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On the behaviour of Jordan-algebra norms on
associative algebras

by

MIGUEL CABRERA GARCIA, ANTONIO MORENO GALINDO,
and ANGEL RODRIGUEZ PALACIOS (Granada)

Abstract. We prove that for a suitable associative (real or complex) algebra which
has many nice algebraic properties, such as being simple and having minimal idempotents,
a norm can be given such that the mapping (a, &) + ab + ba ig jointly continuous while
(a, B) — ab is only separately contimious. We also prove that such a pathology cannot arise
for associative simple algebras with a wnit. Similar results are obtained for the sc-called
“norm extension problem”, and the relationship between these results and the normed
versions of Zel’'manov’s prime theorem for Jordan algebras are discussed.

Introduction. If 4 is an associative algebra with the product ab, then
its symmetrization AT, which has the same vector space as A and new
product a.b := &(ab-+ba), becomes a model for the so-called Jordan algebra.
Jordan algebras are a well-known class of nonagsociative algebras defined by
a. suitable identity. Our general reference for them is Jacobson’s book [11].
Not all Jordan algebras are of the formmn AT, Another example of such an
algebra arigses when A has an invelution #. Then the space of hermitian
elements (A, ) 1= {z € A : 2* = ¢} is closed for the product “.” so it
can be naturally considered as a subalgebra of A*. In many cases A+ and
H{A, ) will not be isomorphic. Other standard examples can be constructed
from bilinear forms (see Section 1) and octonion matrices. In the algebraic
theory of Jordan algebras one of the most powerful results is the recent
Zel’manov prime theorem.

Zel'manov’s theorem [27] classifies prime nondegenerate Jordan algehras
into four types which, roughly speaking, are the following: simple exceptional
ones, simple Jordan algebras of a symmetric bilinear form, prime associative
algebras regarded as Jordan algebras, and Jordan algebras of hermitian el-
ements in prime associative algebras with a (linear) involution. In this way,
an attempt to obtain a reasonable normed variant of Zel’manov’s theorem
has to involve the following:
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QUESTION 1. Let A be a real or complex associotive algebra and let || - || be
a norm on the vector space A making the Jordan product (a,b) ~ %{ab+ba)
continuous. Does the norm || - || make the associative product continuous?

QUESTION 2 (the norm extension problem). Let A be @ real or complex
assoctative algebra with an involution * and let H(A, x) denote the Jordan al-
gebra of all hermition clements in A. Asswme that A i3 generated by H (A, %)
and that every nonzero *-ideal of A meets H(A, ). Let || -] be an algebra
norm on H{A, ). Is there an algebra norm on A whose topology extends the
one of ||-|| on H(A,*)?

Ag far as we know, Question 1 arcse for the first thme in the literature
in the paper of S. Shirali [24] where an affirmative answer is given under
very strong additional algebraic and analytical assumptions. Later these
assumptions were ostensibly relaxed in [18] (see also [20; Proposition 3])
where the following was proved:

THEOREM 1. Question 1 has an affirmative answer whenever A is sems-
prime and || - || 25 complete.

It is also shown in [18] that in Thecrem 1 semiprimeness cannot be
dropped in general. Question 2 has been considered in {4], as a tool for
the classification of simpie normed Jordan algebras with a unit, and more
recently in [23] as a topic of its own interest. In the last paper the chvi-
ously necessary condition for an affirmative answer to Question 2, namely
the continuity of the “tetrad mapping” (z,y,z,t) — L(zyzt + tzyz) from
(HL(A ), |- ) % (H(A), 1) % (A, - 1) % CHCA, ), |- ) into
(H{A,*),||- ), is shown to be also sufficient. Then the antomatic continu-
ity of the tetrad mapping is proved under reasonable algebraic and analytic
assumptions, leading to:

THEOREM 2. Question 2 has en affirmative answer whenever H (A, *) is
semiprime and the norm || - || on H(A, )} is complete.

Examples showing that in Theorems 1 and 2 the completeness of | - ||
cannot be dropped in general can be found in [1] and [23] respectively. How-
ever, the algebras in these examples are very far from being prime (they
are in fact infinite direct sums of finite-dimensional simple ideals). Parti-
culiar affirmative answers to Questions 1 and/or 2 under extra assumptions
can be found in [20], [6], and [5]. A variant of Question 2, in the setting
of topological algebras over strange fields, was answered in the negative
in [28].

In this paper we are dealing with Questions 1 and 2. Our contribu-
tions are divided into three sections. In Section 1 a discussion of the total
nonreversibility of high-dimensional simple Jordan algebras of a symmetric
bilinear form (Lemmas 1 and 2), together with one of the main results in
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(3], allows us to obtain some new positive results about the two questions,
namely:

THEOREM 3. Question 1 has on affirmative answer whenever A is simple
and has o unit.

THEOREM 4. Question 2 has an affirmative answer if H(A,+) is sim-
ple and has a unit. Moreover, if in addition the norm || - || on H(A,*) is
complete, then the algebra norm on A extending the topology of || - || can be
chosen complete.

In proving Theorems 3 and 4, the result in {3] commented above can be
replaced by the arguments from [4], but we prefer to apply the first refer-
ence because it allows us to derive Theorems 3 and 4 from new interesting
“almost” affirmative answers to the two questions (Theorems 5 and 6). We
also emphasize that, if A in Question 1 is assumed to be simple but not
necessarily unital, then |- || makes the associative product of A separately
continuous (Corollary 1).

Section 2 contains the main result of the paper, namely an example
showing simultaneously that neither the assumption of completeness of | - ||
in Thecrems 1 and 2 nor that of the existence of a unit in Theorems 3 and 4
can be dropped in general. In fact, we show that, if K denotes either R or
C, the algebra M, (K) of all countably infinite matrices over K with only a
finite number of nonzero entries can be endowed with a norm for which the
Jordan product is continuous while the associative product is not. Moreover,
M (K) has a linear involution * such that the topology of the restriction
of the above norm to H({M. (K),*) cannot be extended to the topology
of any algebra norm on My, (K). Note that the associative algebra M, (K)
and the Jordan algebra H (M (K),*) are central simple algebras over K
coinciding with their socles ([10], [15]), and that H{(M(K),*) generates
M. (K) 9] |

If J is a nonsimple prime nondegenerate Jordan algebra with nonzero
socle, then the socle of J is either of the form: A", where A is a simple
associative algebra coinciding with its socle, or of the form H (A4, *) whers
A is a simple asscciative algebra A coinciding with its socle and # is an
involution on A [15]. Therefore, if J is a nonsimple prime nondegenerate
Jordan-Banach algebra with nonzero socle, and if we restrict the norm of
J to the socle of J, then we are in very suggestive particular situations of
Questions 1 or 2 above. Note that neither Me.(K) nor H(M.,(K),*) can
be the socle of a prime nondegenerate Jordan--Banach algebra {otherwise,
by [15] and [16], the vector space of countably infinite algebraic dimension
over K would be completely normable, contradicting Baire’s theorem). By
choosing with some precision the pathological norm on M. (K} built in
Section 2, we prove in Section 3 that the Jordan—Banach algebra J obtained
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by completing M (K)™ (respectively, H{Mu.(K),*}) in this norm is prime
nondegenerate and has a nonzero socle. Moreover, the socle of J is of the
form AT for a central simple associative algebra A over K coinciding with
its socle (respectively, of the form H(A,*), where A is a central simple
agsociative algebra over K coinciding with its socle and * is an involution
on A), and nevertheless the restriction of the norm of J to its socle makes
the associative product of A discontinuous (respectively, the topology of the
restriction of the norm of J to its socle cannot be extended to the topology
of any algebra norm on A4).

1. Some affirmative answers. Let F be a field of characteristic differ-
ent from 2, X a vector space over F and f a symmetric bilinear form on X.
Then the vector space F1 & X endowed with the product

(Al +2).(pl +y) = (A flz, 1)1 + Ay + px)

becomes a Jordan algebra called the Jordan algebra of the symmetric bilinear
form f and denoted by J(X, f). These Jordan algebras are “special”, that
is, they can be regarded as Jordan subalgebras of associative algebras. If
A is an associative algebra and if J is a Jordan subalgebra of A, then J is
said to be reversible in A if the tetrad {zyzt} := 3(ayzt + tzyz) lies in J
whenever z,y, z,t are in /. We emphasize the obvious fact that, if 4 is an
assoclative algebra with an involution %, then H(A, *) is a reversible Jordan
subalgebra of A.

LeMMA L. Let F be a field of characteristic different from 2, X o vector
space over I, [ a nondegenerate symmetric bilinear form on X, A an asso-
ciative algebra over F containing J(X, f) as a Jordan subalgebra and assume
that either dim(X) = 4 or dim(X) > 6. Then J(X, f) is not reversible in A.

Proof. Clearly we may assume that A is generated by J := J(X, f),
so the unit of J is also a unit for A. We argue by contradiction, so as-
sume that {zyzi} lies in J whenever z,vy, z,t are in J. In particular, tak-
ing 21,22, 23,24 in X with f(zs,2;) = 0if ¢ # § and fas, 2:) # 0, we
must have that ¢ ;= {z1zyz324} belongs to J. Since mq,zs, 23,24 pair-
wise anticommute in A, we obtain zixsrazy = zax3Toz; = £ and so £2
(= flos, 1) (22, 22) w3, T3) f (4, 24)1) belongs to F1\ {0}. But ¢ cannot
belong to F1 because, from ¢ = AL with A in F\ {0}, we would deduce
that x4 is invertible in A with m[l = A leimezs = AN lagzoxy, which is
impossible since #2523 = ~z3w22].

Now from the intrinsic algebraic characterization of X in J given by
X ={0}u{y € J\F1:y* € F1} we conclude that ¢ is actually in X. Using
again the fact that 21, 22, 23, 4 pairwise anticommute in A, for s = 1,2,3,4
we have
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flt et =t = %(tmi + zit) = %(331.1-‘23‘;3564.%'71 + @21 Texsxs) = 0,

and therefore ¢ is a nonzero element in X which is orthogonal to the subspace
generated by 21,9, 23 and z4. This is already a contradiction in the case
dim(X) = 4.

Let us therefore assume dim(X) > 6 and continue our argument by
writing z5 := ¢ and choosing ¢ in X with f(ze,zs) # 0 and f(zg,z;) = 0
for i = 1,...,5. Then, for ¢,§ = 1,...,6, we have f(z;, ;) = 0if i # j
and f{z;,z;) # 0if i = 7, so the linear hull of {z1,...,26} in X (say
Y) is a G-dimensional f-nonisotropic subspace of X and F1 & Y is a sub-
algebra of J isomorphic to J(Y,g), where g denctes the restriction of f
toY xY.

Now we have natural inclusions J(Y, g) <« A and J(Y,g) — C(Y,3),
where C(Y, g} denotes the Clifford algebra of (Y, g) which becomes in this
way a unital special universal envelope for J(Y, g) [11; pp. 74-73]. By the
universal property of such an envelope, there exists a unique associative
homomorphism & : C(Y,g) — A extending the inclusion J(V,g) «— A and,
since C(Y, g) is simple [11; Theorem 2, p. 263], & is injective. Therefore,
regarding ¢ as an inclusion, the situation is the following: C(Y,g) is an
associative subalgebra of A, J is a Jordan subalgebra of A, and J(Y,g)
is a Jordan subalgebra of C(Y, g) contained in J. Now the contradiction is
flagrant because we know that z1z2z324 = 25 in A whereas such an equality
is impossible in C(Y, g) in view of [12; Theorem 4.12]. » :

Remark 1. The above lemma need not remain true if dim(X) = 1,2, 3,
or 5 (see [8; Theorem 6.2.5)).

LeMMA 2. Let X be a complex vector space, f a nondegenerate symmetric
bilinear form on X, A a real associative algebra containing J(X, f) as a
Jordan subalgebre and assume that either dimc(X) = 4 or dime(X) > 6.
Then J(X, f) is not reversible in A.

Proof. Asin the proof of Lemma 1, we may assume that A is generated
by J:= J(X, f), and then the unit 1 of J is also a unit for A. Consider the
complexification C ®g A of A, which contains the complexification C ®p J
of J as a Jordan subalgebra. Then e := (1 ® 1 ~ ¢ ® (i1)) and [ :=
-12-(1 ® 144 ® (41)) are mutually complementary central idempotents in
C ®p J, so that e.(C®g J) and f.(C &g J) are mutually complementary
ideals of C ®p J. The mappings u — e.(1 ® u) from J into e.{(C @ J) and
v = f(l&v) from J into f.(C &g J) are (complex-linear and complex-
conjugate-linear respectively) surjective algebra isomorphisms.

Since A is generated by J as a real algebra, C®p A is generated by CRp J
as a complex algebra, and therefore ¢ and f are (mutually complementary)
central idempotents in € @g A. [Indeed, for every a in € ®g J we have
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e.{e.a) = e.cx (since e is central in C@®g J), which can be rewritten in terms
of the associative product of C®p A as 2eqe = ea+ae, Multiplying this last
equality from. the left (respectively, from the right) by e, we obtain eqe = ex
(respectively, eqe = ae), so e is in the commutant of C®gr J in C®p A and
therefore e is central in C ®@g A because C ®g J generates C ®g A.]

Now, if J were reversible in A, then C®g J would be obviously reversible
in C®r A, and therefore e.(C®»J) would be reversible in e(C®grA4) (because
e(C ®r A) and f(C @r A) are mutually complementary ideals of C ®p A
containing e.(C®g J) and f.{C®g J), respectively). But this is not possible
because e.(C ®r J} is a copy of J and Lemma 1 applies. w

Recall that a Jordan algebra J is said to be a ceniral order in the Jordan
algebra of a symametric bilinear form if its centre Z(.J) is not zero, the non-
zero elements in Z(J) are not zero-divisors in J and the central localization
Z(J)~1J is isomorphic to the Jordan algebra of a symmetric bilinear form
on some vector space over the field of fractions Z(J) 1 Z(J).

THEOREM 5. Let A be a real or compler associative algebra with an invo-
lution = and let H(A,«) denote the Jordan algebra of oll hermitian elemnents
in A. Assume that A is generated by H (A, x), that every nonzero *-ideal of
A meets H(A, %) and that H(A,+) is simple. Then for every algebra norm
| -1l on H(A,x) there ezists an algebra norm || on A with the following
properties:

i) B < W] for all b in H{A, %),
(ii) for all a in A the mappings h — ah and h = ha from (H(4,%), ||
inta (A4,]-]) are continuous,
(iii) la*| = |a| for all a in A, and
(iv) if (A,+) denotes the completion of (A, x) with respect to the norm
| -1, then every nonzero x-ideal of A meets H(A, %)

Proof Write J := H(A,*). If J is not & central order in the Jordan
algebra of a bilinear form, then, taking into account that simple Jordan
algebras are prime and nondegencrate [26], our result is nothing but the
specialization of [3; Theorem 1] to simple normed Jordan algebras.

Assume, therefore, that J is a central order in the Jordan algebra of a
symmetric bilinear form. Since J is a simple algebra with a unit, Z(J) is
a field extension of the base fleld K (= R or C), hence the passing to the
central localization trivializes, and so J is actually the Jordan algebra of a
nondegenerate symmetric bilinear form on a vector space over Z(J). On the
other hand, by the Gelfand-Mazur Theorem, we have either Z(J) = C, if
K=C,or Z(J) e {R,C}, if K=R. If Z(J) = K, then we apply Lemma 1,
whereas if Z(.J) = C and K = R we apply Lemma 2, obtaining in both cases
dimy (J) < oo, Since for all hy, ko, ks, he in H(A, %) we have
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hihohshy = {h1h2h3h4} -+ hlhg(hg.h4) —h (hg.h4)h.3
+ (hl.h4)hgh3 — h4(h1.h2)h3 + h4hg(h1.h3) — h4(h2.h3)h1

and A is generated by J = H(A, %), we get 4 = H(A,»)H(A,*)H(A,+) and
therefore also dimg(A) < co. Now every norm |- | on the vector space of
A, multiplied if necessary by a suitable (sufficiently large) positive number,
becomes an algebra norm on A satisfying property (i) from the statement. By
replacing | - | by max{|- |, |- *I} if necessary, we have additionally property
(iii}, whereas (ii) and (iv) are automatic by the finite-dimensionality of 4. =

Proof of Theorem 4. It follows directly from Theorem 5 that
Question 2 has an affirmative answer whenever H (A4, «) is simple with unit,
because the unit 1 of H(A,*) must also be a unit for A (since H(A,x*)
generates A) and then, applying property (i) and (i) with o = 1, we see
that the restriction to H(A, ) of the norm |- [ in that theorem is equivalent
o1

Now we assume that the algebra norm [ - || on the simple Jordan algebra
H(A,=) is complete and we show that the algebra norm on A extending
the topology of ||| can be chosen complete. If A is commutative, then
H(A,+) is an associative subalgebra of A, hence A = H(A,*) (because 4
is generated by H(A,+)), and there is nothing to prove. Therefore we may
assume additionally that A is not commutative. Again, let |- | be the norm
on A given by Theorem 5 and let (A *) denote the completion of (A4, x*)
with respect to this norm. Then H({A,*) = H(A,+) (by the completeness
of |- || and the equivalence of |-] and || - || on H(A *)) and therefore ev-
ery nonzero *-ideal P of A contains H(A, x) {by the simplicity of H(A, *)
end property (iv) in Theorem 5). Now, for such P, PN A is a subalgebra
of A containing H{A,*), hence P 2 A (again because H(A,*) generates
A) and so P is dense in A. Since dense ideals in a Banach algebra with
unit must coincide with the whole algebra [2; Theorem 9.3(ii)], we have
proved in fact that A is (algebraically) #-simple. As a consequence, A is
semiprime and we may apply [9; Example 2 in p. 59 and Theorem 2.1.2]
to conclude that A contains a nonzero *-ideal of A. Since A is *-simple, we
have A=A. u

THROREM 6. Let A be ¢ real or complex simple associative algebra and
let ||-|| be a norm on the vector space of A making the Jordan product
continuous. Then there exists an algebra norm |- | on A with the following
properties:

(1) lla|| < lal for all o in A, and

(ii) for every a in A the mappings © ++ ax and @ — za from (A, -|)
into (A,|-]) are continuous.
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Proof. If A is commutative, then there is nothing to prove. Therefore we
assume that 4 is not commutative. Let B denote the direct product A x 4°P,
where A°P is the opposite algebra of A, and let # be the exchange involu-
tion on B. Then B is a *-simple associative algebra (hence every nonzero
x-ideal of B meets H (B, +)) and H (B, *) is not a commutative subset of B.
Therefore, by [9; Example 2 on p. 59 and Theorem 2.1.2], B is generated by
H(B,x). On the other hand, the mapping ¢ : a — (a, ) is an isomorphism
from the Jordan algebra AT onto H(B,+). As a first consequence, H (B, *)
is a simple Jordan algebra because A is simple and [9; Corollary on p. 57]
applies. Also the mapping ¢ +— [~ {z)|| from H(B,*) into R becomes an
algebra norm on H(B, ).

Now we are in a position to apply Theorem 5 to obtain an algebra norm
[l - [l on B with the following properties:

W) llp=* )] < [lInlll for all b in H(B,*),

(2) for every b in B the mappings h — bh and h — hb from (H{B, ),
le=*(-)|1) into (B, ] -[I) are contimuous, and

(33 ll[6™ili = 1l for all b in B.

Then the mapping a — |a] := 2||(a, 0)||| from A into R is clearly an algebra
norm en A, and, by (1) and (3), has property (i) in the statement of the
theorem.

Let @ be in A. Then, by (2}, there exists a nonnegative number M,
satisfying | (a, 0)A| < Mallg~L ()] and lla(a, 0)] < M, = (R)]] for oIl &
in H{B, #). Therefore, for every = in 4 we have

|azl = 2{[[(az, 0){]| = 2[[|(a, 0} (=, 2)il| < 2Malle™* (=, z))|| = 20|

and analogously |za| < 2M,||z|), thus concluding the proof of (ii}. m

COROLLARY 1. Let A be a real or complex simple associative algebra
and et || - || be a norm on the vector space of A making the Jordan product
continuous. Then || || makes the associative product separately continuous.

Proof. Let |- | be the norm on A given by Theorem 6 and fix a in A.
Then, by property (ii) in that theorem, there exists a nonnegative number
K, satisfying faz| < K,||z|| and |lza]l < K,|z| for all z in A. Applying
property (i), we obtain |laz| < K, ||| and ||za|| < K,|jz|| for all z in 4. =

FProof of Theorem 3. It follows directly from Theorem 6 (apply (i)
and (i) with a = 1) that Question 1 has an affirmative answer whenever A
is simple with unit. =

Remark 2. It follows easily from Theorem 3 (respectively, Theorem 4)
that Question 1 (respectively, Question 2) has an affirmative answer when-
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ever A (respectively, H (A, «)) is a finite direct sum of simple ideals with a
unit. The counterexample from [1] (respectively [23]) shows that this need
not remain true in the case of infinite direct sums.

We conclude this section with an affirmative answer to Question 1, show-
ing again the parallelism between the answers to Questions 1 and 2. It is
known that Question 2 has an affirmative answer whenever there exists a
positive number K satisfying K||h||* < ||h?|| for all A in H(4,*) [23; Propo-
sition 2], the result being uninteresting if the algebra A is complex because
then the Jordan algebra H{A, «) is associative [19; Proposition 31].

PROPOSITION 1. Question 1 has an affirmative answer whenever there
exists a positive number K satisfying K| a|l? < [la?|| for all a in A. Moreover,
if A is complex, then it is commutative.

Proof. We may assume that {a.b]} < |al [|b]} for all a,b in A. Since for
@ and ¥ in A,

eba = 2a.(a.b) —a%b and [0,b]® = 2a.(bab) — aba — ba’b,
we have in fact '
Ellla, 1] < fla, 1% < 12{[al?([5]>.
Therefore ||lab|l = |la.b + 3[a,8}|| < M|lal||bl|, where M =1+ (3/K)/2,
hence the associative product of A is continuous. Now |- | := M| | is an

algebra norm on A satisfying (K/M)|af® < |a?] for all @ in A, hence, if A
is complex, then A is commutative by [2; Corollary 15.8]. =

2. The monster. For an algebra B, we denote by M. (B) the algebra
of all countably infinite mafrices over B with a finite number of nonzero
entries. For n in N, we will identify the algebra M, (B) of all n x n matrices
over B with the subalgebra of M (B) of those matrices (bi;}(s j)emxn in
Moo (B) satisfying b;; = 0 whenever either i > n or j > n.

ProprosiTioN 2. Let (B, -1|) be an associative normed algebra. Then
there ewists an algebra norm on My (B) (also denoted by || - ||) extending
the norm of B = My(B) and satisfying

l ( 0 2’ ) = max{||a|n, |5l m}

-

for all n,m in N, a i M,.(B) and B in M,,(B), where || -||. denotes the
restriction of |- || to Mp{B).

Proof It is well known that B can be isometrically imbedded in the
normed algebra BL(X) of all bounded linear operators on a suitable normed
gpace X [17; p. 4]. Then we can convert the vector space Y of all quasi-nuli
sequences in X into a normed space by fixing 1 € p < co and defining, for
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y=A{z} in ¥, fly| = (3, llzal?)"? it p < 00 and |jy| := max{||z.|| :
n € N} if p = co. Finally, the imbedding B — BL(X) induces naturally
an algebraic imbedding M (B) < BL(Y) and it is enough to restrict to
Moo (B) the norm of BL(Y') to obtain an algebra norm on M. (B) with the
required properties. m

Let B be an algebra with an involution *. Then M {B) has a “canonical”
involution (also denoted by =) consisting in transposing a given matrix and
then applying the original involution to each entry.

PROPOSITION 3. Let (B, +||) be an associative normed algebra contain-
tng a closed Jordan subalgebra J which is not an associative subalgebra.
Then there exists a norm |-| on the vector space Moo (B) for which the
Jordan product is continuous but the associative product is discontinuous.
If J is nonreversible in B, then the above norm |- | ean be chosen in such
o wey that it even makes the tetrad mapping (o, 8,7v,8) — {afB~é} from
Moo (B) % Moo (B) X Moo (B) x Moo (B) to Moo(B) discontinuous. Moreover,
if B has an dnvolution %, J is nonreversible in B and J is contained in
H(B,*), then the norm || can be chosen in such a way that the topology
of s restriction fo H(Muo(B), %) cannot be extended to the topology of any
algebra norm on My (B).

Proof. Let [{-]| be an algebra norm on M. (B) with the properties
assured by Proposition 2. For an element « in M. (B) and a (not necessarily
|| - [l-closed) subspace P of Moo (B), write |[ee + P} == inf{||e+ 8] : 8 & P},
so that the mapping o — [|a+ P|| is a seminorm on the vector space Moo (B).
For convenience, we also regard M, (B) as M, (K} ®@x B, where K (= R
or C) denotes the base field of B. Denote by e, (n € N) the element (\;;)
in My (K) given by Ay = 0 whenever (4,7) # (n,n), and An, = 1. Then,
writing 7, 1= M,1(K)® B+ e, ® J (n € N), where Mp(K) := 0, we can
define a norm | - | on the vector space My (B) by

ol = [lalt+ > 25 la+ Tl

n=l

for all e in My, (B) (note that, for each a in My (B), the above series

hag only a finite number of nonzero terms). For k = 0,1,2,..., and « in
Moo (B), we deline inductively lafy by lalo := [lef] and |odgrr = lali +

5k+1 |

2 |+ Ty ||, so that, for fixed o in M (B), the sequence {lelsYrenuioy
is quasi-constant with lmit |ee|. Clearly e.8lo € lado |80 for all @, 5 in
Moo (B). Assume k is such that |e.fly < |alg 18]k for all o, 8 in Moo (B).
Then, since J is a Jordan subalgebra of M (B), we can argue as in the
proof of [23; Lemma 3] to obtain for all @, 3 in M (B),

low.Bles = la.Blo + 25 |8 + T |
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< Jefle + 2% (llall 16+ Ty |
+ |l + Trga || 1B + e + Tat [ 1B + Tor1 )
< lade 18l + 257 (lele |8 + Frgr ]| + |+ Tosal1815)
+ (Va4 Toall 18+ Tesa
= (laly + 2" o+ Teaa DUBL + 25118 + FeqalD)
= lodit1 18le+1.

In this way we have proved that |a.8lx < lel: |8}k for all o, 8 in M. (B)
and every & in N U {0}. Therefore |e.5] < |af 18] for all o, 8 in M..(B),
and | - | makes the Jordan product of M. {B) continuous.

Let bbein B and k be in N. Then a straightforward calculation, involving
the properties of || - || on Mu.(B) given by Proposition 2, shows that

lex @bl = (1425 +...+25 )|[p]| + 25" b+ J|.
Since J is closed in B and is not an associative subalgebra of B, there exist
¢,y in J with ||z|] = [y|| = 1 and |lzy + J|| # 0, and, for k in N, we have
ler@z)er@y)l  lew ® (2y)l
lex®@al lex @yl lex @2l ler @ o
_ 024 2 ey + 2% oy + T
B (1425 4., 4255792

25" ey + J | 95
N e DR To L e
( 5’““1)3
=Tz |lzy + J|| = 00 as k — oo.

Therefore the associative product of My, (B) is |- |-discontinuous. _
Agsume that J is nonreversible in B. Then there exist ,y, z,t in J with
=il = lly| = §zll = [lZll = 1 and ||{zy=t} + J| # 0, and, for k in N, we have
H{er @ x)(er @ y)(er ® z)(ex @ 1)}
ler @ 2l lex @ yl lex ® 2] lex @t
_ ler ® {zy=t}
Cee @zl ler @yl ler, ® 2 ler, @]
(1+2°+ .+ 25 )| |{mpet} | + 2" | {ayat} + J|
(1425 4 ... 425571y
25" || {zyzt) -+ J|| N 95"
T4 25 25T T ER(255 )

5 [ {myat} + 71|

5&-1

2
=73 {zyzt} + J| — oo

as k — co.
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Therefore in this case even the tetrad mapping on Moo (B} is |- |-disconti-
Luous. ‘

Finally, assume that B has an involution , that J is nonreversible in B
and that J is contained in H (B, ). Then, for z,, z, t as above and for k in N,
BT, e @Y, ex &7z, e, @1 lie in H (M (B),*}, and the last argument shows
that the restriction of the tetrad mapping to H(Me(B), *) x H( Mo (B), %)
H (Mo (B), %) x H(Mx(B), *) is | - |-discontinuous. This makes it impossible
to find an algebra norm on M, (B) extending the topology of the restriction
of | -] to H(Mu(B),*). w

Remark 3. Let A be an associative algebra over K and |- | a norm on
A. If the Jordan product of 4 is |- |-continuous but the associative prod-
uct is not, then the mapping (a,b) — aab + Bba is |- |-discontinuous for
any o, in K with « #£ 4. This follows from the equality cab + Bba =
(o —~ B)ab + 28a.b.

THEOREM 7. Let K denote either R or C. Then there erists a norm |- |
on the vector space Moo (K) with the following properties:

(i) do- 81 < lod 18] for all o, 8 in Moo (K).

(i) There is an involution * on Moo (K) such that there is no algebra
norm on Muo(K) whose restriction to H(M,(K), *) is eguivalent to the
restriction of |- | to H(M(K),*).

As a consequence of (i), the restriction of |-| to the Jordan algebra

H(Muo(K), %) is an algebra norm, whereas, as a consequence of (i), the
associative product of My, (K) is | - |-discontinuous.

Proof. Let B denote the associative algebra My(K) regarded as a
normed algebra with respect to an arbitrary algebra norm and let = be
the “symplectic” involution of B; namely, for b in B, b* := 57!b%s, where
b* denotes the transpose of b, and s stands for the element in B given by
s = diag{g, ¢} with q := (_? é) The elements z,y,z,t in H(B, %) given
by

pairwise anticommute and satisfy 22 = 2 = 1 and 22 = 2 = —1. Tt follows
that, with J denoting the linear hull of {1,2,9,2,t}, J is a Jordan subalge-
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bra of B contained in H{B, *) and is isomorphic to the Jordan algebra of a
nondegenerate symmetric bilinear form on a 4-dimensional vector space over
K. Moreover, J is closed in B, because B is finite-dimensional, and nonre-
versible in B in view of (for example} Lemma 1. Now apply Proposition 3
and take into account that M (B) is isomorphic to M, (K). m

Remark 4. The spectalization of Zel’manov’s prime theorem to simple
Jordan algebras [27; Theorem 4] asserts that, if J is a simple Jordan algebra,
then J is one of the following:

(i) a simple exceptional Jordan algebra of dimension 27 over its centre,
(ii) a simple Jordan algebra of a symmetric bilinear form on a vector
space over the centre of J,
(1) J = A", where A is a simple associative algebra,
(iv) J = H(A, =), where A is a simple associative algebra and # is an
involution on A.

Moreover, from the “uniqueness of the #-tight envelope” for certain spe-
cial Jordan algebras [14; Theorem 2.3], it is easily seen that, if the simple Jor-
dan algebra J is neither in case (i) nor (if) but (iii) (respectively, (iv)), then
J cannot be in case (iv) (respectively, (iii)). Moreover, A and A°? are the
only simple associative algebras B satisfying J = BT (respectively, (A, #) is
the only involutive simple associative algebra (B, *) satisfying J = H (B, #)).

Now, if J denotes the simple Jordan algebra My, (K)™ (respectively,
H (Moo (K), %)), then J is neither in case (i) nor (i) but (iii) (respectively,
(iv)), hence, when J is endowed with the pathological norm |- | of Theo-
rem 7, it becomes impossible to obtain the topology of this norm from any
algebra norm on the essentially unique simple associative envelope of J. It
follows that, as claimed in [22], a “strong” normed version of Zel’'manov’s
theorem, like the one obtained in [4; Theorem 1] for normed simple Jor-
dan algebras with a unit, cannot be true even in the nonunital simple
case.

3. Completing the monster. As announced in the introduction, in
this section we study the completion of M, (K)* in the pathological Jordan-
algebra norm constructed above, in order to obtain analytically more inter-
esting negative answers to Questions 1 and 2.

LEMMA 3. Let A be an associative algebra with zero annihilator and J
a simple Jordan subalgebra of A. Assume that J is not isomorphic to the
Jordan algebra of a symmetric bilinear form and that A is generated by J.
Then either J = A" and A is simple or there exzists an involution % on
A such that J = H(A,*) and A is x-simple. Moreover, the first possibility
arises if and only if there exist & and y in J satisfying {z,y] € J\ {0}.
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Proof. Asin the proof of [23; Corollary 2], if A denotes the universal
special envelope of J, * is the “main” involution on A and T is the largest
(automatically -} ideal of A contained in the skew part of A, then J =
H(A,*) and IJ = JI = 0. Since A is generated by J, it follows that T
is contained in the annihilator of A. Since A is also generated by J, the
unique associative homomorphism ¢ : 4 — A extending the inclusion of
J into A is surjective, and, since A has zero annihilator, #(I) = 0. Setting
(B, %) := (A, *)/I and taking into account that J = H(A,+) and JN I =0,
we can view J as H(B, ). Clearly B is generated by J and every *-ideal of
B meets J. Since J is simple, this implies that B is *-simple.

Let ¥ be the homomorphism from B onto A induced by &. If ¥ is injec-
tive, then ¥ is an isomorphism from B onto A whose restriction to J is the
identity mapping on J. Therefore we can translate the involution of B to A
in such a way that A becomes xsimple and J = H(A4, *).

Assume that ¥ is not injective. Then, setting P := (Ker(¥))* and re-
calling that B is +-simple, we deduce that P is a simple ideal of B satisfying
B =Pg P* Now Y p is an isomorphism from P onto A. Let a be in A.
Then, writing p := (¥|p)~!(a), we see that p+ p* belongs to .J and hence

o =(p)=¥(p+p")=p-+p' € H(B,x =
Therefore A C J, hence A = J. 4 is obviously simple because J is a simple
Jordan algebra.

If there exist z and y in J with [z,y] € J\ {0}, then J = A because
otherwise J would be of the form H(A,*) for a suitable involution * on A
and [z,y] would be a nonzero simultaneously hermitian and skew element
in A. Conversely, if J = A, then, since J is simple and not isomorphic to
the Jordan algebra of a symmetric bilinear form, J is not associative. Hence

A is not cornmutative and the existence of z,y in 4 with [z,y] € J\ {0} is
obvious. m

Notation. In what follows (B, | - [|) will denote the Banach algebra M, (K)
(K =R or C) regarded as the algebra of all bounded linear operators on the
Hilbert space X := K%, Then, regarding an infinite-dimensional separable
Hilbert space H over K as the £3-sum of a countably infinite family of copies
of X, we can view “the monster” M := M, (B) as an associative subalge-
bra of the algebra BL(H) of all bounded linear operators on H (in fact, it
consists of bounded linear operators of finite rank). The operator norm on
BL(H) will be denoted by || - ||, so that the restriction of ||| to M satisfies
the conditions of Proposition 2. According to the proof of Theorem 7, if
+ denotes the symplectic involution on B parameterized as we did there,
then % commutes with the usual operator adjoint on the Hilbert space X,
there exists a (closed) nonreversible Jordan subalgebra J of B contained
in H(B,+) and J is a self-adjoint subset of the C*-algebra B = BL(X).

icm

Jordan-algebra nerms 95

When such a J has been chosen, for every n in N, 7, will stand for the
(finite-dimensional in our case) Jordan subalgebra of M as defined in the
proof of Proposition 3. Finally, we consider the “monstrous norm” |- | on
M given by

oo
lod = flafl + 32 27" o + Zal

=]
for all & in M, so that |-| is an algebra norm on M™, but the topology
of the restriction of |- | to (M, «) cannot be extended to the topology of
any algebra norm on M (hence, in particular, the associative product of A
is |- [-discontinuous). Of course, the involution * on M now refers to the
canonical involution on M relative to the symplectic involution on B.

Fact 1. The set J of those elements F in BL{H) which satisfy
Yol L2 E + Tull < oo is a selfadjoint Jordan subalgebra of BL(H) con-
taining M and consisting of compact operators on H. Moreover, if for F in
J we define

|F] = |F) + 3 25| F + all,
n=1
then || becomes a complete algebra norm on J extending the monstrous
norm on M and satisfying |F#| = |F| for all F in J, where F# denotes
the adjoint operator of F.

Proof. Since J is a selfadjoint subset of B, 7, is a selfadjoint subset of
BL(H), so, for F'in BL(H), we have ||F' + J,|| = |[F# + J,|| for all n in
N. Therefore F'# lies in 7 whenever F is in J and, if this is the case, the
equality |F¥| = |F| holds.

For k=10,1,2,... and F in BL(H) define inductively |F|; by

k-1
1Flo = [F] and [|Flopr = Flx+ 2% |F + Jietl,

0 that ¥ is in J if and only if the increasing sequence {|F |k}kemu{0} is
convergent. If this is the case, then |F|, — [F'| as k¥ — co. As in the proof
of Proposition 3, |F.G|y < |Fle [Glk for all F, @ in BL(H) and all k in N.
Therefore, if F' and G are in 7, then F.G lies in J and |F.C| < |F] |G|
Since J is clearly a subspace of BL(H), this shows that J is a Jordan
subalgebra of BL{H) and that |- | is an algebra norm en J. Of course M
is contained in J and |- | extends the monstrous norm on M.

For F'in J, we have ostensibly |F -~ 7,| — 0 as n — oo and therefore,
since J, is contained in M which consists of finite rank operators, F is
compact. Let {Fy} be a |-|-Cauchy sequence in J. Then {F,} is || |-
Cauchy in BL(H), hence it has a || - ||-limit (say F) in BL(H). For € > 0,
let p be in N such that |F, — F,.| < ¢ whenever n,m > p. Then for every
k,n,m in N with n,m > p we have |F, — Fuly < ¢ and, since |- |; is
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|| - |[-continuous, by letting m — oo we obtain |F, — Fl; < e. Now, for
n > p, F,, — F belongs to J and |F,, — F| < e. Therefore F lies in 7 and is
the |- |-limit of {F,}. =

Remark 5. Note that, in view of Theorem 1 and the fact that selfadjoint
assoclative subalgebras of BL(H) are semiprime, neither the Jordan-Banach
algebra (7, |- ) in Fact 1, nor any of its selfadjoint |- |-closed subalgebras
containing M can be an associative subalgebra of BL{H).

From now on, the theory of the socle in semiprime associative alge-
bras and nondegenerate Jordan algebras will become crucial. The reader
is referred to [10] and [15] in the associative and Jordan setting, respec-
tively. As usual, for elements z,y in a Jordan algebra J, we define Uy (y) =
22.(z.y) — z%y. If J is a Jordan subalgehra of an associative algebra, then
Ur(y) has the easier writing U(y) = zyz. '

FacT 2. Let K be a selfadjoint Jordan subalgebra of BL{H) containing
M. Then K is prime nondegenerate and has nonzero socle. More precisely,
the socle of K is a simple associalive subalgebra of BL(H) containing M.
Moreover, if in addition K consists only of compact operalors, then the socle
of K is central simple over K.

Proof. K is nondegenerate because, for F in IC\ {0}, we have F# ¢ K
and Up(F#) = FF#F 4 0. On the other hand, M has many nonzero
idempotents e satisfying eBL(H)e = Ke. Since Il contains M, it follows
that K contains many nonzero idempotents e satislying U,(K) == Ke, hence
the socle of K, soc(K), is nonzero. More precisely, for e in M as above, the
ideal Q of X generated by e is a simple ideal of K contained in soc(K). Now
2N M is a nonzero Jordan ideal of the simple associative algebra M, Lience
RNM = M [9; Theorem 2.1.1], and in fact M is contained in @ (hence in
soc{XC)).

Let P be an arbitrary nonzero ideal of JC. Then PN & is either zero or )
because of the simplicity of @. But the first possibility cannot occur since,
from PN @ = 0, we would obtain 0 = P.2 2 P.M, hence P = 0, a fact that
contradicts the assumption. In this way we have proved that every nonzero
ideal of K contains @, which in turn implies the primeness of K.

Finally, since £ is prime and nondegenerate, soc(iC) is a gimple Jordan
subalgebra of BL(H) and clearly it contains [M, M] 5 0. Moreover, the
associative subalgebra of BL(H) generated by soc(XC) has zero annihilator
in itself because it is #-invariant. It follows from Lemma 3 that soc{K) is
an associative subalgehra of BL{H).

To conclude the proof, assume that K is contained in the algebra K L(H)
of all compact operators on H. Then, since K L{H) is centrally closed over
K {13; Theorem 12] and soc(K} is || - ||-dense in KL(H) (note that even M
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is || - [|-dense in K L(H)), we may apply [21; Lemma 4] to conclude that the
shmple algebra soc{KC) is central over IK. m

By taking K in Fact 2 equal to the completion of the monster relative to
the monstrous norm, namely the closure of M in (J,]-]) (see Fact 1), we
obtain immediately the following theorem.

THEOREM 8. Let K denote either R or C. Then there exists a nonde-
generate topologically simple (hence prime) Jordan-Banach algebra K over
K whose socle is of the form AT, where 4 is a centrul simple associative al-
gebra over IK, and nevertheless the restriction of the norm of K to A makes
the associative product of A discontinuous.

A complez Banoch pairing consists of a pair (¥,Z) of complex Ba-
nach spaces together with a continuous nondegenerate bilinear mapping
(-, Y xZ — C, Given such a complex Banach palring, we denote
by Lz(Y) the associative algebra of all linear operators F': ¥ — Y having
an adjoint F* : Z ~» Z relative to {-, -}, and by FLz(Y"} the simple ideal of
Lz(Y) consisting of all finite-rank operators in L z(V). By the closed graph
theorem, the operators in Lz(Y"), as well as their adjoints, are automatically
continuous, and Lz(Y") becomes a complex Banach algebra under the norm
\F = max{||F||,||F*||} (see for example [2]). By the results of [15] and [16],
Theorem 8 has the following

COROLLARY 2. There exist o complez Banach pairing (Y, Z,{-, -}), a
Jordan subalgebra K of Lz(Y) containing FLz(Y), and a complete algebra
norm |- | on KC such that the inclusion (X,] -} — (Lz(Y),| |} is continu-
ous, but the associative product of FLz(Y) is | - |-discontinuous.

In what follows we need to know that the (linear) involution % on M can
be extended to an involution {also denoted by *) on BL(H ) commuting with
the operator adjoint #:, as well as the observation that the Jordan algebra
J in Fact 1 is s-invariant and * becomes |- |-isometric on J. To see this,
consider the mapping j : (A1, Az, Ag, Ad) — (=A2, A1, — A4, Az) from X = K*
inte X (where, for A in K, X denotes the conjugate of A} and let k be the
mapping from H = EBffeNXn (where X, = X for all n in N) into H given
by k((21,2a,...)) = (j(1),{xs),...). Then, since b* = j 0 b* o j for all
bin B = BL(X), we have * = k™' oa¥ ok for all @ in M = M (B), and
therefore the mapping F — k™' ¢ F# o k is an involution on BL(H) coin-
ciding with * on M and commuting with #. Now the *-invariance of 7 and
the [ - [-isometry of * on J follow easily from the definitions of J and |- |.

FacT 3. Let K be a selfadjoint Jordan subalgebra of BL(H) contained
in H(BL(H),*) and containing H(M,*). Then K is prime nondegenerate
and has nonzero socle, If A denotes the (automaticelly x-invariant) associa-
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tive subalgebra of BL(H) generated by soc(K), then A is simple, M C A,
and soc(K) = H{A,+). Moreover, if in addition K consists only of compact
operators, then A is ceniral simple over K .

Proof. Asin the proof of Fact 2, we can verify that X is nondegenerate.
Define

1 00
010
0040

Then e is an idempotent in H{M, ) satisfying eH(BL(H),*)e = Ke, so
U.(K) = Ke, which implies that X has a nonzero socle. Now, minor changes
in the proof of Fact 2 show that K is prime (hence soc(K) is simple) and
that soc()C) 2 H{M, =)

Let A denote the associative subalgebra of BL(I) generated by soc(K).
Then 4 has zero annihilator in itself (since it is selfadjoint) and it is impos-
sible to find z,y in soc(K) with [z,y] € soc(K) \ {0} (since soc(K) C K C
H(BL(H),*)). It follows from Lemma 3 that there exists an involution O
on A such that A is O-simple and soc(K) = H{A,O). But 0 and * coincide
on A because both involutions fix the elements of soc(K) and soc(X) gener-
ates A. On the other hand, since H{A, *) contains H (M, %) and generates A,
A must contain M because H(M,*) generates M [9; Example 2 on p. 59
and Theorem 2.1.2].

Now A is prime (a consequence of the associative specialization of Fact 2)
and wsimple, hence 4 is simple. The fact that A is central simple over K
whenever K& C KL{H) follows from the | - [|-density of A in K L(H) by the
same arguments as in the conclusion of the proof of Fact 2.

By taking K in Fact 3 equal to the completion of H{AM, «) relative to the
monstrous norm, namely the closure of H(M, %) in (7, ] |) (see Fact 1), we
obtain

THEOREM 9. Let K denote either R or C. Then there exists a nonde-
generate topologicelly simple Jordan Banach algebra K over I whose socle
is of the form H(A, ), where A is a centrol simple nssociative algebra over
K with an involution %, and nevertheless the topology of the restriction of
the norm of K to H(A,x) cannot be extended to the topolagy of any algebra
norm on A.

A complex self-paired Banach space is nothing but a complex Banach
pairing (¥, Z, (-, -)) with Z == ¥ and such that the continnous nondegen-
erate bilinear form (-, -) on Y becomes either symmetric or alternate. In
this case the passing * to the adjoint operator becomes an involution on the
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algebra Ly (Y') leaving F Ly (Y) invariant. Again the results in [15] and [16]
allow us to obtain the following '

COROLLARY 3. There exist a complex self-paired Banach space (Y, {-, - )},
a Jordan subalgebra X of Ly (Y') contained in H(Ly(Y),*) and containing
H(FLy (Y}, %), and a complete algebra norm |- | on IC such that the inclu-
sion (K, |- ) = (Lv(Y),]-]) is continuous whereas the restriction of | - | to
the simple Jordan algebra H{(F Ly (Y'), %) cannot be extended o the topelogy
of any algebra norm on FLy (Y}

Concluding remark. In the spirit of Remark 4, we emphasize
that the results obtained above show how a “strong” normed version of
Zel'manov’s theorem in the case of prime nondegenerate Jordan-Banach
algebras cannot be expected to hold in general, even if the existence of a
nonzero socle is additionally assumed. This gives special relevance to “light”
results on the matter like that in [3; Theorem 2] (on general prime nondegen-
erate Jordan—-Banach algebras) and [16; Theorem 1.1] (on prime nondegen-
erate Jordan-Banach algebras with nonzero socle). Taking into account that
prime nondegenerate Jordan algebras with nonzero socle are primitive [7], it
also follows that the recently obtained Zel'manovian classification of primi-
tive Jordan-Banach algebras [3; Theorem 3] cannot be improved in general.
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