@Kn ={(@n)n € E: 2, € K, for all n}
n

icm
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where K, is a compact balanced subset of U, for each n and (supLex. l2l)n

€ A\A).

Hence (see for instance [5, Lerama 5.18)) if K is a compact subset of
U =P, U, then there exists a zero neighbourhood V := P, Vo in B of
polydisc type and a sequence § = (fn}n of positive real numbers &, with
bn > land Y77 1/6, < oo such that §K is a compact subset of I/ and

(2) Kc§KE+V)cU.

Ifn € N we let P(™E) denote the set of all continuous n-homogeneous
polynomials on the locally convex space B. If E has a Schauder decompo-
sition {E,}, and P € P("E) then we say that P is k-homogeneous in the
J-th variable if

P(Zmi+)\m3~) = )\’“P(Zmi) for all imz € K with z; € F; for all 4.

it i=1 =1

Em = (my,...,mn,...) € N (and so m; = 0 for all 4 large) we let
im| = Ej m; and denote by P(™E) the set of all P € P(|m|E) which are
mg-homogeneous in the jth variable for all j. This means that

P(Z,\jmj) =3mp( Y a)
=1 Jsm ;70
where A = (4;); and A™ = [, ATY.
The following useful estimate is easily proved.

LEMMA 1. Let E = Ey %...x E, where each F; is a normed linear space
and E 15 normed so that
. |)\ilsl

T
|3
izl i=1l,...,n

IfmeN" PeP(™E) and B; >0 fori=1,...,n then §™|P| = 1Pllss

where
= (S [l <1}
i=1 g1

Now let f € H(U} where U = €D, U, is a balanced domain of polydisc
type and let 2 = (x,), € U. For each m € NIV Jet
1 FO iy i)
(3) Pr(m) = mome [ =L g dhy,
(2md) P\i|=1)\1 D ¥ |

k13
= sup ”Z)\zm
im=1

where m = {(mq,...,m,,0,...).
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By [5, Theorem 5.21] applied to the Fréchet nuclear space
Ea,)n = {(v)n: 1 € C and (yazn)n € M{En}n)}

we have

(4) flay= > Pula)

meNH)

We refer to (4) as the Taylor-monomial expansion of f since it reduces to
the Taylor series expansion when restricted to each U, and to the monomial
expansion when restricted to B,y NU. By uniqueness of the Taylor series
and monomial expansions we see that P, € P(™E) for all m & N™, 1f
K is a compact subset of U then there exists a neighbourhood V of K
with K € V C U such that |[f||y := M < oo. By (2} there exists a
neighbourhood W of 0 in E and a sequence & := (§,), with 6, > 1 for all n
and Yoo, 1/6, < oo such that

KC§K+W)cV.

By (3),
|Prllicsw < ME™™  for all m & NW,
By (3) and (4) we see that ‘

”‘f ZPT”HK W<M Z &

meN®NJ

for any finite subset J of N,

The above, together with further details from [5, Propositions 5.24
and 5.25], now shows the following.

PROPOSITION 2. If A(A) 35 a Fréchet nuclear space, {Ex}n is a seguence
of Banach spaces and E = A({E,}r) then {P(™E)}nenm 45 an absolute
Schauder decomposition for (H{U),7), 7 = 1 or 7, and U a balanced
open subset of polydisc type in E. Moreover, {P(™E)} ey 15 an absolute
Schauder decomposition for (H{E),7s) and an unconditional equicontinu-
ous Schauder decomposition for (H(U), 75} for U a balanced open subset of
polydise type in B.

In proving our main result we shall need to consider polynomials which
are homogeneous in some but not in all variables. To simplify the notation
we introduce the collection of polynomials which are homogeneous in each
even variable (and consequently in the combined cdd variables).

Let {E,}, denote an unconditional Schander decomposition of the Fré-
chet space E. If m = (mq,...,my,) € N® we let P,("™E) denote the sub-
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space of P(I™ E) consisting of all polynomials P satisfying

(29322 1+ Zﬂ?zz + )\:cgg) = /\m”JP(i )
b =

for 2 2 € Eand j €N Ifmg = 3000 maiy, Me = {ma, may, .. Jand A
is the [m/|-linear symmetric form on E associated with P then

P()\o im%ul + i )\ixzi) = )\mP( i ﬂfz)
im1 i=1 i
() (o)

where A™ = []:2 0 A2,
Now let ' denote a Banach space with an unconditional Schauder de-

composition {Ey,},. We may and shall always suppose that the given norm
on E satisfles

®) [Sen

for all $°7° 2, € E, where z, € E, for all n. If (8,), is a sequence of
positive real numbers, || - || is a continuous norm satisfying (5) and j is a
positive integer we let

®) 132, sz S e,

n=1 n=j+1

= sup ”Z)\nmn

i)sn|<1

and

|55, =1 S

for all 3°7° | %, € E. If §, = 2 for all n we write ||z||; in place of ||z| 5.
For any strictly increasing sequence (ji)5e, of p051twe mtegers we define
Il llss,....5 inductively, using (6), as

(7) I Nssrciie = Q- gnesginn D
If B, 2 1foralln and 357, Buzn € Blorall 3502 @, € B, then (||-]l5,5)524

n=1
is a decreasing sequence of continuous norms on E, |- |ig is a continuous

norm on & and

(8) {z:fl=lls <1} C ﬂ{w Hzls <1} C{z: 2] < 1}
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If dim(E,) < oo for each n and {fx)72, is a strictly increasing sequence
of positive integers then

Kij = ﬂ{m ; HmHju-u.j!e < 1}

k:

is a compact subset of E. Moreover, sets of the form cKy;,,.¢ € R, form
a fundamental system of compact subsets of £ and if § > 1 for all k and
&, —1as k — oo then

{35: ”mHjl,,j;\ Sék}: ko= 1721"'5

forms a fundamental system of neighbourhoods of K1, (*).

Now let E = A({Fn}n) where each E, is a Banach space with an uncon-
ditional Schauder decomposition and A(A) is nuclear. Let (k/)52, denote a
strictly increasing sequence of positive integers with kg = 1. For each f € N
there exists a unique s; such that k;;, < j < ks;+1. Note that s; = 0 and
sk;—1 = | — 1. Suppose for each j we have a strictly increasing sequence of
positive integers (ni’j)z‘>1 Let ¥ ; = {nas,...,m,;} and let

oxX
1>, Z el + 3 gl
i=1

J=h

where [|z;]fx,_,, ;i deﬁned using (6) and the unconditional Schauder decom-
position of E; for each j. Let By, := {z : ||z|lx, € 1}. If the unconditional
Schauder decomposition of each E; is finite-dimensional then Ky := ("), By,
is a compact subset of F and sets of the form ¢Ky, ¢ € R, form a funda-
mental system of compact subsets of F. Moreover, if §; > 1 and 8 — 1 as
I - oo then § By, ! =1,2,..., form a fundamental system of neighbour-
hoods of K.

ProprosITION 3. Let {En}ﬂ denote an unconditional Schauder decom-
position aof the Fréchet space E, let F' denote ¢ Banach space and let T :
H(E) — F denote a Tg-continuous linear function. Let 3; = 1 for oll 1,
Boi1 = 2 for all i and suppose Y o, BPz; € E for any 3 1o, #; € E and
any p > 0. Let || - || denote o continuous seminorm on E satisfying (5) and
suppose ¢ > 0 is such that
(9 NT(PY| < clPll  for all P € P(™E) and all m € N

where | P|| = sup{[P{z)| : ||z|| € 1}. Then for any § > 1 there exists a
positive integer j and ¢ > 0 such that

\T(P)|| < e1||Pllg; for all P € Po(™E) and all m € N®™
™ sup{| P(z)| : ||l2llp.; < 1} = sup{|P(z)|: [|z]lg.; < 6}

1 5 0asn — oo could be used to

where || Pllg,; =

(*Y Any sequence (8n)n for which (B1...8n)"

obtain a similar characterization.

icm
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Proof. Suppose the result is not true. Then for every positive integer j
there exists m; € NM™ and P; € P.(™ E) such that

(10) IT(E > 31185l p,25-

If jm;| = I for an infinite number of j then, by (8), {P;/[Pill,2; Ym,; 1=t 18
a locally bounded, and hence 75-bounded, subset of P('E) on which T is
unbounded. This is 1mpossxble and so we may assume that |m;| is strlctly
increasing. Let m; = (m,. .., mi s m) =352, mb_|, m§ = = (m}, m},...)
and s; = (0, .). If A; is the symmetric ]mgi -linear form
associated with P then for 0 <1 < m" let

.,O,NLZj,mZHl,..

o0 i &)
m md—1 ™m
Pj,l(z-’ﬂi) (' Jl) (Z«’Gzz 1) ( Z T2¢~1) ’ (Zm@)
i=1 =541 =1
Then P, € Po(™ E) and 308 P, = P;.
Hence, by (10} and Lemma 1, for each j there exists I;, 0 < I; < mé,
such that

(1) TP > g 1Bl 2 e [ sl

Let 8 = (5;)32,. Since f; > 1 for all j the following two cases cover all
possibilities. We may suppose, by taking a subsequence if necessary, that
the limit exists in case 2.

Case 1: lim; oo (B%)V/ 1Ml = 1.
Case 2: limsup;_{#%)"/I™l =w > 1.

We consider case 1. By (9),

: 1T (P )\
hmsup( 2 ) .<1.

J-roa PJJ-';‘” -
By (11),
(1T )Il)l/”” . ( j HP-I_”ﬁZj)l/Imjl
liminf | ———"— > liminf 518,
gm0 ( |iP,sz o \Jmz + 1 Bl

> §liminf(8% )™l (by Lemma 1)
jo0

=4

Since § > 1 this is impossible and so case 1 leads to a contradiction.
We now consider case 2. Let z = 3. £, € E be arbitrary and let p be
a fixed positive integer. Since Y ;0. A72; € £ and || - ||,; is decreasing in §
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we can choose ny such that

|5

i=n+1

<1 for all 4 > nq.
6,25 — J=m

Since Fo;_1 is independent of 7, we have

ollpay) Bl &
Pj,l,-(-'f): (“ ”1852]) Pj,lj (Z'b:l z + Z 6?-75'5)

(%) lellss 55
Hence
o (1B @) )”’”’“" 2 =
hmsup('—w_— < prttlels)z
j"ﬁm H‘Pj:lj “ﬁ)zﬂf wp( “ ||ﬁ)6
since

< 2.
B.2j

Since w > 1 and p was arbitrary this implies that

> P;y.
Dy,
=1

UL, o0
H_ELE—I_ Z Bl

lellses 57

1P5.05 |32

By (11) we have
T(Pj,;j) '
I Py.i; 18,25

This is impossible and hence case 2 leads to a contradiction. This completes
the proof.

lim sup
J—roo

1/m;] ] 1/jmy;|
2 limsup (m) = 1.
7

J—roo

We note that the integer j in Proposition 3 may be taken arbitrarily
large. We shall refer to the seminorm || - || and to the seminorm 61| - ||,
which occur in Proposition 3, as the initial and final seminorms of Propb—
sition 3, respectively. In Theorem 4 the Fréchet nuclear space A(A) has DN
and hence it admits a continuous norm ([5, 6, 11]).

THEOREM 4, Let A(A) denote a Fréchet nuclear space with DN and
let {En}n denote a sequence of Banach spaces each of which has an un-
conditional finite-dimensional Schauder decomposition. Then v, = 75 on

HA{Er}n))-

Proof Let {Eyn m}m denote the unconditional finite-dimensional decom-
position of Fn. By unconditionality we have B := A({E,}n) = B, ,, Bam =
@B, By, where {J,},. is any partition of N x N. We apply Proposition 3 to
a decomposition {Fy}y, of E in two different situations which we refer to as
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(A;) and (B,):
(A): Fanoa = {0}, Fon = By, Bon = tnit2/Gn,i41,
(Bs) 1 Fan-1= Epns, Fan = Eyny

where ¢ : N — N\ {s} is bijective, fap = L.

Let Po ("™E) and Pex(™E), m € N, denote the subspaces of P(™IE)
consisting of those polynomials which are homogeneous with respect to the
even variables for the decompositions given for (A;} and (B,) respectively
and let P{M™E), m € N®  denote the elements of P('mlE) which are ho-
mogeneous with respect to all the variables of the decomposition {Fy}, of
M{Ey}n). For each (4;) the odd variables are all zero and the even vari-
ables are the variables of the decomposition {Ep}n of A({En}.). Hence
Poy(™E) = P(ME) for all m € N(™ and all k. For each (B;) the odd vari-
ables are the variables of the unconditional decomposition {Ens}n of Fs
and so the combined odd variables give the sth variable of the decomposi-
tion {E,}, of A({Er}~) and the even variables are the other variables of
the same decomposition. Hence P, o("E) = P(™FE) for allm € N™ and all
s. The DN hypothesis on A(4) will guarantee that the hypothesis of Propo-
sition 3 holds for (A4;). Hence in both cases we are applying Proposition 3
to {7) (mE)}mEN(“) :

Let I denote a Banach space and suppose T : H(E) — F is a 75
continuous linear function. Since T is 7s-continuous there exist ¢ > 0 and
& > 0 such that

|T(PY| < cl|P|| forall Pe P(™E)} and all m e N,
where | P]| = sup{| (2] : sl < 6} sad

oo o)
(12) H Zmn = Zan,li!a:-rLH'
ne=l n=1

Let § > & be arbitrary. We claim that for each non-negative integer !,

(13);  there exists &, § < §; < &, a strictly increasing sequence of non-
negative integers {kg = 0,k1,..., &} and strictly increasing sequen-
ces Nj—g; 5 = {15, ooy Mg, ity 1 < § < ki, where s; is defined by
ks; £J < ksjt1, and ¢; > 0 such that _

IT(P)|| < et P} for all P € P(™E) and m € N,
where [|P|| = sup{|P(z)] : [alx, < &1}
We establish this claim by induction. Let &g = &, cp = ¢ and kg = 0 {the
set Wy_gg 5 15 empty for all §). By (12), (13)o is satisfied.
We now suppose that we have found 8y, ki and n;; such that (13); is

satisfied, Choose 6;,9 > 1 such that §;6; 0 < &. Now apply Proposition 3 with
decomposition {A;), &0 and initial norm &;” | - I, This gives a positive
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_ integer kpyq, which we may suppose to be strictly larger than k;, and the
final norm

W T

Now choose &;; for 1 < 4 < kyqq such that §; > 1 for all ¢ and §;4; :=
ST 6, < 8.

We apply Proposition 3 with the decomposition (By), &1 and the initial
norm given by (14}. This gives a positive integer niyi—s,,1, which we may
suppose to be strictly larger than n;_g, 1, and the final norm

1) [, = Etos (Uabdenns+ [S,,,)
i=2 '

We now apply Proposition 3 in succession to (B3),...,(Bp, 1) and
812,y 61k, -1 using as initial norm the final norm of the previous appli-
cation. In particular, (15) gives the initial norm for the application using
(B2) and &2 The final norm obtained after these applications of Proposi-
tion 3 is

kip1—1

- = (51&,0)“1(” Z H Z QMHH:EJ“)

i=1 J=kig1

kl-{—l_l _ l’“!—i--l‘1
(& 11 51,:&) ( > (Ilﬂ'-‘jllm)mﬂ—sj-,j-F” > xj”N )
i=0 q=1 J=ki41 no
krg1—1

=§

z+1< Z ;41185 g o Z a3,1+2[|;cj||)
i=kit1
o
_51_4-1“2%‘
i

Hence (13)141 is satisfied and by induction (13); holds for all I. Hence
there exist sequences (¢7)i»o, (ki)i>o and (ni;)i>1,5>1 such that

(16) |T(PY|| < ellP|i forall P e P(™E) and all m e N

where ||, = sup{|P(&) : ljally, < &1}

Let K = 6'Ky. The set K is a compact subset of E and if V is a
neighbourhood of K then (16) implies that there exists C{V) > 0 such that
IT(P)| < C(V)||P]v for all P € P(™E) and all mg.

By (13); and Proposition 2 this implies that 7" is 7,-continuous and
completes the proof.

The above methods together with modifications given in [5, The-
orem 4.38] show that we also have 7, = 75 for balanced open subsets of
A{En}n) which are of polydisc type.

LRz-|-1
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The 7, topology on H(U), U a balanced open subset of a locally convex
space, iy generated by all seminorms of the form

|
n=(0 =0 n:

"

where (B, ), i$ a sequence of bounded subsets of E converging to some
compact subset of U.

In [7] we proved that 7, = 7, for T-invariant convex balanced domains in
a Fréchet space with T-Schauder decomposition. It is easily shown (see for
instance the proof that every Fréchet-Schwartz space with an unconditional
finite-dimensional decomposition is T-decomposable in [1]) that A({F.}.)
has a T-Schauder decomposition when A(A) is a Fréchet nuclear space and
each E,, is a Banach space. Thus, by Theorem 4 and [7] we have the following
resuit.

THEOREM 5. If AM(A) is a Fréchet nuclear space with DN and {E,}n
is a sequence of Banach spaces each of which has an unconditional finite-
dimensional Schauder decomposition then A({E,}.) has o fundamental
neighbourhood basis at the origin (V;); such that 75 = 7, = 7 on H(V;)
for all 4.

Thecrem 5 applies, in particular, to Banach spaces with an unconditional
finite-dimensional decomposition. Examples of Banach spaces of this kind
and which do not have unconditional basis are given in [8] and [9]. Examples
of twisted quojections with unconditional finite-dimensional decompositions
but without an unconditional basis are given in [10] (such spaces do have
a basis). It is also easy to show, using Theorem 5, that 7, = 75 on H(E),
where F is a complemented subspace of AM({F,,}). Hence Theorem 5 applies
to reflexive subspaces with the approximation property of Banach spaces
with an unconditional finite-dimensional decomposition and gives examples
which do not have a finite-dimensional decomposition.

Since B, and A{A4) are closed complemented subspaces of A({E,},) it
follows that some restrictions are necessary on both A(A) and the Banach
spaces {E, }. in order to obtain 7, = 75 on H(E). For instance, if B, & £,
for some n then 7, # 7 on H(E,) [3, 5] and if A(A) does not have DN then
Tw 7 Ts on H(A(A)) [5, 6] and hence either of these implies that 7, # 75 on

HOA{E])-
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Polynomial asymptotics and approximation
of Sobolev functions

by

PIOTR HAJLASZ and AGNIESZKA KALAMAJSKA (Warszawa)

Abstract. We prove several results concerning density of Cf°, behaviour at infinity
and integral representations for elements of the space L™F = {f | V™ f € LP}.

1. Introduction. It was O. Nikodym who first introduced Soholev
type spaces. They appeared in [9] under the name of Beppo Levi spaces.
Today this name is reserved for spaces of the type L™P(R") = {f €
DHR™) | V™f € LP}, also denoted by BL,,(L?(R™)). However, an interest
in spaces of this type really begun with the paper of Deny and Lions [4].

The space L™® is equipped with a quasinorm V™ flze. It is well known
that elements of L™PF are locally integrable with exponent p. However, they
need not be p-integrable in the entire space R™. As an example, take any
polynomial of degree less than m.

In this paper we prove several results concerning behaviour at infinity,
approximation by Cf° and integral representations for functions from the
space L™P. We also deal with the space W[, = L™ N L™>.

The general framework of the subject and the problems discussed here
are certainly not new. They have been developed in many directions {cf. [1]-
(3], [6], [8], [L1], [L3]). The most comprehensive source is [3]. However, the
approach presented in these papers is very technical, based upon complicated
integral representations and singular integrals. For this reason the authors
deal only with 1 < p < co.

Qur approach is more elementary, because it depends only on a Poincaré
type inequality. We also cover the missing case p = 1. The Poincaré

1991 Mathematics Subject Classification: Primary 46E35; Secondary 41A10, 411460,
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Key words and phrases: Sobolev space, Beppo Levi space, approximation, polynomial
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