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A sharp correction theorem

by

S. V. KISLIAKOV (St Petersburg)

Abstract. Under certain conditions on a function space X, it is proved thas for every
L-function f with || f]lec < 1 one can fnd a function ¥ 0 < ¢ <1, such that pf € X,
mes{p # 1} < el|f]l1 and ||ofix < const{1-loge™ Y. For X one can take, e.g., the space
of lunctions with uniformly bounded Fourier sums, or the space of L®-functions on R™
whose convolutions with a fixed finite collection of Calderén-Zygmund kernels are also
bounded.

In 1979 (see [5]), the author obtained the following refinement of the
classical correction theorem of 1. E. Men'shov:

Let # be a continuous function on the unit circle T, |Flloc <1, and
0 < g < 1. Then there exists a function ¢ with uniformly convergent Fourier
series such that m{F s ('} < & and the absolute values of the partial sums
of the Fourier series of G' are uniformly bounded hy const(1+loge™1). (Here
and in the sequel, 2 is normalized Lebesgue measure on T)

The logarithmic majorant is sharp, as can easily be derived from the log-
arithmic growth of the L'-norms of the Dirichlet kernels (see [5]). However,
much later, motivated by a question of B. §. Kashin, the author was able to
obtain a much stronger statement;:

(*) In the above theorem, one can replace the inequality m{F # G} < ¢
by mes{F # G} < &||F||;,+ and, moreover, ensure the pointwise majorization
|G+ |F — G| < (1+8)|F.

50, the result of 1979 had provided a correct order of magnitude for the
Fourier sums of ¢, but under improper scaling.

The proof of (+) (in a slightly weaker form, with m{F s 0} in place of
[Fll11) can be found in [6]. However, the statement becomes mueh more
spectacular if we renounce all continuity and convergence conditions, i.c.,
demand ouly that the Fowrier sums of ¢ be uniformly bounded. In this
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case, as we shall see, an analog of (%) with § = 0 is true; moreover, F can
be an arbitrary L>™-function (||F||. < 1).

This analog of (*) can be regarded as a strong existence theoren. Indeed,
since |G| -+ |F — G| < |F| (where in fact we have equality), G is obtained
from F' by means of multiplication by a positive function not exceeding 1;
in particular, F is supported on the set {F % 0} = E. We note that the
existence of functions supported on a given set of positive measure and
having uniformly bounded Fourier sums is a nontrivial but well-known fact;
however, the “discontinuous” version of (x) yields many interesting new
details about this matter.

In this paper we focus on this “discontinuons” version of (%) and its
generalizations. The latter are mainly related to the fact that the proof of
this version is based on an easily formulated (though nontrivial) property
of the space of functions with uniformly bounded Fourier sums, and so can
be carried over to any space with a similar property.

The paper is organized as follows. In §1 we formulate the main result
for abstract function spaces satisfying certain “axioms”. In §2 we give a se-
ries of examples of such spaces and formulate the corresponding existence
theorems. In particular, we revisit the framework of the paper [2], where
an existence theorem for analytic functions with a fixed set of singularities
was discussed (in [2] the “abstract” part of [5] was used to produce & rich
family of examples). We obtain some additional information in the context
of Men’shov’s theorem as well. In §3 we prove the main result. Doing that,
we deviate from the outline of [6] at many points. Even in the main de-
composition lemma, where the calculations are nearly the same as in [6],
the accompanying words are quite different. The reason is that the setting
we have chosen requires great care in applying duality. Finally, in §4 we
prove an analog of the decomposition lemma for the space of fanctions with
Fourier series of power type and uniformly bounded Fourier sums.

Some preceding work in the spirit of this paper should be mentioned.
In {3] the reader can find “axioms” close to those introduced in §1, and in
[2]-[4] some examples of existence proofs via duality, of the same nature as
here.

1. The main theorem. Let (£2, u) be a s-finite measure space and X
a Banach space of locally summable functions on 2 {(“locally summable”
means “summable on every set of finite measure”), Defining
Lg® () = {f € L™(n) : p{supp £} < oo},
we see that every function g € LE°(u) generates a functional &, on X:

@Q(m}zfzgd,u, ze X.
7
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We assume that the following two basic properties (Al and A2) are
satisfied.

Al. The natural embedding X —» Lii () is continuous, and the unit,
ball of X is weakly compact in L1 ().

loe
(In particular, A1l implies that all functionals @, are continuous).

A2 For every g € L (), we have the following “weak type (1, X *)-esti-
mate”:

gl >t} < et™H Byl xe, ¢ >0,
where ¢ is a constant depending only on X.

THEOREM 1. Let B € L(u) 0 LY(u), ||[Fllee < 1. Then for every

0<e <1, there is a function G € X such that G|+ |F-G|=|F|,
wWF#£GHe|F|, and |Gllx <C1+ loge™)
(the constant C depends only on ¢ in A2).

We note that the set E = {F 3£ 0} implicitly plays a very important
part in Theorem 1. In general, even the existence of at least one nonzero
function from X supported on  is nentrivial (though much easier to prove
than Theorem 1).

Since [Pl < pB, we deduce that p{F # G} < euFE (of course, this is
of interest only if ' < 00).

Though we are going to prove Theorem 1 only in §3, one small step in this
direction is in order now. Let ¥ be the closure of the set {$, : g € Lg°(u)}
in the norm of X*,

LEMMA 1. Assume that X satisfies Al (A2 is not needed here). Then,
under the noturel duality of X and X*, the dual of Y is X (in particular,
X is a conjugate space), On the ball of X, the topology ¢ (X, Y) coincides
with the weak topology of Li, (u).

The proof is in fact well known. Let ¢ be a functional on ¥ of norm at
most 1. This functional is completely determined by its values on the fune-
tionals of the form @, so it can be regarded as an clement of the algebraic
dual to the space L3(u), which is, in its turn, dual to Li,.(). The condi-
tion [||| < 1 means that o lios in the bipolar (taken in the algebraic dual
to Li®(u)) of the unit ball B of X. Since B is weakly compact in L (1),
it follows that the bipolar coincides with B, hence ¢ € B. Now it is easy
to see that on B the topology o(X,Y) is stronger than the weak topology
of L{ .(u). Since B is compact for the former topology, the two topologies
must coincide. m
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2. Examples

2.1. Calderén-Zygmund kernels. In this example, (2, u) is the space R™
with Lebesgue measure. By a Calderdn—Zygmund kernel we shall mean a
tempered distribution X on R™ such that K € L and off {0} K is a
measurable function with the following properties:

(i) | K (2)| £ | 7", 2z € R?\ {0}

(i) |K (& — y) ~ K(2)) < clyl/]z|* for [y] < [2]/2.

It is well known that the convolution with a Calderén—Zygmund kernel
is a bounded operator on LP(R™), 1 < p < oo, and has weak type (1, 1):

mes{|K * f| > 7} < const 7| fl1;
see, e.g., [1].

Roughly speaking, we want to consider uniformly bounded functions
for which K # f is also uniformly bounded. However, for f € L*(R") the
convolution K # f is well defined only as an element of the space BMO.
Since BMO consists of equivalence classes modulo constants rather than
of functions, we need to work with the quotient space L>(R")/C, which
naturally embeds in BMO. We denote the norm in L>®(R™)/C by |- |.

Now let. Kq,..., K; be Calderén~Zygmund kernels on R™. Consider the
space X = {f € L®(R") : K1 » f,..., Ky » f € L®(R™)/C} and endow it
with the norm

1£1 = max{!{flloc, 1K1 1, 1K+ fI}-
LEMMA 2. The space X satisfies properties Al and A2,

Proof. For simplicity, we consider the case where the collection K, ...
., K; consists of a single kernel K (the arguments in the general case
are the same). Clearly, X < Li .. To check Al, it suffices to prove that if
fallo < 1, |Kfu} € 1 and f — f weakly in Li, ., then |Kf| £ 1. But
on the ball of L% the weak convergence in L], is the same as the weal"
convergence in L. The convolution with K is a weak*-continuous operator
from L™ to BMO = (H1)* (indeed, this is an adjoint operator, because any
Calderén-Zygmund operator maps H* to L'). Therefore, K * f,, — K *f in
the weak™ topology of BMO. Now, the unit ball of L™(R")/C is compact in
this topology. Indeed, it is compact in the weak* topology of L™ (R™)/C, and
the canonical embedding L™ (R™) /C — BMO is weak™ coutinuous (because
every function in H' is summable and of mean 0).
So, we have checked Al for X. We pass to A2. By Lemma 1, X is a
conjugate space. We note that the above argument actually shows that the
natural embedding

X—=(ITe(L®/Ce, [ (fiH*]),

is a w*-continuous isometry. Since for every g € L§® the functional &, is in
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the predual of X » it follows that for every £ > 0 there exist two functions
u,v € L'(R™), [v =0, such that for every f € X,

(1) Jre=0,()= [ fu+t [ &+ fw
and
(2) [l + el < 124l x- + .
We claim that ¢ = u + K * v, where K(¢ (t) = K{—t). (Once this is

established, A2 for X follows from (2 and the weak type (1, 1) inequality
for the operator of convolution with )
To prove the claim, we put f =+ 1 in (1), where ©,% € D(R™) (such

an f is clearly in X). Since K ¢ is a uniformly bounded C'°-function, we
can write

Jpyeglo= [ [ (Kxp)t-s)p(s) dsvt)dt = [ [(Kxp)~suly,

R™  sapp i
and so (1) leads to

[ Brg-Fru—(K«g)soly=0, ¢eDR".

Thus, g = @xu-+ (K *§)*v for every ¢ € D(R™). Approximating v in L'
by functions belonging to 12(1&(”‘) and using the weak type (1, 1) inequality
for K, we conclude that (K + @) v = K # (§ * v). Now the claim follows
{2gain by using weak type (1,1)) if we let @ run through the elements of
some approximate unity. w

The following corollary is a specification of Theorem 1 for the space X.

COROLLARY 1. Let Ky, ..., K; be Calderdn—Zygmund kernels on R™, and
let B CIR" be a set of finite positive measure. Then for every F ¢ L™(KE)
with ||Fllee < 1 and every 0 < & < 1, there exists a function G vanishing
onR™\ E such thot mes{F # G} < ¢|F||i, |G|+ |F — G| = |F|, and the
convolutions K1+, ..., Ky*@ do not exceed const(1+loge™') in modulus.
(The constant depends only on Kq,..., K|.)

Proof. By Lomma 2, Theorem 1 implies the existence of a function G
vanishing off I and satisfying |G| + |F — G| = |F), meq{F # G} < ¢||Flx
and &5 * G| € e(L - loge™"). Since mes £ < 00, G is in L2, and so K; + G

can be rcgdrclccl as an L2-function. Thus, there exist some constants c; such

that || K * @ — ¢ € (1 4-loge™"). Since

R-" f | K % G| < const R™™3|GQlly = 0 as R — oo,
|| <.
we see that |c;] < e(1+loge™). m

Now we are going to discuss two specific versions of the space X.
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2.2. Lipschitz funclions. In [2] a certain function space was employed to
give a simple proof of the fact that for every plane compact set £ of posi-
tive measure there exist nontrivial functions analytic off B and Lipschitzian
on C. This was the space X from the preceding subsection generated by &
single Calderén~Zygmund kernel z~2 on €. Corollary 1 says that there are
“very many” bounded functions G supported on E for which 272+ G is also
bounded. Setting & = c(z™ x &) for such a G (¢ is an appropriate universal
constant), we obtain 9% = G and 8¢ = cz~? % G in the sense of the the-
ory of distributions. Thus, & is analytic off E and Lipschitzian everywhere
(hecause its frst derivatives are in L°°). We obtain the following theorem.

THEOREM 2. Let F be o plane compact set of positive measure. For every
essentially bounded function F of norm at most 1 supported on E and svery
0 < e «< 1, there exists a function @ analytic off E, satisfying the estimale
B(z1) — S(z2)] < const(l + loge™1) |21 — 22| (21,20 € C), and such that
0B| + 10F — F| = |F|, mes{0¢ # F} < e||F|;.

It should be noted that [2] contains a weaker result of the same type
based on the results of [5].

2.3. Harmonic functions with Lipschitz dertvatives. In a similar way, we
can establish the following theorem.

THEOREM 3. Let E be a compact subset of positive measure in R
(n > 2). For every essentiolly bounded function F of norm at most 1 sup-
ported on FE and every 0 < & <1, there exists a function & on R™ harmonic
off E and differentiable everywhere such that the first derivatives of @ are
Lipschitzian with constant ¢(1 + loge™!), mes{A® # G} < g||F||1, and
|AD| -+ |F — AP| = |F).

Hint: We take the space X (as in 2.1) generated by the following collec-
tion of Calderén—Zygmund kernels: Ky (z) = @z;|z| ™72, 4,7 = 1,...,m,
i # g5 Kiy(z) = |27 i, (@ —23), 5 = 1,...,n. Then we apply
Corollary 1 and convolve the resulting function G with the fundamental so-
lution of the Laplace equation to obtain &. I can easily be seen that, in the
senge of the theory of distributions,

G )02:0n; = 1 Kyy + G (12 7),
82@/02'? = (.'QI\Fjj * (G -} C;;G
(€1,¢3, ca are some constants). So, the theorem follows.

2.4. We can play the same game with some other “elliptic” differential
operators. It is probably easier to work with Fourier transforms than with
fundamental solutions, as we did in 2.2 and 2.3. Omitting certain details
and avoiding accurate staterments, we give only a general outline. Consider
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a differential operator L of the form

L= Z am,,,kn(’d/f)ml)’“ (B/B’En)k”

Ry bbby =l

with constant coeflicients. Assume that the characteristic polynomial

PE = D k., iE)P L (i)
Byl

is nonzero off £ = 0. If L = ¢, then any derivative of @ of order I, ie., any

function
o\ g ™
W oms | e voo | = §14... =]
(('}:rel) (r‘)mn) Poomteta=l

satisfies ¥ = kG, where k(€) = (i6,)" .. (i£,)" /p(€). Since k is of class
C™ off {0} and homogeneous of degree 0, it is the Fourier transform of a
Calderon-Zygmund kernel (probably involving a multiple of the §-function
at 0). Therefore, Corollary 1 guarantees the existence of a rich family of
functions @ supported on a given compact set & of positive measure such
that L& = 0 ofl E and the derivatives of order [~1 of & are Lipschitz. “Rich”
means that on J7 the function L can “mimic® any prescribed L®-function
I, i the same way as in Theorems 2 and 3.

2.5. The spuce 170 Heve (42, p)=(T, ), where m is normalized Lebesgue
measure on the unit circle. We denote by U™ the space of functions f €
L®(T) for which the following norm is finite:

Hfllumﬁ“f’ﬂ ST CET, ke, k< z}.

ki<l

It is rather casy to check Al for U (see, however, 2.6 for a more general
staternent). Moreover, by a result of Vinogradov [8], U satisfies A2 (we
note that the proof of this relies upen the Carxleson almost everywliere con-
vergence theorem; see 2.6 for more details). So, Theoremn 1 specializes as
follows.

THEOREM 4. For every I e L) with || Flle <1 ond cvery 0 <e < 1
there earigls o function G € U™ with the following propertics: |G|-+|F - G| =
[Fl md B 5 GY < gl #]s [ lom < const(] + loge™").

2.6. Pointwise control of the Fourier sums. As belore, the set E =
{F s 0} fmplicitly plays an important part in Theorem 4. In view of the
fact that we have a very good pointwise control of @ off E (G = 0 there),
the wniform estimate O(1 -+ log E”‘") for the Fourier sums may seem not
quite satisfactory. It would be desirable to produce G whose Fourier sums
are controlled better at the points where F' vanishes. Of course, we cannot
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expect too much (e.g., const | F(0)| must minorize the pointwise supremum
of the Fourier sums of (). However, something can be said.

Let ¢ be a weight (positive summable function) on T satisfying the
Muckenhoupt condition A;. We recall that this means that My < const ¢,
where M is the Hardy-Littlewocd maximal operator:

Mg(¢) = sup |I|™* [ Igl,
I
where the supremum is taken over all arcs I containing (.
For the basic measure space we now take (T, pdm). Define

Po<i<k f(j)cj for k 2 0,
S.. = _"J_ - .
(SkF)(C) {Ekg;f-:o FGH)E for k< 0.

Consider the space X consisting of all functions z for which
2]l x := sup o™ Sk(pa) e < oo
kezZ

(It is probably worth noting that every A;-weight on T is bounded away
from 0.)

LeMMA 3. On the measure space (T, pdm), the space X satisfies condi-
tions Al and A2,

Proof. The space X contains all functions of the form p/p, where p
is a trigonometric polynomial. Consider the natural embedding o : X —
(OLYRLYBL®D.. ),

a(z) = {7 Sk(pa)}rez.
Let a sequence {z,} from the unit ball of X converge weakly to some z in
L {pdm). We claim that  also lies in the unit ball of X and az, — az

in the weak™ topology of the space (3, BL™),, (regarded as the dual of
(3, ®LY(T,m))1). Indeed, for every fixed I we have

(pzy) (1) :f z, 2o dm — f zZedm = (pr) 1) asn — oo,

whence iMoo Sg(,) = Si(wx) pointwise for every fixed k, and the
claim follows.

So, we have checked Al for X. By Lemma 1, X is a conjugate space,
X =YY%, and we see that o is a weak*-continuous isometric embedding. So,
x = 3%, where 3 : (3, ®L(T,m)); — Y is a quotient map.

The latter fact constitutes the first step in checking A2 for X. Taking a
trigonometric polynomial y on T, we obtain the following representation for
the functional &, {a notation from §1):

gliy = ﬁ{uﬂ-}nEZ:
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where u, € L'(T,m), 3 f|uy,| <
rewritten as follows:

f ryp dm = Z f Sn(x@)unp~ dm, 2z X.
neEL

Take N satisfying specy C [~N, N]. We put z = 2! /i in the latter formula,
where I € [-N, N]. If 1 > 0, we have S,(2') = 2! for n > N and §,(2) = 0
forn < ~N (m fact for n < 0), whence

- ! TS -
f Yzt = f z z Sn(Tne™1) + f 7 Z tnp L
~Ngn<N n>N
Keeping in mind a similar formula for { < 0, we obtain

o= Z ST~ + 8. (Zu”“p 1)+SN( Z Unyp 1).

~N&<n<N o N n<—N

@yl + . This formula for &, can be

Recall that the estimate to be proved is

f o < ot |By |
iyl>t

with ¢ independent of y. Denoting by P the Riesz projection,
Pf=Y" f(n)z"
n20
and rewriting the partial sum operators 8, in terms of P, we obtain

T - Z ey 1P( [ L T 1) + Z z'ra]}:p(z—nﬁn(p-wl)

0<ngN - N<n<O
+ [IP’( 3wt Y 'ﬂntP"l)
0En<N —~N<n<0)
+ S-N( Z ﬁn(ﬁ'ﬁl) + SN( Z -ﬁnipvl)} .
n>N n<—N

Now, P is a Calderdn-Zygmund singular integral operator, and so it is of
weak type (1, 1) with respect to any A -weight; see [1]. Consequently, Sy has
the same property uniformly in V. Thus, the terms in the square brackets are
of right order (we recall that, by the choice of w,’s, || 3 [Fnle ™ 12 (pam) <
Iy - ).

It remaing to cstimate the twe sums outside the square brackets. Of
course, they are treated in one and the same way, so we consider only the
first of them, After an evident chaunge of variables (2"'a,0 = v,), the
inequality we need takes the form

(3) ftp<r/\J Z f|vw<pdm,

0<ngN
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where
A, = {\ ST P (v,
0<nEN
with ¢ independent of N and the w,’s. This latter estimate is known. See,
e.g., Theorem 2.3 in part III of [7], where a similar fact for the Hilbert
transform on R (in place of the operator P) was established. The same proof
as in [7] works in our situation.

It should be noted that (3} is highly nontrivial. The basic fact used to
prove it is the Carleson-Hunt estimate [(sup [y f)? < CZ [[£]P,1 < p< oo
(we emphagize that this is needed for p arbitrarily close to 1). To derive
(3) from this estimate, the modern machinery of weighted inequalities for
singular integrals is needed.

Anyway, we have checked A2 for X. It should be noted that the result
of Vinogradov [8] leading to A2 for U™ was precisely inequality (3) for
=1L =

> A},

Now, Lemma 3 allows us to apply Theorem 1 to the space X:if || Fljo < 1
and 0 < g < I, then there exists a function G € X such that [|G|x =
sup,, 0™ Sn(pw)lloo < c(+loge™), fpug w <& [ |Flp, and |G +|F-G| =
\F'|. Multiplying F and @ by ¢ (note that f = Fyp can be an arbitrary
function with |f| < ¢) and slightly changing the attitude (it is natural to
start with f, not with ), we obtain the following statement.

THEOREM 5. Let f be a measurable function on T. For any A;-weight
w satisfying |f] < ¢ and any e > 0, one can find a function g with the
following properties:

) lgl +1f — gl = {1,
(i) [Sng| < const(l + loge™)ew,

(1) f{f¢9} pe f |f]-
The constant in (i) depends on the A;-constant for .

Setting o = 1, we regain Theorem 4. In general, we see that conditions
(i) and (iii) compete (making ¢ smaller, we get a better majorant for the
Fourier sums, but a worse control of the set {f # g}). We give two samnples
of the choice of ¢ in the case || f|l < 1 (they are, in a sense, extreme). Recall
that if A > 0 s (say) a bounded measurable function and p > 1, then the
function = (MAP)YP is an Aj-weight (with A;-constant depending only
on p); see, e.g., [1]. Moreover, to a certain extent, ¢ “mimics” the behaviour
of h (in the mean, at least: for ¢ > p we have |jpll, < Cp |l

5o, let ||flleo < 1. We can put @ = (M|f|")'/? (p > 1) in Theorem 5.
This provides a “velatively good” pointwise control of the partial Fourier
sums of g. As to the set {f # g}, inequality (iii) (and even a weaker one
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f (et} If] < & [|f]) tells us something, but in general not too much. If
“almost all” of the mass of f is coneentrated on a small interval I, [ s
“yery small” on the set {f 7 0} \ 7, and this latter set is “relatively big”, we
learn almost nothing abont the Lebesgue measure of the set {f # g}. (Of
cotrse, we know from (i) that ¢ vanishes where f does.)

Another possibility Is to take o = (Myx )7, where B = {f s 0}. Tt is
easily secn that ¢ = 1 a.c. on [ (and @ < | ofl F). Since g = 0 off E, (iii)
turns into m{ S # g} <& [|f], Le., the same as in Theorem 4. At the same
time, (ii) still provides some conlrol for the &,,’s (though not so sharp as
under the former cholee of ) (wo recall that @y g 18 “small in the mean”
provided m 0 is small),

3. Proof of the main theorem. We have alrcady seen that any space X
with property Al (see §1) is a dual space. By Lemma 1, its predual ¥V is the
norm closure of the set ¥y of all functionals of the form @4, g € L (). Now,
A2 implies that the mapping o, a(P;) = g, is a bounded linear operator
from Yy to the Lorentz space L™ (). (The latter is also called weak-L().)
Therefore, ¢ extends by coutinuity to the whole of ¥, In the sequel we shall
wiite @, for a(#) (¢ e Y),

It would he desirable to identily @ and @, (and to regard ¥ as a function
space). Unfortunately, in the gencrality we have adopted, there seems to be
no reason for the implication @, = 0 = & = (), However, this is not really an
cbstacle. We de obtain a function space passing to an appropriate quotient.
We consider at anece a more general setting.

Let B C £2 be a measurable subset of nonzero measure. We define
VIE) ={P e :Dyp = 0 ac} (A2 implies that V(E) is closed in Y)
and Y {F) = Y/V(&). For every y € Y(F) and any representative @ of ¥,
the function @, |p does not depend on the particular choice of . Moreover,
y iy uniquely determined by this function (indeed, if $.lp = Wlw, then
& e V().

This enables us to identify Y (£) with a space of functions on F (in the
sequel we always treat the clements of Y (F) as functions), The dual space
X == Y{I)* coincldes with the aunibilator of V(FE) in X. Tt follows that
every function from Xy vanishes on 2\ K. ludeed, @, € V(E) for every
g € L () vanishing on My henee {or every (F e Xy,

0 = (P, Gy = ] Cig dje

(It should be noted that in specific examples the question as to whether X
colncides with the set {Gf e X @ Glene = 0 awe.} leads to difficult problems.
There seems 1o be no reasou lor a positive answer in the general setting. )
Eventually we shall sce that there are a lot of functions in X m, but
to emphasize that our results are of “pure existence” nature we show at
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once that Xg # {0}. Indeed, otherwise we would have V(E) = ¥, which
is clearly false (any functional @, with g satisfying p{suppg N E} #£ 0 is
not in V(E)). This argument is extremely simple, but does not exhibit any
particular function lying in X .

We are going to prove the following (apparently stronger) version of
Theorem 1.

THEOREM 1'. Let E C {2 be o set of positive measure, F € L™ (p)NLY ()
o function supported on F, |Fllee < 1, and 0 < & € 1. Then there emsts o
function G € Xg such thot |G| + |F — G| = |F|, p{F # G} < ¢||F||1, ond
[Glix < C(1+loge™) (with C depending only on ¢ in A2).

Before passing to the proof, we note that, under the above identification
of Y(E) with a function space, we can use (with some precautions) the
ordinary formula for the pairing of Xz and Y (E):

(4) (F.g)= [ Fgdu.

To be rigorous, this formula works if g is an L§-function supported on E. Tn
the examples of §2 (where all functions belonging to X were bounded) one
could extend the formula to g € L' () N Y (E) with suppg ¢ E. However,
beyond this limit we can only say that g can be approximated by functions
for which the formula makes sense and is true.

In the sequel we shall use the duality (4) for all function spaces on E
that will occur (even for weighted LP).

"The following lemma is in the core of the proof of Theorem 1.

LEMMA 4. Let f be a nonzero function belonging lo Le(u) N L(p),
([flle < 1, and let e = {f +# 0}. There emists a constant A independent
of f such that f is representable in the form f = g + h, where g € X,,
lgllze < A, (L BPLFI7 )2 < 874 #1317 and 1] = [g] + [A.

Remark. By homogeneity, the condition |[f]|s < 1 can be lified. If
£ €I%(u) N L} () and || oo < B, then f = g+ b with |f] = [g] = [hl,
21 o1 vr oo ,
lollx < AB, ([ WF1A1=2dp) < 87 (B ) 2

(We note that the choice B = | fls is not necessarily the best possible,
because the last two estimates compete.)

We postpone the proof of Lemma 4 and derive Theorem 1’ from this
lemma. This will be done by iterations. First, we claim that, given F' (as in
Theorem 1'), there exists a function Gg € Xz for which

pF # Go} S27H|Flly,  ||Gollx €24, |Gol + |[F'— Go| = |F|.
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To prove the claim, we construet three sequences of functions {gn }n>o,
{tn}nz0, and {un }nzo such that
Fe=got . odgn+ vyt .ot vy by,
|21 = lgol + ...+ lgal + ol + ..+ Joa| + 1],
ga € Xf']a ”ﬂﬂ”X <2 n-Av
- Loy~ ——

p(supp vn) A2 Fly,  fun] < 47 P

This it done by induction. At the wero step, we apply Lemma 4 to J and

obtain B = g -+ h,..., cte. Then we seb gy = g, ty = hx{picd-10)) Yo =
B ug. Clearly, || = |go| -+ [vo| -+ [t] because ug and 4y are disjoint. Now

p{supp '”()) < 16 f ‘h,|2|[f‘1 -2 < 4 I.HFHL,

as required.

To pass from n to n+-1, we apply the remark after Lemma 4 to u,,, setting
B = 27"~ (this choice of B is possible, because |u,| < 4" F| < 4771),
We obtain wy, = g 4 h, where |u,| = jg| 4 [h] and

gE Xﬁ'lll')l.) iy & XE) ||.(1||X < Azhn‘ﬁly ‘f lh|21’un7"2 < 64“12”‘}-1 “'U'nH1 .

Since |u,| < 471 F|, the latter inequality yickds
4:27»1«‘2 \f |h'2ll'1| b < 64" l2ﬂ-‘n~~1 HFHI

Al |-
Now we sct o1 == g, Upep L = ]?'X{]lf-|54 SREIT A V1 = h - Ugpep 1 - r].]l(lll, l)y
the preceding estimate,

4—--27}.%442‘”.4»2,u‘(s.upp Uil ) < 64-ml orh=1 Hﬁw Ii 1
whence p(supp vpp1) < 471271 )| 1, and this finishes the induction step.

Clearly, the series 3, - gn converges in X to some function Gy with
IGollx < 2A. We have

|.ql) T ,qn| -t “ﬁ /[ i .(]'n,l
< |ﬂ(l TR .(]'n| o i’“(} S B P S L |-I"|1
whence |Gyl 4 |1 - Gyl < 1] (we recall that convergenee in X implios

10 = Qly| == |I7]. Finally, 1y, -+ 0 unilorly,

convergence in L], ), .., 1G] 4

whence
. ey 111

WGy £ 1Y < ,u,( | supp vn) = 27[F],
() .
and the claim is established.

Now we iterale once again. We apply the above claim to I' ~ Gy (we
have |F' ~ Gg| < |F|, so that ||F ~ Gollee £ 1). This yields Gy € Xy
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with |[F — Gg| = |Ga| + 1F — Go— Cu, [Gullx < 24, and
M{Go+G1# F} = pu{G1# F — Gy} < 274\ F -~ Gylly

<27t [P <27 u{F # Gol <47 AL
{F#G0o}

Repeating this N times, we obtain some functions Go, ..., Gy € X, all of
norm at most 24, such that

Gol+ ...+ |G| +|F = Go—...— Gy| = |F|
and
p{Go-+...+ Gy # F} <27V || F|,.

Now, |Go + ... +Gnlx < 2(N +1)A. So, putting G = Gy +... + G, we
obtain the statement of Theorem 1’ for e =2-V.

Proof of Lemma 4. We consider two spaces Z; and Zy of pairs of
measurable functions on e:

Zi={{g:h) g€ Xe, he L, |f|2du)},
Za = {(g:h) : |g + |h| < comst |f[}.
The norms are given by

(g, 0]z, = [{g, )|V = max {Aﬂ”gHX-’ 8Hf||1"1/2(f Ihlz\,fl”zd,u,) 1/2}’

i(9: B}Izo = (g, ) = {I{lgl + R |oo-

We must prove that for some 4 (independent of J) the intersection of the
unit balls of Z; and Z; contains a pair (g, h) with g + h = §.

Clearly, Z; and Z3 are dual spaces. We need to write explicitly their
preduals Wy and Wy (we keep in mind the pairing {(u,v),(g,h)) = [(ug+
vh)dy, in accordance with (4) and remarks after it). We have

W = {(yﬂi) ‘Y E Y(E), v & Lz(e: [flzdﬂ)}u
Wa = {{y, v} 19,v € L' (e, | f]d)},
the norms being given by
”(yav)”(l) - A“y”'}'(r:) + 8—1“f”i/z”UHLﬁ(ﬁ,fflzci.u):
1@ o)1 = [ (ol v ol da,

respectively. The main duality trick (justifying the subsequent calculations)
will be based on the following statement.

SUBLEMMA. The intersection of the spaces Wi and Wh is dense in cach
of them.

Proof. Already the set of pairs (a,b), where o and b are Lo%°-functions
with support of finite measure contained in e, is dense both in Wy and in
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Wa. This is nearly obvious, Only the density of the a’s of the above form
in ¥(e) is probably not quite inunediate. But if y & Y{e) and & is\any
representative of the class y, we can approximate y by a functional of the
form &,, where z € L (p). Then the function x.z approximates y within
the same accuracy, hecause @, . € Vie}. »

We endow the spaces 27 N Zy and Wy + Wy with the standard norms of
intersection and sum, respectively. The sublemma implies that

(W -+ Wa)* = Z) N Zy,

with equality of norms. {We note that a priort it was not clear whether
Zi 01 2y containg any pair (g, k) with g 52 0. The only proof of this fact
known to the anthor is via the above formula.) .

With respeel to our standard duality, the dual M of the space Ll(e,
|f1dp) consists of all functions w for which w|f =t & L*®(e,u) (and for
the norm we have the formula ||w|y = |[w|f|7|e)- Define an operator
T: 2, NZy — M by setting T(g, h) = g + h. We shall show that, unde? a
proper choice of A, the image of the unit ball of Z1 N Z; under T contains
the unit ball of M (once this is done, Lemma 4 follows, because the latter
ball containg f).

Clearly, T = 5%, where S : L'{e,|f]|du) — Wy + W2 acts as fol%ows:
S(w) = (w,w). To prove the above claim, it suffices to show t:hat S is an
isometric embedding, The formula for the norm in Wy immediately vields
151 < 1. |

Let us check that ||Sw|| > ||w]| for all w. We must prove that, whenever
(wyw) = (y1,01) + (y2,v2) ((yisvi) € Wi, i = 1,2), we have

s )| 4 (w2, w2)1® > [ lao] | £] s

We put o = {|yi| > A} () is a number to be chosen later). Since w =
y) -+ Yy == vy -+ vg, we obtain

®  f Wwllfdu
f jvy + val | £ dp + f |y -+ w2l | f] A

e\

it

A

ol iflaus [ f ool flda [ Tl 1Fd) [ lual1F] i

% e\a e\a
Since the sets @ and e\ a are digjoint, the middle term (i.e., the sum in the
square brackets) is dominated by

[ Gl v a1yt = [l 02} #

[



192 8. V. Kisliakov

For the first term we can write

J 1ol 1£1du < (pa) 2| flgs( g2 a0y < (X7l ) 2 llvallzaqp2 g,

by A2. Let us estimate the third term. Fixing €, 0 < £ < A, we obtain
S lolifldp= [ nlne)fldn+ [ (ol lol Ae)lfldp
e\a e\o c\a

<ellfl+ f

e\(al{|m|<e})

(lyal — &) dps.

The last integral can be rewritten in the form fUA"E a(r)dr, where
a(r)=plw e\ @U{ly| <e}): n(w)] —e > 7).
Since

a(r) < p{jm| > 7+ e} < ellplly ey (r +¢)7L,
we obtain

S 101171 < Nl + el o log 2.
e\u
The expression on the right attains its minimum for £ = ¢||y; lv(er /11 Fll1 (s0,
when fixing A at the end, we must not forget to choose it greater than the
latter quantity).
Collecting the estimates, we obtain

S lellfldp < el v (1 *log cllanlly )

cllally e\ 2
() s+ e

Now, we choose A in such a way that the coefficient of lorfl L2 (g2 apy be
equal to 8_1||f||i/2 (as dictated by the formula for the norm in Wik A=
64cliyillv ey /I Fl1 (we indeed get A > ¢, as required). It follows that if A is

taken to be ¢(1 + log 64), the last estimate turns into the desired inequality
lleoli < NG, v )Y + [l (g, v2) |2

4. Decomposition of analytic functions. In this section we consider
a space X satisfying conditions A1 and A2 on the measure space (T,m).
It is implicit in the proof of Lemma 4 that, for any n > 0, any function
f € L**(T) with || f|lee < 1 can be represented in the form [ = g-+h, where
g€ X, |fl=lg|+|h| and

lollx <5 (f w1517 dm) " < 7112 exp(—can)

icm
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(An alternative way to derive this sharpened version of Lemma 4 is to apply
Theorem 1" and to note that [ |F — G|*|F|~2 < m{F # G} < ¢||F|1.)

Now a question arises: If f is analytic (i.e., f € H %), can one ensure that
g and h also be analytic (i.e., satisfy §(u) = ﬁ(u) = 0 for n < 0)7? It is rather
easy to see that one cannot expect as much as the equality | f| = |g| 4 |&] in
this setting. Nevertheless, the following result is true.

THEOREM 6. Let f & H™, |[flle <1, 7> 0. Then there exist functions
9 € Xt and h such that f =g+ h and '

g/fel™®, |g/fl<1,
. . . 1/2 .
h/f e B2, ( { In?) f|-2dm) < CIIFIH? exp(~C™).

We recall that, in the notation of §3, X7 is the annihilator of the set
{PeY b, =0}

This result is very much in the spirit of the preceding part of the paper.
Namely, g and h have zeros where f has (no matter where the zeros are: in
the disc or on the boundary). To be more precise, g and h are analytic func-
tions divisible by the inner part of f (we note that the “metric” conditions
on g and h, except gl x < 7, are expressed in fact in terms of the outer
part of f).

Proceeding to the proof, we note first that, quite unexpectedly, we do
not need to take any special care of the analyticity properties of g. Indeed,
let f & L*(T) be an arbitrary function with f # 0 a.e. Then multiplication
by f is an isometry of L?(m) onto L(|f{~%dm). In particular, it follows
that fH? = {h: h = fg, g € H?} is a closed subspace of L2(|f|~2dm). The
following proposition is true. '

lollx <m;

PROPOSITION 1. For any 1 > 0, any f as above with ||fllec < 1 can
be represented in the form f = g+ h, where g € Xy, h € fH?, |g| < |f],
l9llx < n, and

(J 1mP112am) " < Ol exp(~Cm).

"This statement readily implies Theorem 6. Indeed, if f € H, then f % 0
a.e. So we can apply Proposition 1 to get f = g + (h/f)f with h/f € H2.
Thus, ¢ belongs to H? and is divisible by the inner part of f (in the sense
that the quotient is still in H?2)., Now the property g/f € H™ follows from
the boundary estimate |g| < |[f|. =

Proof of Proposition 1. Since |f|~2 > 1 a.e., the identity map-
ping of L*(If|=2dm) into L(m) (even into L?*(m), in fact) is continuous.
Consequently, the unit ball of L2(]f{~%dm) is weakly compact in L(m),
and the same ig true for the unit ball of fH?. '
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We consider the space Z = {g € Xy : |g| < const |f|} and endow it with
the norm
l9llz = max{n ™ {lgllx, g/ F |-
As in the preceding section, we easily see that

Z = (n¥Y (T) + L*(|fldm))*

(because the intersection of the summands on the right is dense in each of
them). Clearly, the unit ball By of Z is weakly compact in L (m). Denoting
by Bs the ball of radius t and centered at 0 in fH?, we see that the statement
to be proved is
f € By + By,

forsomet ~ || f ”i/ 2 exp(—C'n). If this inclusion fails, we derive from the weak
compactness of By + By in L*{m) that f can be separated from By 4By by
a functional, i.e., there exists a function w € L such that

rf dem‘=1+g for some g > 0,
6
© sup{.f (g+h)wdm, 19 € By, h.EBg}S_l.

Defining o = sup{| f gwdm|: g € By} and 8 = sup{| [ hwdm| : h € B},
we see that o + § < 1. Tn accordance with the above description of Z as a
dual space, for every § > 0 the function w admits a representation w = y4v,
where y € Y(T), v € LY{|f| dm) and

Nyl + f [v] | fldm < (1+ 6.

Now we fix A > 0 (to be specified later) and put B = {lyl > A}, a=1v
(A Hy)), v = exp(—log a—1H{loga}), where H is the harmonic conjugation
operator. (In other words, ¢ is an outer function with le] = a~1.) We have

(7 fwfdm:fwfcpdm-l—f wf(l —)dm.

We estimate the integrals on the right separately. For the second one, we
use the fact that f(1— ) € fH?, so, by the definition of the number 3,

’ _ ] o , 1/2
[ =gy dm| < B = ) g sy = Bt Y[ =g am)
Now |1 — ¢| < const(|log a| - {log Hal), and by the L2-continuity of H,

(J fl~c,a!2clm)l/2 <cf f (logo,)‘-"dm)l/z
. Fo)

(we recall that loga = 0 off E). Introducing the distribution function s(r) =
m{r € E :loga > 7} and using the estimate s(r) L m{lyl > A"} £
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cllyllymA~te™", we obtain

J Qoga)dm=2 [ rs(r)dr < const A= |ylly ).
B 0
Finally,

(8) Jf wif{l =) dm' < OO H[lylly A1) M2

Now we pass to estimating the first term on the right in (7). We use the
represeutation w = g + v (see above) and the fact that |ye| < ly| A A:

‘f wfgodmlgf (lyl A X) cirrz+f [v] | £ drn.

As we shall see, the sccond sumunand on the right is already good. The first
one is treated in a manner entirvely similar to the estimation of the summand
Jova Wil f] dm in (5) (see §3). This will lead to

Allf 1l
wfgadmig vy c(l—{-log———-—'« + f | |f|dm.
|/ Iyl r Tolvs )+
Now we choose A so that the coefficient of liylty¢r) in the last expression
be #:

A= cllyllym Ilf ™ exp(n/c - 1).
This yields | f wfedm| < (1+ 6)a, by the choice of y and v. Combining this
with (8) (where we use the value of A chosen above), we obtain

S widm| <+ 8o g,

if £ = const HfIIi/2 exp(27" — n/(2¢)). This contradicts (6) if § is small. m
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Summability “au plus petit terme”
by

MARfA-ANGELES ZURRO (Valladolid)

Abstract. There is a curious phenomenon in the theory of Gevray asymptotic expan~
sions. In general the asymptotic formal power series is divergent, but there is some partial
surn which approaches the value of the function very well. In this note we prove that there
exists a truncabion of the series which comes near the function in an exponentially fat
way.

A polysector i3 a subset of C™ of the type
V={(21,...,20) €C": 0 < |25] <7y, arg2; € (a;,b;), 1< 5 <n},

where |b; — a4 < 2m, j=1,...,n.

Let s € [0,00). Let f be a holomorphic function in V. We say that the
formal power series ZQ:EN” ne2” is the weak asymptotic expansion of Gevrey
type s of the function f if the following condition is satisfied:

There is a constant K > 0 such that for any ¢ € N,

’f(z) — z gz

|l <t

< Ktl*|z]* forze V.

THEOREM. Let s > 0. Let Easmn an2® be the weak asymplolic expansion
of Gevrey type s of a holomorphic function f in a polysector V.. Then there
exist constants A > 0 and B > 0 such that for every z in V,

Ps
lf(z)w Z Gaz®| < Aexp(—B/[zWS)
fee|=0
whith some p, € N.
Proof. We take |z| = max(lz1],...,|2n|) as norm. First assume that
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