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Polynomial asymptotics and approximation
of Sobolev functions

by

PIOTR HAJLASZ and AGNIESZKA KALAMAJSKA (Warszawa)

Abstract. We prove several results concerning density of Cf°, behaviour at infinity
and integral representations for elements of the space L™F = {f | V™ f € LP}.

1. Introduction. It was O. Nikodym who first introduced Soholev
type spaces. They appeared in [9] under the name of Beppo Levi spaces.
Today this name is reserved for spaces of the type L™P(R") = {f €
DHR™) | V™f € LP}, also denoted by BL,,(L?(R™)). However, an interest
in spaces of this type really begun with the paper of Deny and Lions [4].

The space L™® is equipped with a quasinorm V™ flze. It is well known
that elements of L™PF are locally integrable with exponent p. However, they
need not be p-integrable in the entire space R™. As an example, take any
polynomial of degree less than m.

In this paper we prove several results concerning behaviour at infinity,
approximation by Cf° and integral representations for functions from the
space L™P. We also deal with the space W[, = L™ N L™>.

The general framework of the subject and the problems discussed here
are certainly not new. They have been developed in many directions {cf. [1]-
(3], [6], [8], [L1], [L3]). The most comprehensive source is [3]. However, the
approach presented in these papers is very technical, based upon complicated
integral representations and singular integrals. For this reason the authors
deal only with 1 < p < co.

Qur approach is more elementary, because it depends only on a Poincaré
type inequality. We also cover the missing case p = 1. The Poincaré

1991 Mathematics Subject Classification: Primary 46E35; Secondary 41A10, 411460,
41A863, 41A99.

Key words and phrases: Sobolev space, Beppo Levi space, approximation, polynomial
asymptotics, density of C§° functions. '
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inequality was first used in a similar context by Iwaniec and Martin
(5, Lemma 3.4].

Acknowledgements. The authors wish to thank Professor Bogdan Bo-
jarski for stimulating and helpful advice and Professor Tadeusz Iwaniec for
bis careful reading of the manuscript and many helpful suggestions.

2. Notation. Let {2 C R"™ be an open set, m a positive integer and
1< p< o0, We define

W) = {f e D(2)| D*f € LP(92) for {a] < m},
L™P(Q) = {f € D'(?)| D%f € I7(2) for |a = m}.
The space W™?(£2) with the norm || f||wm.»(0y = Z|a[<m D% filLr(s) is &

Banach space. The space L™?({2) is equipped with a quasinorm || f|| pm.s(s)
= Em[ m |D*fllze¢2), vanishing on all polynomials of degree less than

m. Therefore, it induces a Banach norm on the quotient space L™?(£2) =
L™2((2) /P™1, where P* denotes the space of polynomials of degree less
than or equal to k. The quasinorm || || ;m»(ey is equivalent to the following:

19 fleneay = ([ (32 1o sta)p) a)”,

l|=m

where V™ f denotes the vector field with components D®f, || = m. Re-
placing IP by L{ = we obtain the definitions of WP (2) and L7 (12). It is
well known (see [7, Th. 1.1.2]) that L™?(2) C WI,TC’P(Q)

The symbol Cp will stand for the space of continuous functions on R*
vanishing at infinity, which is a Banach space equipped with supremum
norm. It is clear that C is the closure of C§° in L°° norm.

We will also be concerned with two other Sobolev type spaces, namely

£y = L7{2) N L™ () with the norm “f”Wm = ||fllzr + |V™fllze
(thIS is relevant to Nirenberg's multiplicative mequahtles [10]) and WP (12).
The latter space is defined as follows: if mp < n or m = n, p = 1, then the
homogeneous Sobolev space is

m
)= () Zh5k(@),

k=0
where py = np/(n — (m — k)p), under the convention that np/0 = co. The
norm in this space is given by

Wme(

ZIIV 7t oy

k=0

Obviously, W.(12) and Wln’p(.Q) are Banach spaces. For notational sim-
plicity we write p§ = p* in the case k = 0.

1 lwwmr () =
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Also, if {2 = R™ the domain £ will be suppressed in our notation. We
will often uge the cut-off functions 7 € C§e(B™(2)), 5 > 0, Nlgny =1 and
nr(z) = n(z/R), for a pair of concentric balls B™(R) C B"(2R). Clearly,
|D*ng| < CR™™ and supp D*np C {z|R < |z| < 2R} for |af > 0.

In the sequel the letter C denotes a constant which may change from
line to line.

Our basic tool is the following Poincaré type inequality (see e.g. [7
Th. 1.1.11]):

THEOREM 1. If {2 is a bounded (connected) demain with the cone prop-
erty and © € C§°(£2) with [, p(z) dz = 1, then every function § € L™P(12),
1 < p < oo, satisfles the inequality

Lf = P fllwmeiay € ClV™Fllzogay,
where P71 f € P s the polynomial given by

Prif@y= [ Y .D“(¢@)@ 2)” ) ) dy.

2 |o|gm-1

The constant C' does not depend on f.

Remark. Domains with Lipschitz boundary, like a ball, an annulus
{R1 < |z| € Ra} or a cube have the cone property.

In addition we will appeal to the classical Sobolev imbedding theorem
(see e.g. [7, Th. 1.4.5]).

THEOREM 2. If 1 < p <co and eithermp <n orm=n, p=1, and if
12 is o bounded domain with the cone property or an infinite cone, then the
space W™ P({2) is continuously imbedded in L¥ (12).

In particular, we have

COROLLARY 1. Suppose m,
Then

n, p are as tn Theorem 2 and f € W™P,

[fllwme < CIV™filLe,
where the constaent C' does not depend on f.

The last prerequisite is the following. representation formula (cf. [7, Th.
1.1.10/2)).

THEOREM 3. For every ¢ € U§° we have
6= ) KuxD%,
|ex|z=m

where Ko (z) = and w, denotes the volume of the undt ball.

NWn oe' [x[“ !
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3. Density results for L™7. Throughout this section approximation
in L™? is understood with respect to the quasinorm || || Lm.e.

THROREM 4. Let 1 <p < o0 and m = 1,2,... The subspace C§° is dense
in L™? if and only if eithern > 1 orp > 1.

Remark. The case p > 1 has heen previously solved by Sobolev [13],
[14] (see also [3]).

Proof of Theorem 4. First we will construct a function feL™!(R)
which cannot be approximated hy smooth, compactly supported functions.

Let f be such that f(™ = ¢ (mth derivative), where ¢ € C§°(R), [ ¢ #0.
Now assuming that ¢, € CF°, '11);(;“) - fm} = 4 in L' leads to a contradic-

tion, since 0 = [ v,b,(cm} ~ o b # 0.
Next, we prove that if 1 < p < co, then C§° is dense in L™P(R).

LeMMA 1. If p > 1, fo € LP(R), and frs1(z) = [y Fu(t)dt, then
fr(z)|z™* € IP(R) for k=10,1,2,...

Proof. The assertion follows by induction and the Hardy inequality
(see e.g. [15]).

Let f € L™?(R). Approximating f by convolution with standard mol-
lifiers we can assume that f € €% N L™P. Set Fy = f™) and Fyy =
fom Fi.(t) di. Our goal is to show that F,ng — f in ™" as B — oc.

Applying Leibniz’s formula to {Frpnr)(™ it suffices to prove that F,(nm)n R
— f™ in LP and ng“)Fk — 0in L? for k= 1,...,m. The first convergence
ig clear. The second one follows from the estimate

175 Fillo @y € CR™F| Felluo(rioi<am

< 2°C|| Fu(@)|z) || Lorejalcamy — 0 as R — oo,

It remains to show that ifn > 2 and 1 € p < oo, then every f € L™FP(R™)
can be approximated by functions from C§°. As before, we can assume that
f e C*°nNL™F, By Theorem 1 applied to the annulus {#|1 < |#| < 2} there
exists a polynomial Py f such that

1D%(f — Prf) | eagicial<ay € CIV™ flizsjei2)

for f € L™P({x|1 < |z| < 2}) and || £ m (the construction fails when
n = 1, because {z|1 < |z| < 2} is not connected). By a simple rescal-
ing argament, we obtain the analogous inequality in the annulus {z |R <
lzf < 2R}:

1 D%(f — Prf)|lzs(rejoicary < CR™ Y™ fll 1o (reio<2m)-
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We will prove that (f — Prfing — fin L™? as R — oo. According to
Leibniz’s formula it is enough io show that

DA(f ~ Paf)Dng — 0
for |8 4+~ = m, || 2 1. We have
IDP(f = Prf)Dngl|e < CR™NDP(f — Paf)|ir(ngjaican)
< CRMBR™ BN V™ £l 1o mefol<2m)
= C|V™ fllzo(rg|a|<an) —+ 0
Remarks. 1) The above theorem might be useful in the L? theory of
Hodge decomposition. For example, Lemma 3.4 of [5] follows directly from
Theorem 4. In fact, our approach via the Poincaré inequality is similar to
that of {5, Lemma 3.4].

2) The same arguments work if {2 is an infinite cone but instead of C§°
we must take smooth functions in 2 with bounded support.

in L? as R — oo,

as B — oo.

4. Imbedding theorems
4,1, The cose mp < n

THEOREM 5. Let mp < n and 1 € p < co. Then for every f € L™F there
exists exactly one polynomial P™1f € P such that f—P™ 1f ¢ WP
and

oy If = P™ fllwpme < ClV™f[lzs-
Moreover,
Prif=f— ) Ko#Df
|ee|=m
with K. as in Theorem 3.

Remark. In the case p > 1 the inequality (1) has already been obtained
by Sedov [11] (see also [3, Th. 14.4]).

Proof of Theorem 5. The uniqueness part is evident. Let ¢, € (°,
¢n, — f in L™P (see Theorem 4). By Corollary 1 applied to ¢n — ¢m, we
see that ¢, converges in Wi™® to a function w. Clearly, D%u = D*f for
lo| = m. Thus u = f — P™1f for some polynomial P™~1f ¢ P™ L,
Applying again Corollary 1 to {¢n }» and letting n go to infinity we obtain
the desired inequality

If = P™ " fllge £ CIVT fllzs.
It remains to show that u= 3, Ko * D% f. By Theorem 3 we have

bp= > Ko*xD.

|a=m



60 P. Hajlasz and A, Kalamajska

Let ¢ € Cg°. Since [Ko(z)| < Clal™ ™, it follows that Ko+t € L, where
1/p+1/p' =1, Ku(x) = Ku(—z). Thus, by the Fubini Theorem,

Bew)= > [ D*x(y)(Ka*)(y)d
joj=m R™
Passing to the limit as & — oo we arrive at the formula
= Y [ DUF) (B v)(y) dy = ( Y K. *D"‘f,w),
|a}=m r™ |ex}=mn
which completes the proof, since 1 was taken arbitrarily.

Remark. An analogous statement holds if £2 is an infinite cone. In this
case, instead of Theorem 3, one uses the representation formula from [12,
Th. 5.3] for C*({2)-functions with bounded support. The formula applied
to the family of operators P, f = D*f.

COROLLARY 2. If mp < n and p > 1, then WP
space of Riesz poteniials

Inf(z)= [ f@)e—y™ " dy

B

comncides with the

for all f € LP(R™).
Remark. This theorem has been established by. Lizorkin [6].

Proof of Corollary 2. The standard application of Marcinkiewicz’s
Multiplier Theorem implies that the space of Riesz potentials is equal to the
closure of C§° in the norm ||g|[z» + |[V™g| z». It follows from Theorems 4
and 5 that C§° is dense in Wt . This completes the proof.

4.2. The case m=n, p = 1. As we will see this case is more subtle than
that of mp < n. Note that W2 N Cp is a closed subspace of W', because
T'L,l [v's]
* C L .
THEOREM 6. Let f € L™,

(1} If n > 1, then there ezists a unique polynomial PP~1f € P*~1 such
that f ~ PP=1f ¢ W' N Cy and

1F =P fllppa < IV flza-
Moreover,

PP f Y KaxD*f.

la|=m
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(i) If n =1, then

17 = f@llgwan < 20 |l2s,
for any fized y € R.

Remarks. 1) Since Wh1(R) consists of continuous functions, it follows
that the value of [ at any point is well defined.

2) Note that in the case n = 1 we do not get an imbedding info Wi’lﬂOO.

A smooth function f such that f(z) =1forz > 1 and f(z) =0 for z < 0

belongs to L' (R), while f — ¢ does not belong to Cy for any constant C.

Proof of Theorem 6. The result for n > 1 is obtained in much the
same way as in the case mp < n. The case n = 1 follows from the simple
estimate
max{z,y}

[ rw dt} < f |F ()| dt.

mio{s,y}

1#(2) = £)| = |

4.3. Polynomial asymptolics ai infinity. Theorems 5 and 6 state that
if either mp < n, or m =n > 1 and p = 1, then every function f from

- L™P has a polynomial behaviour at infinity in the sense that there exists

a polynomial P € P™! guch that f — P belongs to a certain L" space or
to Cp.

In the case m = n = p = 1 we know that f is bounded {Theorem 6},
but we have no imbedding in Cy, as follows from the example given in the
remark after Theorem 6.

The following examples show that in all other cases there exist functions
in L™P without polynomial behaviour at infinity in any reasonable sense.

ExampPLE 1 (The case my > n and 1 < p < oo}. Any smooth function f
such that f(z) = |z|® for |z| > 1 (where 1 > £ > 0 satisfles (m —e)p > n)
belongs to L™, In this case llmmﬂw! flz) — P(z)| = co for any poly-
nemial P.

ExamMPLE 2 {The case mp = n and p > 1). Any smooth function
such that f(x) = r |z| > e is a member of L™?. In this case
limgoe | f(2) — P{z)| = oo for any polynomial P.

5. Density results for W7,
THEOREM 7. If 1 < p,r < o0, then C§° is dense in W[,

Remark. For 1 < r,p < oo this result was already known in [3, Th.

14.14].
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Proof of Theorem 7. Let f € W, As before, it can be assumed
that f € C*NW]T,. Clearly, fng — f in L" as R — co. We will prove that
fng — fin L™P ag R — oo.

First assume that mp < n. It follows from Theorem 5 that || f||ym.»
CliV™ fl|lre. Let o and £ be multiindices such that {of = k > 1 and |3|
m — k. Since DPf € LPm-x, by Hilder’s inequality, we obtain

A

o C
| D*nrDP f|lcs < ﬂﬂx{ﬁqmwszﬁfﬂm

< [|DPF 0 as R — oo

n* e
Lfm—k (R<)e|<2R)
This implies the desired convergence.

Assume now that mp > n. We distinguish between two cases: n = 1 and
n > 2.

Case n > 2. It follows from the proof of Theorem 4 that
(f = Prflnr— f
where Prf arc the polynomials from the proof of Theorem 4. Therefore, it

remains to prove that (Pgfing — 0 in L'™P,

Recall that Prf was obtained from P; f by a rescaling argument, where
Py f is defined in Theorem 1 and depends on the choice of a function ¢
supparted in {z |1 < |#| < 2}. Hence, we have the explicit formula,

Paf(z)= 3, (%) J alw)f(Ry) dy,
|| €m—1 R™
where 9, € C§°({1 < |z| < 2}) depends on ¢ only.
Let {3 = m. We have to prove that D?((Pgf)ng) — 0 in LP. It suffices
to show that DV(Prf)D’nr — 0, whenever v+ 6 = §. If v = §, then
DY{Prf) = 0, so we can assume that |§] > 1. We have

| DY(Prf)Dngllzs < CR™N DY (Prf)l no(reaican) -

We need only estimate each of the monomials of Pp f. The problem reduces
to showing that the quantity

in L™F as R — oo,

Ig = R_”E'H“”Hﬂf‘*”I[Lp(Rgm[sm)J [ ¥aly)f(Ry) dy
tends to zero as R -+ co. We can assume that o > +y. Note that
H‘TﬂmT”LI’(RS\m]gZR) < CRlel=hlgnip,

Hence, denoting {z | R < |z| < 2R} by 2z, we have
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In < CRM™™ [ |f(Ry)|dy = CRMP=" [ |(3)|dy
2 25
< GRn/p—-m—an(lwlfr)Hf”LT(QR) —0 as R— o0,

because the exponent of R is negative.

In the case n = 1 the proof is similar, with a slight difference: there is no
Poincaré inequality (‘Theorem 1) for the one-dimensional annulus {z |1 <
|z] € 2}, but we can use the Poincaré inequality twice, applied to the inter-
vals [—2, 1] and [1, 2].

Remarks. 1) It is easy to see that if r == oo or p = co, then C§° is not
dense in W,
2) It follows from the above arguments that C§° is dense in Wi, NCo.
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On automatic boundedness of Nemytskil set-valued operators

by

B ROLEWICZ (Warszawa) and WEN SONGQ {Harbin)

Abstract. Let X, Y he two separable F-spaces. Let (2, 2, 1t) be a measure space
with p4 complete, nou-atomic and o-finite. Let Np be the Nemytskil set-valued operator
induced by a sup-measurable set-valued function F ; 2 x X — 2Y. It is shown that
if Ny maps a modular space (N(L({2, %, X)), aN,) into subsets of a modular space
(M{L{02, 2, Y )), ¢r,), then Np is automatically modular bounded, i.e. for each set
K ¢ N(L(£2, 2, 11; X))} wuch that rg = sup{ew,.(2) : € K} < 0o we have sup{oar . (¥) :
Yy e NF(I{)} <O

In 10331934 V. Nemytskif [10], [11] considered the operator F : L%{a, B]
— L*[a,b], y(-) = F(x()), where y(t) = f(t, 2(t)). Nemytgkif proved that if
F maps L?[a, b] into itself, then it is antomatically continuous. He also used
the obtained results to prove the existence and uniqueness of solutions of
Hammerstein equations. Since that time the operator F' has been generalized
in several ways and there are many papers devoted to this subject. Operators
of this type are now called Nemytskii operators.

In the last years a new important extension of Nemytskil operators ap-
peared.

Let (£2,%, ) be a measure space, We assume that the measure p is
complete and o-finite. A function z(-) mapping {2 into a Banach space X is
called measurable if for each open set @ C X the inverse image 2~ (Q) =
{t € 2:2(t) € Q} is measurable, x~(Q) € ¥. The set of all measurable
functions defined on £2 with values in X is denoted by §(£2, X). .

A function J'(-) mapping £ into swbsets of X is called measurable if for
each open set @@ € X the inverse image F™(Q) = {t e R: F()NQ # B}
is measurable, F~1(Q) € ¥. By a meusurable selection of F'(-) we mean a
(single-valued) function 2x (") such that 25(2) € F(t) for all ¢ € (2.

1991 Mathemntics Subject Clnssification: 47H99, 28820, 46A06.

Key words and phrases: Nemytskil set-valned operators, superposition measurable
set-valued operators, automatic boundedness, modular spaces. '
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