

54

- cm
- [2] G. Coeuré, Fonctions analytiques sur certains espaces de Banach, Ann. Inst. Fourier (Grenoble) 21 (2) (1971), 15-21.
- [3] S. Dineen, Bounding subsets of a Banach space, Math. Ann. 192 (1971), 61-70.
- [4] —, Holomorphic functions on (c_0, X_b) -modules, ibid. 196 (1972), 106-116.
- [5] —, Complex Analysis in Locally Convex Spaces, North-Holland Math. Stud. 57, North-Holland, 1981.
- 6] -, Analytic functionals on fully nuclear spaces, Studia Math. 73 (1982), 11-32.
- [7] —, Holomorphic functions and the (BB)-property, Math. Scand., to appear.
- [8] N. J. Kalton and N. T. Peck, Twisted sums of sequence spaces and the three space problem, Trans. Amer. Math. Soc. 255 (1979), 1-30.
- [9] T. Ketonen, On unconditionality in L_p-spaces, Ann. Acad. Sci. Fenn. Dissertationes 35 (1981).
- [10] G. Metafune, Quojections and finite dimensional decompositions, preprint.
- [11] D. Vogt, Subspaces and quotients of (s), in: Functional Analysis: Surveys and Recent Results, K. D. Bierstedt and B. Fuchsteiner (eds.), North-Holland Math. Stud. 27, North-Holland, 1977, 167–187.

DEPARTMENT OF MATHEMATICS UNIVERSITY COLLEGE DUBLIN BELFIELD, DUBLIN 4, IRELAND

> Received May 19, 1993 Revised version June 27, 1994

(3104)

STUDIA MATHEMATICA 113 (1) (1995)

Polynomial asymptotics and approximation of Sobolev functions

by

PIOTR HAJŁASZ and AGNIESZKA KAŁAMAJSKA (Warszawa)

Abstract. We prove several results concerning density of C_0^{∞} , behaviour at infinity and integral representations for elements of the space $L^{m,p} = \{f \mid \nabla^m f \in L^p\}$.

1. Introduction. It was O. Nikodym who first introduced Sobolev type spaces. They appeared in [9] under the name of Beppo Levi spaces. Today this name is reserved for spaces of the type $L^{m,p}(\mathbb{R}^n) = \{f \in \mathcal{D}'(\mathbb{R}^n) \mid \nabla^m f \in L^p\}$, also denoted by $BL_m(L^p(\mathbb{R}^n))$. However, an interest in spaces of this type really begun with the paper of Deny and Lions [4].

The space $L^{m,p}$ is equipped with a quasinorm $\|\nabla^m f\|_{L^p}$. It is well known that elements of $L^{m,p}$ are locally integrable with exponent p. However, they need not be p-integrable in the entire space \mathbb{R}^n . As an example, take any polynomial of degree less than m.

In this paper we prove several results concerning behaviour at infinity, approximation by C_0^{∞} and integral representations for functions from the space $L^{m,p}$. We also deal with the space $W_{r,p}^m = L^r \cap L^{m,p}$.

The general framework of the subject and the problems discussed here are certainly not new. They have been developed in many directions (cf. [1]–[3], [6], [8], [11], [13]). The most comprehensive source is [3]. However, the approach presented in these papers is very technical, based upon complicated integral representations and singular integrals. For this reason the authors deal only with 1 .

Our approach is more elementary, because it depends only on a Poincaré type inequality. We also cover the missing case p=1. The Poincaré

¹⁹⁹¹ Mathematics Subject Classification: Primary 46E35; Secondary 41A10, 41A60, 41A63, 41A99.

Key words and phrases: Sobolev space, Beppo Levi space, approximation, polynomial asymptotics, density of C_0^{∞} functions.

The work of the first author was supported by KBN grant no. 2 1057 91 01.

inequality was first used in a similar context by Iwaniec and Martin [5, Lemma 3.4].

Acknowledgements. The authors wish to thank Professor Bogdan Bojarski for stimulating and helpful advice and Professor Tadeusz Iwaniec for his careful reading of the manuscript and many helpful suggestions.

2. Notation. Let $\Omega \subset \mathbb{R}^n$ be an open set, m a positive integer and $1 \leq p < \infty$. We define

$$W^{m,p}(\Omega) = \{ f \in \mathcal{D}'(\Omega) \mid D^{\alpha} f \in L^p(\Omega) \text{ for } |\alpha| \le m \},$$

$$L^{m,p}(\Omega) = \{ f \in \mathcal{D}'(\Omega) \mid D^{\alpha} f \in L^p(\Omega) \text{ for } |\alpha| = m \}.$$

The space $W^{m,p}(\Omega)$ with the norm $||f||_{W^{m,p}(\Omega)} = \sum_{|\alpha| \leq m} ||D^{\alpha}f||_{L^p(\Omega)}$ is a Banach space. The space $L^{m,p}(\Omega)$ is equipped with a quasinorm $||f||_{L^{m,p}(\Omega)} = \sum_{|\alpha|=m} ||D^{\alpha}f||_{L^p(\Omega)}$, vanishing on all polynomials of degree less than m. Therefore, it induces a Banach norm on the quotient space $\dot{L}^{m,p}(\Omega) = L^{m,p}(\Omega)/\mathcal{P}^{m-1}$, where \mathcal{P}^k denotes the space of polynomials of degree less than or equal to k. The quasinorm $|| \cdot ||_{L^{m,p}(\Omega)}$ is equivalent to the following:

$$\|\nabla^m f\|_{L^p(\Omega)} = \Big(\int\limits_{\Omega} \Big(\sum_{|\alpha|=m} |D^{\alpha} f(x)|^2\Big)^{p/2} dx\Big)^{1/p},$$

where $\nabla^m f$ denotes the vector field with components $D^{\alpha} f$, $|\alpha| = m$. Replacing L^p by L^p_{loc} we obtain the definitions of $W^{m,p}_{\text{loc}}(\Omega)$ and $L^{m,p}_{\text{loc}}(\Omega)$. It is well known (see [7, Th. 1.1.2]) that $L^{m,p}(\Omega) \subset W^{m,p}_{\text{loc}}(\Omega)$.

The symbol C_0 will stand for the space of continuous functions on \mathbb{R}^n vanishing at infinity, which is a Banach space equipped with supremum norm. It is clear that C_0 is the closure of C_0^{∞} in L^{∞} norm.

We will also be concerned with two other Sobolev type spaces, namely $W^m_{r,p}(\Omega) = L^r(\Omega) \cap L^{m,p}(\Omega)$ with the norm $\|f\|_{W^m_{r,p}} = \|f\|_{L^r} + \|\nabla^m f\|_{L^p}$ (this is relevant to Nirenberg's multiplicative inequalities [10]) and $W^{m,p}_*(\Omega)$. The latter space is defined as follows: if mp < n or m = n, p = 1, then the homogeneous Sobolev space is

$$W_*^{m,p}(\Omega) = \bigcap_{k=0}^m L^{k,p_k^*}(\Omega),$$

where $p_k^* = np/(n-(m-k)p)$, under the convention that $np/0 = \infty$. The norm in this space is given by

$$||f||_{W^{m,p}_{*}(\Omega)} = \sum_{k=0}^{m} ||\nabla^{k} f||_{L^{p_{k}^{*}}(\Omega)}.$$

Obviously, $W_{r,p}^m(\Omega)$ and $W_*^{m,p}(\Omega)$ are Banach spaces. For notational simplicity we write $p_0^* = p^*$ in the case k = 0.

Also, if $\Omega = \mathbb{R}^n$ the domain Ω will be suppressed in our notation. We will often use the cut-off functions $\eta \in C_0^{\infty}(B^n(2)), \ \eta \geq 0, \ \eta|_{B^n(1)} \equiv 1$ and $\eta_R(x) = \eta(x/R)$, for a pair of concentric balls $B^n(R) \subset B^n(2R)$. Clearly, $|D^{\alpha}\eta_R| \leq CR^{-|\alpha|}$ and supp $D^{\alpha}\eta_R \subset \{x \mid R \leq |x| \leq 2R\}$ for $|\alpha| > 0$.

In the sequel the letter C denotes a constant which may change from line to line.

Our basic tool is the following Poincaré type inequality (see e.g. [7, Th. 1.1.11]):

THEOREM 1. If Ω is a bounded (connected) domain with the cone property and $\varphi \in C_0^{\infty}(\Omega)$ with $\int_{\Omega} \varphi(x) dx = 1$, then every function $f \in L^{m,p}(\Omega)$, 1 , satisfies the inequality

$$||f - P^{m-1}f||_{W^{m,p}(\Omega)} \le C||\nabla^m f||_{L^p(\Omega)},$$

where $P^{m-1}f \in \mathcal{P}^{m-1}$ is the polynomial given by

$$P^{m-1}f(x) = \int_{\Omega} \sum_{|\alpha| \le m-1} D_y^{\alpha} \left(\varphi(y) \frac{(y-x)^{\alpha}}{\alpha!} \right) f(y) \, dy.$$

The constant C does not depend on f.

Remark. Domains with Lipschitz boundary, like a ball, an annulus $\{R_1 \leq |x| \leq R_2\}$ or a cube have the cone property.

In addition we will appeal to the classical Sobolev imbedding theorem (see e.g. [7, Th. 1.4.5]).

THEOREM 2. If $1 \leq p < \infty$ and either mp < n or m = n, p = 1, and if Ω is a bounded domain with the cone property or an infinite cone, then the space $W^{m,p}(\Omega)$ is continuously imbedded in $L^{p^*}(\Omega)$.

In particular, we have

COROLLARY 1. Suppose m, n, p are as in Theorem 2 and $f \in W^{m,p}$. Then

$$||f||_{W_{\bullet}^{m,p}} \le C||\nabla^m f||_{L^p},$$

where the constant C does not depend on f.

The last prerequisite is the following representation formula (cf. [7, Th. 1.1.10/2]).

Theorem 3. For every $\phi \in C_0^{\infty}$ we have

$$\phi = \sum_{|\alpha|=m} K_{\alpha} * D^{\alpha} \phi,$$

where $K_{\alpha}(x) = \frac{m}{n\omega_n \alpha!} \frac{x^{\alpha}}{|x|^n}$, and ω_n denotes the volume of the unit ball.

3. Density results for $L^{m,p}$. Throughout this section approximation in $L^{m,p}$ is understood with respect to the quasinorm $\| \|_{L^{m,p}}$.

THEOREM 4. Let $1 \le p < \infty$ and m = 1, 2, ... The subspace C_0^{∞} is dense in $L^{m,p}$ if and only if either n > 1 or p > 1.

Remark. The case p > 1 has been previously solved by Sobolev [13], [14] (see also [3]).

Proof of Theorem 4. First we will construct a function $f \in L^{m,1}(\mathbb{R})$ which cannot be approximated by smooth, compactly supported functions. Let f be such that $f^{(m)} = \phi$ (mth derivative), where $\phi \in C_0^{\infty}(\mathbb{R})$, $\int_{\mathbb{R}} \phi \neq 0$. Now assuming that $\psi_k \in C_0^{\infty}$, $\psi_k^{(m)} \to f^{(m)} = \phi$ in L^1 leads to a contradiction, since $0 = \int_{\mathbb{R}} \psi_k^{(m)} \to \int_{\mathbb{R}} \phi \neq 0$.

Next, we prove that if $1 , then <math>C_0^{\infty}$ is dense in $L^{m,p}(\mathbb{R})$.

LEMMA 1. If p > 1, $f_0 \in L^p(\mathbb{R})$, and $f_{k+1}(x) = \int_0^x f_k(t) dt$, then $f_k(x)|x|^{-k} \in L^p(\mathbb{R})$ for k = 0, 1, 2, ...

Proof. The assertion follows by induction and the Hardy inequality (see e.g. [15]).

Let $f \in L^{m,p}(\mathbb{R})$. Approximating f by convolution with standard mollifiers we can assume that $f \in C^{\infty} \cap L^{m,p}$. Set $F_0 = f^{(m)}$ and $F_{k+1} = \int_0^x F_k(t) dt$. Our goal is to show that $F_m \eta_R \to f$ in $L^{m,p}$ as $R \to \infty$.

Applying Leibniz's formula to $(F_m\eta_R)^{(m)}$ it suffices to prove that $F_m^{(m)}\eta_R \to f^{(m)}$ in L^p and $\eta_R^{(k)}F_k \to 0$ in L^p for $k=1,\ldots,m$. The first convergence is clear. The second one follows from the estimate

$$\|\eta_R^{(k)} F_k\|_{L^p(\mathbb{R})} \le CR^{-k} \|F_k\|_{L^p(R \le |x| \le 2R)}$$

$$\le 2^k C \|F_k(x)|x|^{-k} \|_{L^p(R \le |x| \le 2R)} \to 0 \quad \text{as } R \to \infty.$$

It remains to show that if $n \geq 2$ and $1 \leq p < \infty$, then every $f \in L^{m,p}(\mathbb{R}^n)$ can be approximated by functions from C_0^{∞} . As before, we can assume that $f \in C^{\infty} \cap L^{m,p}$. By Theorem 1 applied to the annulus $\{x \mid 1 \leq |x| \leq 2\}$ there exists a polynomial $P_1 f$ such that

$$||D^{\alpha}(f - P_1 f)||_{L^p(1 < |x| < 2)} \le C||\nabla^m f||_{L^p(1 < |x| < 2)}$$

for $f \in L^{m,p}(\{x \mid 1 \leq |x| \leq 2\})$ and $|\alpha| \leq m$ (the construction fails when n = 1, because $\{x \mid 1 \leq |x| \leq 2\}$ is not connected). By a simple rescaling argument we obtain the analogous inequality in the annulus $\{x \mid R \leq |x| \leq 2R\}$:

$$||D^{\alpha}(f - P_R f)||_{L^p(R < |x| < 2R)} \le CR^{m - |\alpha|} ||\nabla^m f||_{L^p(R < |x| < 2R)}.$$

We will prove that $(f - P_R f)\eta_R \to f$ in $L^{m,p}$ as $R \to \infty$. According to Leibniz's formula it is enough to show that

$$D^{\beta}(f-P_Rf)D^{\gamma}\eta_R \to 0$$
 in L^p as $R \to \infty$,

for $|\beta + \gamma| = m$, $|\gamma| \ge 1$. We have

$$||D^{\beta}(f - P_{R}f)D^{\gamma}\eta_{R}||_{L^{p}} \leq CR^{-|\gamma|}||D^{\beta}(f - P_{R}f)||_{L^{p}(R \leq |x| \leq 2R)}$$

$$\leq CR^{-|\gamma|}R^{m-|\beta|}||\nabla^{m}f||_{L^{p}(R \leq |x| \leq 2R)}$$

$$= C||\nabla^{m}f||_{L^{p}(R \leq |x| \leq 2R)} \to 0 \quad \text{as } R \to \infty.$$

Remarks. 1) The above theorem might be useful in the L^p theory of Hodge decomposition. For example, Lemma 3.4 of [5] follows directly from Theorem 4. In fact, our approach via the Poincaré inequality is similar to that of [5, Lemma 3.4].

2) The same arguments work if Ω is an infinite cone but instead of C_0^{∞} we must take smooth functions in Ω with bounded support.

4. Imbedding theorems

4.1. The case mp < n

THEOREM 5. Let mp < n and $1 \le p < \infty$. Then for every $f \in L^{m,p}$ there exists exactly one polynomial $P^{m-1}f \in \mathcal{P}^{m-1}$ such that $f - P^{m-1}f \in W^{m,p}_*$ and

(1)
$$||f - P^{m-1}f||_{W_{\star}^{m,p}} \le C||\nabla^m f||_{L^p}.$$

Moreover,

$$P^{m-1}f = f - \sum_{|\alpha| = m} K_{\alpha} * D^{\alpha}f$$

with K_{α} as in Theorem 3.

Remark. In the case p > 1 the inequality (1) has already been obtained by Sedov [11] (see also [3, Th. 14.4]).

Proof of Theorem 5. The uniqueness part is evident. Let $\phi_n \in C_0^{\infty}$, $\phi_n \to f$ in $L^{m,p}$ (see Theorem 4). By Corollary 1 applied to $\phi_n - \phi_m$, we see that ϕ_n converges in $W_*^{m,p}$ to a function u. Clearly, $D^{\alpha}u = D^{\alpha}f$ for $|\alpha| = m$. Thus $u = f - P^{m-1}f$ for some polynomial $P^{m-1}f \in \mathcal{P}^{m-1}$. Applying again Corollary 1 to $\{\phi_n\}_n$ and letting n go to infinity we obtain the desired inequality

$$||f - P^{m-1}f||_{W_{\bullet}^{m,p}} \le C||\nabla^m f||_{L^p}.$$

It remains to show that $u = \sum_{|\alpha|=m} K_{\alpha} * D^{\alpha} f$. By Theorem 3 we have

$$\phi_k = \sum_{|\alpha|=m} K_\alpha * D^\alpha \phi_k.$$

Let $\psi \in C_0^{\infty}$. Since $|K_{\alpha}(x)| \leq C|x|^{m-n}$, it follows that $\overline{K}_{\alpha} * \psi \in L^{p'}$, where 1/p + 1/p' = 1, $\overline{K}_{\alpha}(x) = K_{\alpha}(-x)$. Thus, by the Fubini Theorem,

$$(\phi_k, \psi) = \sum_{|\alpha| = m} \int_{\mathbb{R}^n} D^{\alpha} \phi_k(y) (\overline{K}_{\alpha} * \psi)(y) \, dy.$$

Passing to the limit as $k \to \infty$ we arrive at the formula

$$(u,\psi) = \sum_{|\alpha|=m} \int_{\mathbb{R}^n} D^{\alpha} f(y) (\overline{K}_{\alpha} * \psi)(y) \, dy = \Big(\sum_{|\alpha|=m} K_{\alpha} * D^{\alpha} f, \psi \Big),$$

which completes the proof, since ψ was taken arbitrarily.

Remark. An analogous statement holds if Ω is an infinite cone. In this case, instead of Theorem 3, one uses the representation formula from [12, Th. 5.3] for $C^{\infty}(\Omega)$ -functions with bounded support. The formula applied to the family of operators $P_{\alpha}f = D^{\alpha}f$.

COROLLARY 2. If mp < n and p > 1, then $W_*^{m,p}$ coincides with the space of Riesz potentials

$$I_m f(x) = \int\limits_{\mathbb{R}^n} |f(y)| x - y|^{m-n} \, dy$$

for all $f \in L^p(\mathbb{R}^n)$.

Remark. This theorem has been established by Lizorkin [6].

Proof of Corollary 2. The standard application of Marcinkiewicz's Multiplier Theorem implies that the space of Riesz potentials is equal to the closure of C_0^{∞} in the norm $\|g\|_{L^{p^*}} + \|\nabla^m g\|_{L^p}$. It follows from Theorems 4 and 5 that C_0^{∞} is dense in $W_{p^*,p}^m$. This completes the proof.

4.2. The case m = n, p = 1. As we will see this case is more subtle than that of mp < n. Note that $W_*^{n,1} \cap C_0$ is a closed subspace of $W_*^{n,1}$, because $W_*^{n,1} \subset L^{\infty}$.

THEOREM 6. Let $f \in L^{n,1}$.

(i) If n > 1, then there exists a unique polynomial $P^{n-1}f \in \mathcal{P}^{n-1}$ such that $f - P^{n-1}f \in W_*^{n,1} \cap C_0$ and

$$||f - P^{n-1}f||_{W_*^{n,1}} \le C||\nabla^n f||_{L^1}.$$

Moreover,

$$P^{m-1}f = f - \sum_{|\alpha| = m} K_{\alpha} * D^{\alpha}f.$$

(ii) If n = 1, then

$$||f - f(y)||_{W_x^{1,1}} \le 2||f'||_{L^1},$$

for any fixed $y \in \mathbb{R}$.

Remarks. 1) Since $W^{1,1}(\mathbb{R})$ consists of continuous functions, it follows that the value of f at any point is well defined.

2) Note that in the case n=1 we do not get an imbedding into $W_*^{1,1} \cap C_0$. A smooth function f such that f(x)=1 for x>1 and f(x)=0 for x<0 belongs to $L^{1,1}(\mathbb{R})$, while f-C does not belong to C_0 for any constant C.

Proof of Theorem 6. The result for n > 1 is obtained in much the same way as in the case mp < n. The case n = 1 follows from the simple estimate

$$|f(x) - f(y)| = \Big| \int_{\min\{x,y\}}^{\max\{x,y\}} f'(t) dt \Big| \le \int_{\mathbb{R}} |f'(t)| dt.$$

4.3. Polynomial asymptotics at infinity. Theorems 5 and 6 state that if either mp < n, or m = n > 1 and p = 1, then every function f from $L^{m,p}$ has a polynomial behaviour at infinity in the sense that there exists a polynomial $P \in \mathcal{P}^{m-1}$ such that f - P belongs to a certain L^r space or to C_0 .

In the case m = n = p = 1 we know that f is bounded (Theorem 6), but we have no imbedding in C_0 , as follows from the example given in the remark after Theorem 6.

The following examples show that in all other cases there exist functions in $L^{m,p}$ without polynomial behaviour at infinity in any reasonable sense.

EXAMPLE 1 (The case mp>n and $1\leq p<\infty$). Any smooth function f such that $f(x)=|x|^{\varepsilon}$ for |x|>1 (where $1>\varepsilon>0$ satisfies $(m-\varepsilon)p>n$) belongs to $L^{m,p}$. In this case $\lim_{x\to\infty}|f(x)-P(x)|=\infty$ for any polynomial P.

EXAMPLE 2 (The case mp = n and p > 1). Any smooth function such that $f(x) = \log \log |x|$ for |x| > e is a member of $L^{m,p}$. In this case $\lim_{x\to\infty} |f(x) - P(x)| = \infty$ for any polynomial P.

5. Density results for $W_{r,p}^m$

THEOREM 7. If $1 \leq p, r < \infty$, then C_0^{∞} is dense in $W_{r,p}^m$.

Remark. For $1 < r, p < \infty$ this result was already known in [3, Th. 14.14].

Proof of Theorem 7. Let $f \in W^m_{r,p}$. As before, it can be assumed that $f \in C^{\infty} \cap W^m_{r,p}$. Clearly, $f\eta_R \to f$ in L^r as $R \to \infty$. We will prove that $f\eta_R \to f$ in $L^{m,p}$ as $R \to \infty$.

First assume that mp < n. It follows from Theorem 5 that $||f||_{W^{m,p}} \le C||\nabla^m f||_{L^p}$. Let α and β be multiindices such that $|\alpha| = k \ge 1$ and $|\beta| = m - k$. Since $D^{\beta} f \in L^{p_{m-k}^*}$, by Hölder's inequality, we obtain

$$\begin{split} \|D^{\alpha}\eta_{R}D^{\beta}f\|_{L^{p}} &\leq \frac{C}{R^{k}} \|\chi_{\{R<|x|<2R\}}D^{\beta}f\|_{L^{p}} \\ &\leq \|D^{\beta}f\|_{L^{p_{m-k}^{*}}(R<|x|<2R)} \to 0 \quad \text{ as } R \to \infty. \end{split}$$

This implies the desired convergence.

Assume now that $mp \ge n$. We distinguish between two cases: n = 1 and $n \ge 2$.

Case $n \geq 2$. It follows from the proof of Theorem 4 that

$$(f-P_R f)\eta_R \to f$$
 in $L^{m,p}$ as $R \to \infty$,

where $P_R f$ are the polynomials from the proof of Theorem 4. Therefore, it remains to prove that $(P_R f)\eta_R \to 0$ in $L^{m,p}$.

Recall that $P_R f$ was obtained from $P_1 f$ by a rescaling argument, where $P_1 f$ is defined in Theorem 1 and depends on the choice of a function φ supported in $\{x \mid 1 \leq |x| \leq 2\}$. Hence, we have the explicit formula,

$$P_R f(x) = \sum_{|\alpha| \le m-1} \left(\frac{x}{R}\right)^{\alpha} \int_{\mathbb{R}^n} \psi_{\alpha}(y) f(Ry) \, dy,$$

where $\psi_{\alpha} \in C_0^{\infty}(\{1 \leq |x| \leq 2\})$ depends on φ only.

Let $|\beta| = m$. We have to prove that $D^{\beta}((P_R f)\eta_R) \to 0$ in L^p . It suffices to show that $D^{\gamma}(P_R f)D^{\delta}\eta_R \to 0$, whenever $\gamma + \delta = \beta$. If $\gamma = \beta$, then $D^{\gamma}(P_R f) = 0$, so we can assume that $|\delta| \geq 1$. We have

$$||D^{\gamma}(P_R f) D^{\delta} \eta_R||_{L^p} \le C R^{-|\delta|} ||D^{\gamma}(P_R f)||_{L^p(R \le |x| \le 2R)}.$$

We need only estimate each of the monomials of $P_R f$. The problem reduces to showing that the quantity

$$I_R = R^{-(|\delta| + |\alpha|)} ||x^{\alpha - \gamma}||_{L^p(R \le |x| \le 2R)} \left| \int \psi_\alpha(y) f(Ry) \, dy \right|$$

tends to zero as $R \to \infty$. We can assume that $\alpha \ge \gamma$. Note that

$$||x^{\alpha-\gamma}||_{L^p(R<|x|<2R)} \le CR^{|\alpha|-|\gamma|}R^{n/p}.$$

Hence, denoting $\{x \mid R \leq |x| \leq 2R\}$ by Ω_R , we have

$$\begin{split} I_R &\leq C R^{n/p-m} \int\limits_{\Omega_1} |f(Ry)| \, dy = C R^{n/p-m-n} \int\limits_{\Omega_R} |f(y)| \, dy \\ &\leq C R^{n/p-m-n} R^{n(1-1/r)} \|f\|_{L^r(\Omega_R)} \to 0 \quad \text{as } R \to \infty, \end{split}$$

because the exponent of R is negative.

In the case n=1 the proof is similar, with a slight difference: there is no Poincaré inequality (Theorem 1) for the one-dimensional annulus $\{x \mid 1 \leq |x| \leq 2\}$, but we can use the Poincaré inequality twice, applied to the intervals [-2,-1] and [1,2].

Remarks. 1) It is easy to see that if $r = \infty$ or $p = \infty$, then C_0^{∞} is not dense in $W_{r,p}^m$.

2) It follows from the above arguments that C_0^{∞} is dense in $W_{\infty,n}^m \cap C_0$.

References

- [1] H. Aikawa, On weighted Beppo Levi functions—integral representations and behavior at infinity, Analysis 9 (1989), 323-346.
- O. V. Besov, The behaviour of differentiable functions at infinity and density of C₀[∞] functions, Trudy Mat. Inst. Steklov. 105 (1969), 3-14 (in Russian).
- [3] O. V. Besov, V. P. Il'in and S. M. Nikol'skiĭ, Integral Representations of Functions and Imbedding Theorems, Moscow, Nauka, 1975 (in Russian).
- [4] J. Deny and J.-L. Lions, Les espaces du type de Beppo Levi, Ann. Inst. Fourier (Grenoble) 5 (1953-1954), 305-370.
- [5] T. Iwaniec and G. Martin, Quasiregular mappings in even dimensions, Acta Math. 170 (1993), 29-81.
- [6] P. I. Lizorkin, On the behaviour at infinity of functions from the Liouville class. On Riesz potentials of an arbitrary order, Trudy Mat. Inst. Steklov. 150 (1979), 174-197 (in Russian).
- [7] V. M. Maz'ya, Sobolev Spaces, Springer, 1985.
- [8] Y. Mizuta, Integral representations of Beppo Levi functions of higher order, Hiroshima Math. J. 4 (1974), 375-396.
- O. Nikodym, Sur une classe de fonctions considérées dans le problème de Dirichlet, Fund. Math. 21 (1933), 129-150.
- [10] L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa 13 (1959), 115-162.
- [11] V. N. Sedov, On functions tending to a polynomial at infinity, in: Imbedding Theorems and Their Applications (Proc. Sympos. Imbedding Theorems, Baku, 1966), Moscow, 1970, 204-212 (in Russian).
- [12] K. T. Smith, Formulas to represent functions by their derivatives, Math. Ann. 188 (1970), 53-77.
- [13] S. L. Sobolev, The density of C_0^{∞} functions in the $L_p^{(m)}$ space, Dokl. Akad. Nauk SSSR 149 (1963), 40-43 (in Russian); English transl.: Soviet Math. Dokl. 4 (1963), 313-316.

[14] S. L. Sobolev, The density of C_0^{∞} finite functions in the $L_n^{(m)}$ space, Sibirsk. Mat. Zh. 4 (1963), 673-682 (in Russian).

E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970.

INSTITUTE OF MATHEMATICS WARSAW UNIVERSITY BANACHA 2 02-097 WARSZAWA, POLAND E-mail: HAJLASZ@MIMUW.EDU.PL KALAMAJS@MIMUW.EDU.PL

> Received September 10, 1993 Revised version August 16, 1994

(3161)

On automatic boundedness of Nemytskii set-valued operators

S. ROLEWICZ (Warszawa) and WEN SONG (Harbin)

Abstract. Let $X,\ Y$ be two separable F-spaces. Let $(\varOmega,\varSigma,\mu)$ be a measure space with μ complete, non-atomic and σ -finite. Let N_F be the Nemytskii set-valued operator induced by a sup-measurable set-valued function $F: \Omega \times X \to 2^Y$. It is shown that if N_F maps a modular space $(N(L(\Omega, \Sigma, \mu; X)), \varrho_{N,\mu})$ into subsets of a modular space $(M(L(\Omega, \Sigma, \mu; Y)), \varrho_{M,\mu})$, then N_F is automatically modular bounded, i.e. for each set $K \subset N(L(\Omega, \Sigma, \mu; X))$ such that $r_K = \sup\{\varrho_{N,\mu}(x) : x \in K\} < \infty$ we have $\sup\{\varrho_{M,\mu}(y) : x \in K\}$ $y \in N_F(K)$ $< \infty$.

In 1933–1934 V. Nemytski
ĭ [10], [11] considered the operator $F:L^2[a,b]$ $\rightarrow L^2[a,b], y(\cdot) = F(x(\cdot)),$ where y(t) = f(t,x(t)). Nemytskii proved that if F maps $L^2[a,b]$ into itself, then it is automatically continuous. He also used the obtained results to prove the existence and uniqueness of solutions of Hammerstein equations. Since that time the operator F has been generalized in several ways and there are many papers devoted to this subject. Operators of this type are now called Nemytskii operators.

In the last years a new important extension of Nemytskii operators appeared.

Let (Ω, Σ, μ) be a measure space. We assume that the measure μ is complete and σ -finite. A function $x(\cdot)$ mapping Ω into a Banach space X is called measurable if for each open set $Q \subset X$ the inverse image $x^{-1}(Q) =$ $\{t\in\Omega:x(t)\in Q\}$ is measurable, $x^{-1}(Q)\in\Sigma$. The set of all measurable functions defined on Ω with values in X is denoted by $S(\Omega, X)$.

A function $F(\cdot)$ mapping Ω into subsets of X is called measurable if for each open set $Q \subset X$ the inverse image $F^{-1}(Q) = \{t \in \Omega : F(t) \cap Q \neq \emptyset\}$ is measurable, $F^{-1}(Q) \in \Sigma$. By a measurable selection of $F(\cdot)$ we mean a (single-valued) function $x_F(\cdot)$ such that $x_F(t) \in F(t)$ for all $t \in \Omega$.

¹⁹⁹¹ Mathematics Subject Classification: 47H99, 28B20, 46A06,

Key words and phrases: Nemytskii set-valued operators, superposition measurable set-valued operators, automatic boundedness, modular spaces.

Research of the first author was partially supported by the Polish Committee for Scientific Research under grant no. 2 2009 91 02.