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Representing non-weakly compact operators

by

MANUEL GONZALEZ (Saniander)
EERO SAKSMAN (Helsinki)
and HANS-OLAV TYLLT {Helsinld}

Abstract. For each § € L{E) (with B a Danach space) the operator R(S) €
LE™/E) is defived by R(S)(=" + E) = §™z** + E (z** € E™)}. We study map-
ping properties of the correspondence § — J(S), which provides a representation R of
the weak Calkin algehra. L(E)/W(E) (here W(E) denotes the weakly compact operators
on E). Our results display strongly varying behaviour of RB. For instance, there are no
non-zero compact operators in Im(R) in the case of L and €0, 1), but R(T (E) /WgE))
identifics isownetrically with the class of lattice regular operators on & for B = P
(here J is James” space). Accordingly, there is an npem‘nor T & L{£2(J)) such that R(T)
is fuvertible but T fails 1o he invertible modulo W(#2{1)).

Introduction. Suppose that F and I are Banach spaces and let L(E, F)
stand for the bounded linear operators from E to F. The operator T : & — F
i weakly compact, denoted T € W(E, F), if the image TBg of the closed
unit ball By of E is relatively weakly compact in F. The quotient space
L{E,F)/W(E,F) equipped with the norm ||S|l., = dist(S, W(E, F)) is a
complicated object and there is a need for useful representations of the
elements § - W(E, F). A fundamental result due to Davis et al. [DFJP]
provides for any S € L(E, F) a factorization § = BA through a Banach
space X so that X is reflexive if and only if § € W(E, F'). However, {his
construction is not adapted to the quotient space since the intermediate
space X depends on S,

We cousider here the following natural concept: any § € L(E, F) induces
an operator R{8) : B /10— YR by

R(S)w™ 4 BY = S0 + F, o™ ¢ E*,

where any Banach space is taken to be canonically embedded in its bidual
(the inclusion B — E** is denoted by Kp if required). We have R(5) = 0
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if and only if § € W(E, F) since § € W(E, F) precisely when S £ C F
(see [DS, VI.4.2]). The induced map S+ W (E,F) — R(5) gives an injective
contraction from L{E, F)/W(E,F) into L(E*/E, F**/F}. Morcover,

R(ldg) = Tdgesm,  R(ST) = R(S)R(T)

whenever ST is defined. Hence S+ W (F) — R(S5) provides a representation
of the weak Calkin algebra W(E) = L(E)/W(FE) and its image {R(S) :
S € L(E)} is a subalgebra of L{E**/F) containing the identity, Some basic
properties of R are found in [Y1] and [Y2], where this representation was
used to discuss invertibility modulo the weakly compact operators. It was
employed in [Re], [LW] to exhibit discontinuous derivations on L(F) and
infinite-dimensional commutative quotient algebras of L{E) for some Banach
spaces E. Applications to tauberian operators appear in [AG]. A conerete
interpretation of R(S) for operators 5 on L'(0,1) was obtained in [WW].
This paper studies the mapping properties of the map R. We discuss the
size of the image Im(R) for concrete non-reflexive Banacl spaces and the
question whether Im(R) is closed. We compare for this purpose in Section 1
some properties of the norm || B(-)||, that measures the deviation of an op-
erator from weak compactness, to those of other seminorms of this kind.
Section 2 focusses on several results and examples displaying radically vary-
ing behaviour of R(W(E)). For instance, we establish that Iim(R) does not
contain non-zero inessential operators in the case of many concrate spaces,
such as L1(0,1) or C(0,1). We also exhibit Banach spaces X and ¥ so that
X** /X and Y** /Y are isomorphic to £2 and R is a surjection on W(X), but
R(W(Y))} is not even closed. Our main result (Theorem 2.6) identifies Im(J?)

with the lattice regular operators on #2 in the case of the countable £2-sum

£2(J) of James' space J. We also discuss some applications. An operator
S € L(E) is called weak Fredholm if S+W (E) is invertible in L(E)/W (E). It
remains unclear whether the weak Fredholm operators admit any geometric
characterizations analogous to those of the Fredholm operators. Theorem 2.6
is applied to exhibit an operator S € L{f2(J)) so that R(S) is invertible,
but S fails to be invertible modulo the weakly compact operators. Propo-
sition 2.5 solves the following “inverse” problem: given a reflexive Bauach
space E there is X such that X**/X =~ E and R: L(X) — L(FE) is onto.

1. Duality properties. This preliminary section compares ||2(-)| with
other measures of weak non-compactness. This determines whether the map
R has closed range or not, but quantities associated with weak compactiness
also have other applications and our results illustrate the quite delicate
properties of such quantities (cf. [AT] and its references).

We will use standard Banach space terminology and notation in accor-
dance with [LT2]. Let E' be a Banach space. Set By = £ (Bg), Fo =
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((Bge) and let Q) + By — E stand for the surjection (1 ((ay)een,) =
> wahy @ and Joo B - Eo for the isometric embedding Jao(z) =
(@*(2))avepy. . We refer to [Pi] for the definition and examples of opera-
tor ideals. Let I be a closed operator ideal in the sense that I{E, F) is
closed in the operator norm for all Banach spaces £ and F. Set

vi(8)=1inl{e > 0: 5Bg C RBz +¢Bg

for some Banach space Z and R € I(Z, F)},
Br(5) = inf{e > 0 : there is a Banach space Z and R € I{E, Z ) s0 that

1$2]| < | Rall +ellzl], = € B}
for § € L{E, ), following [A] and [T2]. Then v; and 8; are seminorms in
L{E, I"), and v(8) = 0 if and only if there is a sequence (Sn) in I(Ey, F)
so that Hmy o0 [[5Q1 = Sl = 0, while 8;(S) = 0 if and only if there is a
sequence (S, ) i T(E, Fiy) 80 that lim, e || JoeS — 8,0 = 0 (see [A, 3.5,
(T2, 1.1]).
Recall two consequences of the geometric Hahn-Banach theorem.

LeMMA 1.1 [R, 2.1 and 2.2]. Let B, F, G and H be Banach spaces and
suppose that S € L(E, F), T e L(E,G), Re L{H,F) and £ > 0.
(1) [[Se]| < || Tl + e|2|| for all 2 € E if and only if 8*Bp. C T*Bg- +
EB];J»».
(i) 18*a*]] < |R*a*|| + ella*|| for all x* € F* if and only if SBg C
REBy +eBp.

Define the adjoint ideal I* of the operator ideal I by I*(E,F) = {§ &
L(E,F): 8 e I(F*, E*)} for Banach spaces £ and F. Recall that I is
injective if I(E, F) = {§ € L(E,F) : Joo8 € I(E, Fy,)} for all E and F.
Our first duality result is quite general.

PROPOSITION L.2. Let T be o closed injective operator ideal so that S** &
TLE™, F**) whenever S € I{E, F), E and F Bonach spaces. Then

(L. P8 = e (8°) = Br(S™)
Jor wll 8 ¢ L{F, ), B and F Banach spaces.

Proofl. Suppose that A > 3;(5) and take R € I(K, ) so that |Sx|| <
[ 2| A+ Afz| for all @ € E. Lemwma 11(1) implies that $* B © R* B +
AB e, Henee ype (5%) < A, since B* € I*(G*, E*) by the symmetry assump-
tion on J. Thas r« (8*) € #r(9).

Observe vext that & (T*) € v (1) for any T € L(E, F). In fact, assume
that A > v« (T) and take R € I*(G, F) so that TBr C RBg + ABp. Hence
[7*2*]] < ||R*a*|| + Allz*]| for all z* € F* by Lemma 1.1(ii) and we get
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Br(T*) < A. The preceding facts imply
B1(8) = B1(Kr8) = Bi(S™Km) < B1(5™) < 71+ (5%),

since Ay is preserved by isometries. This proves the first equality Vin (11)
Hence we see from [A, 5.1] that Br(S$™*) = v« (§*) = 71+(5*) = £(9) for
any S € L(E,F). =

The special case B (S) = v (9*) of (1.1) was verified in [GM, Thm. 2]
by different means for the ideal K of compact operators. The customary
notation w(S) = yw{9) for § € L{E, F) will be used for the weakly compact,
operators W. Thus fw(S5) = w(8*) by (1.1), since W* = W according to
[DS, VI.4.8]. The example in [AT, Thm. 4] demonstrates that there are
no uniform estimates between w(5) and w(S5"). We egtablish ag a contrast
that ||R(-)]| is uniformly self-dual. Let 75~ denote the canonical projection
E** — E* defined by wg (u) = u g for v € B and set gp» =1 — 70,

ProposiTiON 1.3, Let E and F be Banach spaces. Then
12— RS S [RE] < o
JEE|

RS, S LE,F),

Proof. The map gg+ is a projection ovto E* = {v € E*** : vy = 0}
and Ker(gg«) = E*. Thus gg- induces the isomorphism gp. : E***/E* —
E* by pm-(u+ E*) = gpeu for u € E***. We verify that

(1.3) Bs-R(S") = R(S)*Bp-, S € L(E,F),

where the standard identification (E**/E)" = E' has been applied. Indeed,
Pp«R{(§*}(u + F*} = pg.S**u for u + F* € F***/F*. On the other hand,
ifx+ F e B*/E, then

(R(SY op-(u+ F*),z -+ EY = {opeu, 8™z + F) = (op-u, S**z)
= (8" oo, &) = (g8 u, z + E).
The last equality results by noting that §**F+ < E+ and §**F* ¢ BE*,

Finally, (1.2} follows from (1.3) and the fact that |[{gs )"} < 1 in view of
[u+ E*| £ Jlu—wg| = |05 (u+ E*)| for v+ E* € E¥*/E* u

[Y1,2.8] states that R{S*) and R(S)* are similar, but (1.3) was not made
explicit there. The preceding propesition yields [[R(S)||/2 € |R(S*}|| <
2||R{S)|| for S € L(E, F). It was observed in [T1, 1.1] that

(1.4) [R(S)] < w(S)

for any 5 € L(E,F), E and F Banach spaces. We improve this below. A
proof of the known fact (i) is included, since we need an estimate for the
norm of the inverse map. '
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PROPOSITION 1.4. Let E and F be Banach spaces and S € L(E, F).

(i) Assume that M is a non-reflevive subspace of E such that the re-
striction SJ is an embedding, where J 1 M — E stands for the inclusion
map. Then R(SJ) embeds M** /M into F**/F,

(it) [2(S}] < min{w($), 2w(5*), 2u(5**)}.

Proof. (i) Standard duality and w*-w* continuity identifies M** with
ML = 3™, the w*-closwre of M in E™, and (SJ)™ M** with (SM)*+L =
SMY. Suppose that 2** € M™ and e > 0. The Proposition of [V,
pp. 107 108] yields an element y € SM so that | ST e — g|| <
2(dist (5™ T e Fy -+ g). Bet V = (S|M)“1 :8M — M. We get

e+ M| = | BOVRS )™ + M| < RV -5 72" + 53]
SRV - (18" T2 — y|
< 2R(V)||(dist(S** J**z**, F) + &),

(if) (1.2) and (1.4} iply [|R(S)] < 2L R(5™)|| € 20(S*) for § € L(E, F).
Moreover, from the proof of part (i) and [A, 5.1] we get

IR < 2ARER)R(S)| < 20(KpS) = 2w(5™). w

[72(-}]| is not uniformly comparable with any of the other quantities
appearing in Proposition 1.4(1i). Recall that a Banach space E has the Schur
property if weakly convergent sequences of F are norm-convergent. £! is a
standard example of a space with the Schur property.

Examprg 1.5, [AT, Theorem 4] constructs a separable cp-sum E =
(B,.cnilco, [4))ews Where (co, ||.) is a certain sequence of equivalent renorms-
ings of ¢y, and operators (S,,) C L(B, ¢) so that w(S,) < 1/nbut w(S*) =1
for all n € N, Put T, = 8} € L(£*, B*), n € N. Proposition 1.3 implies that
1R(T0)] < 2J R(S,)| < 2/n, but w(T*) = w(T},) =w(S*) =1foralln € N
according to [A, 5.1] and the construction. This yields that | R(S)|| is not
in general uniformly equivalent to any of w(9), w(S™) or w(5**).

The space F* admits another property of relevance for Section 2: for all
S e L(Z, ") and arbitrary Banach spaces 7,

(1-5) “15’”“; S QW(AS')-
Indecd, £ = (@, 50", [2))e has the metric approximation property,
since J0™ s a separable dnal space having the approximation property (sce
[LT2, 1.0.15]). Henee [LS, 3.6] and the Schur property of E* vield for S &
L{Z, E*) that
18 = dist(S, K{Z, E*))
L2inf{e > 0: 8Bz C D+eBgy, D C E* is a finite set} = 2w(8).
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ProBLEM. It remains unknown whether there is ¢ > 0 5o that
(1.6) w(§*) 2> ew(S), Se L(E, F).

One has w{9*) = w(Kp8§) < w(S) for any S by [A, 5.1], so this asks about
the behaviour of w under Kz : F — F**. We refer to [AT, p. 372] for a
condition that ensures (1.6). The constant ¢ = 1/2 is the hest possible in
(1.6) for operators §: E — ¢y (see [A, 1.10] and [AT, p. 374]).

2. Mapping properties of K. This section focusses on the mapping
properties of the correspondence § + W(E, F) — R{S) from the quotient
space (L{E,F)/W(E,F),| - |u) to L{E*/E,F**/F). Several examples
demonstrate strongly varying behaviour of B(W(E)) in the algebra case
E = F, where W(E) denotes the weak Calkin algebra L{(E)/W (). They
indicate that the problem of identifying Irn(R) is guite hard for given Banach
spaces.

We first consider when R is metrically faithful in the sense that the
image Im(R) is closed. It was pointed out in [T1, 1.2] that R(W(E)) is not
always a closed subalgebra of L{E**/E). The following two weakly compact
approximation properties of Banach spaces from [AT] and [T2] will yield
further examples.

e The space F has property (P1) if there is ¢ > 1 so that inf{||R U/ R]} :
UcW(F), [[I-U| <ec} =0 for all Banach spaces £ and R € W (E, F),

¢ The space F' has property (P2) if there is ¢ > 1 so that inf{||R— RU|| :
U e W(F),||[I~U|| e} =0 for all Banach spaces E and R € W(F, E).

We refer to [LT1, IL5.b] for the definition of the class of £'- and £°-
spaces, which contains the C(K)- and L*(p)-spaces.

THEOREM 2.1. (i) Let E be an L1- or an L -space. Then E has property
(P1) if and only if E has the Schur property, and E has property (P2) if
and only if E* has the Schur property.

(i1) If Im(R) is closed in L(E** /E, F** | F) for all Banach spaces E then
F has property (P1).

(iii) If Tm(R) is closed in L(E** /E, F** /F) for all Banach spaces I then
E has property (P2).

Proof. (i) See [AT, Cor. 3] and [ T2, 3.5).

(ii) If the Banach space F does not satisfy (P1), then the proof of [AT,
Thm. 4] yields a Banach space E and a sequence (S,) C L(F, F) so that
[Snllw =1 and w({8,) < 1/n for all n € N. Hence (1.4) implies that Im(RR)
fails to be closed in L(E**/E, F** /F).

(iif) If the Banach space E does not satisfy (P2), then according to the
proof of {T2, 1.2] there is a Banach space F and a sequence (S,,) C L(E, F)
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so that [[Suw = 1 and Bw(S,) < 1/n for all n € N. From (1.2) and
Propositions 1.2 (applied to W) and 1.3 we get

[0Sl < 2| R(S,)| < 2w(8S. ) = 28w (8,) < 2/n,
for all n € N. Thus Im{R) fails to be closed in L{E**/E, F**/F). m

Remarks. The converse fmplications to those of (ii) and (iii) above
do not hold. To see this let £ and (S,) ¢ L(E, ) be as in Example 1.5,
The map i has closed mngc* neither on L(E,cg) nor on L{f', B*), since
[l 2 [S5]le = w(8r) = 1 for all n but R(S,,) and R{S7) tend to 0
as o~ oo, One verifiey [hfm £ satisfics (P1) and that E satisfies (P2)
by using [1'2, Remark (ii) after Example 2.5] and the fact that J* Las the
metric approxinmation property and the Schur property.

It turns out that R is not surjective for many classical non-reflexive
Banach spaces (here we disregard pairs E, F' of non-reflexive Banach spaces
for which L{F, ') = W(E, F)). Recall that the operator S : E — F is
inessential, denoted S € I(E, F), if Ker(Idg ~U S) is finite-dimensional and
In(ldy —U75) has fnite codimension in E for all U € L(F, E). It is well
known that I'is a closed operator ideal so that K(E, F) < I(F, F) and that
ldg € I(E) only if £ is finite-dimensional.

TnroreM 2.2, Suppose that E is one of the spaces ¢y, C{K) for a count-
able compact set K, C(0,1), 01, L1 (0,1), € or the analytic function spaces
H™ and A(D). Then

(2.1) RW(E)) NI(E™ /E) = {0}.

In particular, R is not surjective. However, RONV(E)) is closed in L(E*™/E)
if B s ey £1 or L0, 1),

Proof. Suppose that B equals ¢y or £' and assume that § € W(E) =
K(E). 1t is well known that there are A, B € L(F) so that Idg = BSA4 (see
[P, 5.1]), Hence

(2.2) W gper j1c = R(B)R(S) R{A)

ancd R{SY ¢ (1™ /15), since otherwise Iy g € 1 bt dim{F* /B =

Factorization (2.2) is also valid for £ = /% and § ¢ W™, Inr_lcm(l, a
result of Rosenthal {1712, 2.£4] gives a subspace M C £9°, M = %, g0 thai
the restriction Sy defines an isomorphism M — SAL. Since any £%-copy is
complomented there is a projection (.2 £ v SA as well as an 1somorphism
A% s M Then (2.2) holds with B = A" 1(‘7'|M)“"” Q.

IS ¢ W(C(0,1)), then there is a subspace M < €'(0,1), M =~ ¢y, so
that the restriction Sy, determines an isomorphism. Both M and $M are
complemented in C'(0,1) by Sobezyk’s theorem. We find as above operators
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A, B sothat BSA = Id,,. A similar argument applies to all separable C/(K)-
spaces. Moreover, if § ¢ W(LY0,1)), then there are operators A, 3 with
BSA = Id,. The above facts are based on [P2, pp. 35 and 39]. We thns
obtain (2.2) with E = ey, respectively E = €1, Similarly, for ™ and A(D)
one applies [B, Thm. 1] and [K] in order to deduce (2.2) with K = ™,
respectively E = ¢.

Suppose next that E is ¢g or €*. Then [R(S)|| = dist(S, 5 (£)) = |||}
for § ¢ L{E). This follows from the uniqueness of submultiplicative norms
in certain quotient algebras (see [M, Thuow 2]). Moreover, |[R{(S)|] = [[9]].
for § € L{L(0,1)) by [WW, 3.1]. Thus R has closed range in these cascs. =

Remarks. Actually, (2.2) implies that any non-zero {5} is large in the
sense that f2(5) determines an isomorphism between complemented copies
of E**/E. It remains unclear to us whether ROW(E)) is closed if I is (2(0,1)
or £°,

Theorem 2.2 expresses the fact that Tm(R) does not contain “small” op-
erators, e.g. compact ones, for many concrete spaces. There are two general
Banach space properties that allow a similar conclusion. This is the content
of Theorem 2.3 below.

Let Ro stand for the operator ideal of weakly conditionnlly compact op-
erators: § € Ro(E,F) if (Sx,) admits a weak Cauchy subsequence for
all bounded sequences (x,) in F. A Banach space ¥ is weakly sequentially
complete if any weak Cauchy sequence of E converges weakly. Examples of
weakly sequentially complete spaces are known to include all subspaces of
LY0,1) and €1, the tracs class operators on 2,

The operator 5 : B — F is unconditionally converging, denoted § &
CU(B,F), i 3.2 | S, is unconditionally convergent in F whenever the for-
mal series > 7., @, in E satisfies ¥ oo [&%(2,)] < co for all 2% € E*. A
Banach space £ has Pefczyriski's property (V) if U(E, F) = W(E, F) for
all Banach spaces F'. Any C(K)-space, and more generally any C*-algebra,
has property (V) ([P1, Thm. 1] and [Pf, Cor. 6]) as well as any Banach
space £ that is an M-ideal in E™ (see [HWW, IIL.1 and [I1.3.4] for a list of
examples). '

THBOREM 2.3. Let F and F be Banach spaces.

(i) If S € L(E,F) ond R(5) € Ro(E**[E, F** | F), then we have S* €
RO(E**, F**).

(i) If F' is weokly sequentially cornplete, then we have R(L(E, F)) n
Ro(E™[E,F**/F) = {0}.

(iii) If B has property (V), then R(L(E, F))N U(E™ B, F*[F) = {0}.

Proof. (i) [DFJP, pp. 313-314] produces for each U € L(E, F) a factor-
ization U = jA through a Banach space Z. The intermediate space Z has
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the property
(2.3) II'€ Ro(E, F) if and only if ' does not embed in Z

(sce [W, Satz 1]}. The DFJP-factorization of I7** and R(U) can be obtained
as U™ == " A™ and R{U) = R(j)R(A), through the intermediate spaces
Z7%, vespectively Z**/Z, by [G, 1.5 and 1.6].

Suppose that R(S) € Ro(E**/E, F** /F). We claim that §** is weakly
conditionally compact. Tt suffices to verify in view of (2.3) that #! embeds
in Z**/Z whenever £1 embeds in 27,

Case 1. Assume that ¢ does not embed in Z. Let M ¢ Z* be a
subspace so that M =2 €8, Hence Z and M are totally incomparable and
M+ 2 is closed o Z**. We may suppose that MNZ = {0}. This implies that
€2y defines an anbedding and QA ~ €4 in Z**/Z, where () : 2™ — AR A
stands for the quotiont map.

Case 2. Assume that ! embeds in Z. Clearly ¢* embeds in () /ot
as this quotient is an £*-space. Thus £! embeds in Z**/Z, since (£ry==Jet s
isomorphic to a subspace of Z**/Z by Proposition 1.4(i).

(ii) If R(5) € Ro(&Z**/E, F**/F), then part (i) implies that § is weakly
conditionally compact. Hence § € W(E, F) since F is weakly sequentially
complete,

(iii) We first verily that § € U(E, F) whenever R(S) is unconditionally
converging. In fact, it 8 ¢ U(E,F), then there is a subspace M < E,
M m ¢y, so that Sy is an embedding [P2, p. 34]. Let J : M — E be
the inelusion map. Proposition 1.4(3) yields that R(SJ) is an embedding on
M /M =~ £ /ey, This implies that R(S) is not unconditionally converging
as g embeds in €% /ey (for instance by [LT2, 2.£4]). If F has property
(V) and E(S) is unconditionally converging, then the preceding observation
yields that § € U(E,F) = W(FE, F). =

We next construet various examples where R has quite different proper-
ties compared with Theorems 2.2 and 2.3. In these examples Im(R) contains
plendy of *small” operators and in some cases R is even an isomorphism.

The quotient £/ £ is quite unwicldy for most Banach spaces B, bt if
tha space Z i weakly compactly generated, then there is a Banacl space
X so that X /X is isomorphic to Z (see [DEJD, p. 321]). We recall here a
more vestricted construction, Fhe James sum of a Banach space E is

. . i RS e I TTI g 123172 - " i
wlero ||(.LA‘)[ =D iy o 195010 24, [12)/2. The supremum is
taken over all increasing sequences 1 € 4 < ... < dpay of natural numbers
and n € N, Tt is known [Wo] that J(E)** is the space of all sequences (z)
with g, € ¥ for which the above 2-variation norw is finite. If E is reflexive,
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then any (zz) € J{E)*™ can be written as (xy — )rer + (¢)ken, where
¢ = lim, o0 T, (the limit clearly exists in £), and (z)+J(E) — litng oo
gives an isomorphism J(E)**/J(E) — E.

A Banach space E is quasi-reflezive of order n if dim(E**/E) = n for
some 1 € N. In this case R{(W(E)) identifies with a subalgebra of the scalar-
valued n % m-matrices and there is ¢ = ¢(E) > 0 so that ¢[|S]|w < | R(S)
for all § & L{E). We use J for J(IR), the (real) James space, which is
quasi-reflexive of order 1 (see [LT2, 1.d.2]). One has J** = J Q R/, where
f = (1,1,...). The behaviour of R varies even within the class of quasi-
reflexive spaces.

Examrres 24. (i) Let (J) = J & ... ® J (n copies) with the -
norm, whence dim{€3{J)**/¢2(J)} = n for all n. Then R : W({}(J}) —
L3y /¢3(J)) is a bijection. This follows from. the fact that R(Id ;) iden-
tifies with the 1-dimensional operator taking f = (1,1,...) to itsell. It iy
computed below during the proof of Theorem 2.6 that inf, ey (£ (J)} = 0.

(ii) Let J, stand for the quasi-reflexive James space of order 1 defined
using p-variation in the norm instead of 2-variation for 1 < p < oo (thus
Jy = J). Suppose that 1 < p; < ... < pp < 00. Loy and Willis [LW, p. 345]
observed for the quasi-reflexive space €5}, J,, of order n that the image of
R coincides with the lower-triangular n x n-matrices. This is based on the
facts that, for 1 < p < ¢ < co, any operator J, — J,, is compact while the
formal identity J, — J, is not weakly compact.

(iii) Leung [L, Prop. 6] constructed a quasi-reflexive Banach space F'
of order 1 so that L{F, F*) = W{F, F*) and L{(F*, F) = W(F*, F). Then
E =F®F* is quasi-reflexive of order 2, but Im{ R} identifies with the class
of diagonal 2 x 2-matrices.

In our next result X** /X is infinite-dimensional, but R is surjective.

ProrosiTiON 2.5. Suppose that E is a reflezive infinite-dimensional Bo-
nach space and let J(E) be the corresponding James-sum. Then R is an iso-
morphism and RONV{J(E))) = L{(J(E)**/ J(E)), where J(E)**/J(E) ~ E.

Proof. Let ¢ : J(E)**/J(E) — E stand for the isomorphism (&) -+
J(EB) — limg_.eq 4. It suffices to verify that any § € L(E) belongs to the
image of R under this identification. Suppose that § € L(£) and let § be
the bounded operator on J(E} defined by g(a;‘,) = (Swy) for (a) e J(F).
One verifies using w*-convergence that §**(m;,,) = (Swy) whenever (my) €
J(EY**. Then R(§) equals S as

PR(S)((zx) + J(E)) = Jim Sy = S(é((ox) + J(E))). w

PrOBLEM. Is E*/E always reflexive if R : W(E) — L(E**/E) is a
bijection?
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. Lot X = £2(J) stzmq for the ¢%-sum of a countable number of copies of
J a,lzlczh"’.sl)acc! J. Thus £2(J)** = 2(.J*) isometrically and it is not difficult
to verify that X**/X is isometric to £2 through (zr)+02(T) — (w1,109,...),

ro e e= Ly PR e h .
where wy == liny_, ay” for ay, = (’rg ))jeN € J**. The lattice regular oper-

ators on 2 (with respect to the natural orthonormal basig) are defined by

a bounded operator on £°}.

Jeve (agy) is the matrix representation of A. It is known that A & Reg{£?) if
and only it A == U —V, where I7 and V are operators having matrices with
now-negative entries. The algebra Reg(f?) is complete in the regular norm
[Alls = AT || (see [AI3, 15.2]) and || 4] < ||A]|,, but Reg(¢?) is not a closed
subalgebra of L(#2). Vor instance, let (A,,) be the 2" x 2" Walsh Littlewood

matrices,
1 1 A A
Aq = e n 2
1 (1 __1) 3 An-l-l (A” —An>

for n € N. Then ||A,||./|Aull = 27/% for all n. Moreover, the Hilbert-—
Sclimidl operators are included in Reg(#?).

Let {e,) be the standard coordinate basis of J. James’ space .J also
aclmits the Schauder basis (fy), where fr = E?’zl e; for k € N. The norm
in J is computed in (fr) as

n

(Z ibij + ...k b""d-l-1-] |2)l/2

J=l

(2.4) ” i bk,f;,,” = sup
Rl

1<y <---<7;7|.-{ 1

for 3 et bife € J. Let By 0 J ~ [f1,.. ., fa] be the basis projections. It
follows from (2.4) that [P, =||[I— P,|| =1 for all n € N.

The main result of this section identifies ROV(£2(J))) with the algebra
Reg(#?) (note that £2(7)* /¢2(J) is isometric to £2 as above). This provides
a concrete Banach space X so that [[R{-)|| and || ||., fail to be comparable
on L{X) (sce also Theorem 2.1). The proof uses local properties of J. Our
rosulf also setiles a basie question concerning the representation £ (Corol-
lary 2.10),

THEOREM 2.6 1 s an olgebra isometry of W(E3(J)) onto (Reg(€2), ||||-),
(2.5) (81w = [1R(S) o
Jor all 8 ¢ L{E2(J)). Thus Tm(R) is not closed in L(£?).

Proof. We lirst verily that for any A € Reg(f?) there is 4 € L)
s0 that R(A) = A and |4, < | 4]



2706 M. Gonzélez et ol

Let A = {as) be a bounded regular operator on £* and consider the
formal operator A defined by the operator matrix (a;;1), where [ stands for
the identity mapping on J.

Assume that (z,) € £2(J). We obtain

A= 32| o €3 (S el )
1=1 I=1

yr=] re=1

0
= AN DI < AR Y e
pa=l
Thus A defines a bounded operator on ¢2(J) and ||A] < |A[l,. One checks
that R(A) = A, since R(I) ig the I-dimensional identity taldng /= (1, 1,...)
to itself.
It remains to prove that R(U) ¢ Reg(#*) and [|[R(IN]. < ||U]. for
U € L{£2(J)).
Suppose that § = (s;;) is & matrix so that s;; = 0 whenever i > n
or j > n for some n € N. Let § = (85;1) stand for the corresponding
vector-valued operator on £2(J). We claim that

(2.6) 18 =W = 1S

for any operator-valued matrix W = (W;;) on £2(J) so that W;; € W(.J)
for all 4,7 € N and W;; = 0 whenever i > n or j > n.

Before establishing the claim we indicate how (2.5), and thus the theo-
rem, follows from (2.6) with the help of a simple cut-off argument. Assunie
that U = (Uy;) € L(3(J)), where (I;;) is the matrix representation of U
We may write Uy; = 351 + Wiy with Wiy € W(J) for 4,5 ¢ N so that
R(U) = (845). Define for n € N the cut-off U,, = (agg-l)U,;j), where n,i;-") = | if
i,j <n and aéf) = 0 otherwise. (2.6) yields that

R A R [
By letting n — co above we obtain {|U]| > || R(U}]|,. This implies the desired
inequality |[Ullw 2 [|R(U)], since R(U) is invariant under weakly compact
perturbations of U,

[t remains to establish (2.6}, The main ingredients of the argument are
presented as independent leminas in order to make the strategy of the proof
more transparent.

LEMMA 2.7. Let § = (si;) be an n x n-matriz and define S 1 6 (£7) —
£3(41) by
kL

n
S('yl: - 1:%1) == (Zslj'yja Ce ;anjyj) Joryy, ... yYn € f?
. j=1 =1
Then ||S]| = ||8],
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c ) € 08

Proof. We obtain |9]| < 151 as above. Choose a = (a4, .
B . Let {hi,...,hy,} be the unit vector

so that [la]] = 1 aud [|9], = |||S]a|
hasiy of €7, We got

kI3 mn
I B o ) 2
151 2 15 tahas i = 37| 3 syjaghy
=1 je=l

i i )
e N - - 3
eeeee () =

tal =i

Y

The proofs of the next two auxiliary results are momentarily postponed.
The first one establishes a joint “smallness” property for finite collections
of weakly compact oporators on J. This Fact may have some independent
interest, We remark that U ¢ W(J) defined by Uf, = £, Ufi = fi_1 —
Se Tor kb = 2, demonstrates that a weakly compact operator on J is not
necossarily small between diagunal bloeks of {fr). The second result records
the technical fact that, convex blocks of (fi) span isometric copies of J in
the norm considercd here. A proof is included because we are not aware of
a suitable reference,

PROPOSITION 2.8, Suppose that §1,...,8, € W (J). For any £ > 0 and
no € N bhere ds oo nabwral nwnber 1 oand o sequence (21)%=y consisting of
disjoint convew Wocks of the basis (f1,) so that each z, is supported after |
aredd for M, = [;'[, ey :.,,] we have

Jvax ([(£ - P)Sji, | < e.

i1l L
LeMMA 2.9, Let = 37550 i f; be disjoint conver blocks of (f;),
Vo . . )
where the sequence (ng) is strictly inereasing, ¢; = 0 for all § and E?;;L ¢
=1 forall k 2 1. Then (2) 4s o basic sequence in J that s isometrically
equivalent Lo (fi): '

L %]
(2.7) H S bz
ke |

for all };: hiefy €.

Prool ol (2.6). Let 5, W oand » be as iu the claim. Suppose that
& L 0 There Bs an integer 1 so that 7 embeds (1 4 8)-isomorphically in
St coy Jua] (e |G, TTan, 4]). Proposition 2.8 provides an integer | together
with disjoint couvex blocks 2, .., 2 of (f2) so that the following properties
are satisficd:

[ $]
fa ]

(ii) X;‘,‘jri ”erfv;l.im,lw H < 6, Here M, = [z]., e ,Zm}‘
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According to Lemma 2.9, M, is-sometric to [f1,..., fu] anil there is a
subspace N' C My, so that N is (1+6)-isomorphic to £}, Write NV = {2) &
(] 2z € N,k <nand 2z, = 0 otherwise}. Let Q; € L(€2(J)) e the
norm-1 operator defined by @{z,) = (le,.) for (x,) € P,"Z’(\.{\). Obﬁcrvc that
(il) implies ”QZW“’\?” < &. Moreover, Q”ﬁ = Idlﬁ and SN C N, so that
Lemma 2.7 yields

133,51 = 18 5l 2 (148728 )

Finally,
15 =Wl 2 QS - W) gll 2 (L+8)7*|8]l. - &.
We get (2.8) by letting § — 0 above. =

Proof of Proposition 2.8. Observe that £, — f = (1,1,...) ¢
J** as k — co. Thus Sy fr, — Sf e Jas k — oo, since § s weakly
compact. Fix a natural number I; such that [[(f — Fr,)S{* fl| < ¢/(2n).
Magzur’s theorem implies that Sy*f ¢ €6{5.fy : & € N}. One obtains by
induction disjoint convex blocks up = 3775, ¢; fy, where Iy <my < m) <
ma < ... and Siup — 57%f in norm as k — co. Notice that |lugl| = 1 for all
k by (2.4). We may assume that ||Siug — S7*f|| < €/{2n) whenever k € N.
Consequently,

I = Pu)Srusll < 17— P || - (1S1ue — STF + 1(F = P)STf] < e/n
for all k. .

Observe that uy — f in J** as k — oo, since (uy) converges coordi-
natewise to f in the shrinking basis (ex). Choose an integer I > I{ so that
(I — P)S3*fll < &/(2n). Apply the preceding argument to (Syuy) and
recover as above disjoint convex blocks vy, = im e Giug of (ug) that are
supported after I3 with respect to (f4), so that ||Spvs — S fl'< g/(2n) for
all k. We deduce as before that ||(I — P, )Sous|| < &/n. Note further that
(wy) are disjoint convex blocks of (f) and

Sk

T = Pu)Sioal) € 10~ POSwel < 3 d5ll(7 = Poy)Svagg]| < 2/

d=ry
for all k.

These observations allow us to repeat the above procedure in order o
find eventually an integer I and disjoint convex blocks 2 = o il so

| Jepy
that [|(1 — P)Ssze]) <e/mforany j=1,...,7 and k € N. These estimates

clearly imply that [[(f ~ P;)Sj)iz,,.. . < £ This completes the proof of

Proposition 2.8. w

Proof of Lemma 2.9. By approximation there is no loss of generality
in assuming that y_7- , by fi is finitely supported, by, = 0 for = m and some
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m & M, According to (2.4) there are integers 1 =my < mo < ... <My =m
s0 that

T —

-1 ; i—1 1 .
(2.8) H > b.’.:f.f.:Hz =3 ‘ > bk"z
b=l r=1 R==rri

Set di == by i ny i < gy forsome k = 1,...,1—1, and d; = 0 otherwise.
ITRY - aal Py — 1 g ~1 ; 4
Lhus 35 bezy = 3 di fi, where ;:__,1‘,_:'. by =3, d,;. Hence the right-

22=Thyyy .
hand side of (2.8) is a Jower bound for || 3 b2y 50 that 3 ke Przkll =
13224 1 el
I order to prove the reverse inequality let 7 and my,...m; be integers
salislying 1=y < my <0, < 1y = 10,,. Put

b1 ity =1

Z‘ Z ci,;‘d.

pesl PEST

N{(m,)) =

for each (m,). Assume now that (m,) is chosen so that || Yoo, brapl =

N ({m)). We verily helow that (m,) can be transformed to a sequence (1m!,)
where cach my, € {ny, : 1 < k € m}, in such a way that N((m,)) < N((m')).
Clearly the convexity of the blocks and (2.4) together imply that N ((m)) <
| 37 bx fe||?. This proves the lemma once () is found.

The alteration proceeds as follows. Consider a fixed m.,. and assume that
g < My < g1 Tor some k. Set

g =1 M1 =1
.
% == E d; and v = 2 d;.
L LT [T

If wo 2 0, then (u+0)* > w +v? and N(my, ..., 001, Mpg1,. .. 7)) 2
N((my)). Stmply discard m, in this case.
In the case uv < 0 we proceed differently. We may suppose by symmetry
that w < 0 aud v > 0, There are two possibilities.
Case 1. Suppose that by = (0. We have my,_| < ny, since otherwise
o= 0. Henee we gel
ty 1 Mgt -l

2 dy w00 andd Z i =0 >0

Fratiy, FEEZT
(Leve the faet that ¢; 2 0 for all § is used), This yields that N{my, ..., mp.q,
gy W1y ovv i) 22 N (1)), Replace my. by ny,.
Case 2, Suppose that by < 0. This implies that me.; > nger. Deduce
ag above thal N(rma,. oo, Mper, Mhal, Mrn, -, 1y) 2 N{(my)). Replace
My DY Ry«
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By repeating the above procedure a finite number of times one arrives
at the desired sequence (m!.). This completes the proof of Lemma 2.9 and
thus of Theorem 2.6. =

We consider as an application weak analogues of the Fredholm operators.
Let E be a Banach space and set

®,(F) = {S € L(E): § + W(E) is invertible in L{E)/W{F)},
D,(FE) = {S € L(E): R(S) is a bijection},
so that @, (E) C &;(E). Yang [Y?2, p. 522] states without citing exaniples
that these concepts appear to be different. Theorem 2.6 gives rive to guch
examples. We refer to [T'1] for additional motivation.

COROLLARY 2.10. Let J be the complex Jumes space. Then @, {(4(J)) ¢
&, (2()).

Proof. The proof of Theorem 2.6 carries through with some modifica-
tions in the case of complex scalars and (2.5) s replaced by the Inequalities
c|R(S)» < [[S]lw £ JR(S)|}» for some ¢ > 0 and all § € L(¢2(J)). Here

{ai)llr = {lai;]}]| for complex matrices (as;). The following additional
facts are used.

e (2.7) admits as a complex counterpart || Zi‘;L bifell < |l 2?;1 bpmel] <
V2[| 3552 | biofi]| for comvex blocks (z3) of {fi) (apply (2.7) separately Lo the
real and complex parts).

e The complex spaces £7(C) embed with uniform constant in the complex
linear span [f1,. .., fm] for m large enough. Indeed, it suffices to check that
€L, (C) embeds uniformly in the complex James space, and this is casily
deduced from the fact that £7_(R) embeds (1 + §)-isomorphically in the real
James space [GJ, Thm. 4] for all § > 0 and r € N.

It follows that S € @,(¢*(J)) if and only if R(S) is an isomorphism
and its inverse R(S) ™" is a regular operator. Ando (sec [S, Ex. 1]) gave an
example of a regular operator I/ on £* so that its spectrum o (U) ¢ &, (U).
Here 0,.(U) denotes the spectrum of U in Reg(¢?). Lift U to an operator
U e L{3(J)) so that R(U) = U. Then o(T + W(2(J1))) G o(R({7)), which
yields the claim. .

ProBLEM. The Yosida-Hewit, decomposition theorem implies that
(€)% = £' @ cg coincides with (€1)** = ba(2V) = ca(2) @ M,, where
M, = {p € ba(2¥) : p ig purely finitely additive}. Find conditions on
U € L(A,) so that U identifies with R(S) for some § & L(¢1).

Buoni and Klein [BK] introduced a sequential representation of the quo-
tient space L{E,F)/W(E,F) (see [AT] for some further properties), Let
E be a Banach space, £°(E} = {(zx) : (z) is bounded in E} equipped
with the supremum norm and w(E} its closed subspace {{(z,) € £*(E) :
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{wy k€ N} is relatively weakly compact in E}. Set Q(E) = £%(E)/w(E)
and consider Q(5) € LIQUE), Q(#Y)) for § € L(F2, F), where

QUSH() 4 wil)) = (Swg) + w(F),  (wp) € £°(B).

We have (Q(5) == 0if and ouly if § € W(E, F), Q(ldy) = Idggy and
QST = QUIQT') whenever ST is defined. Moreover, |Q(S)|| < w(S),
§ & LI, 17), and equality holds if B is a separable Banach space [AT,
Lemma 9], 'Thus & 4 W(E, F) — Q(8) displays the same metric behaviour
as (LU, 17)/W(E, I),w) for separable £, [AT, Thm. {] and T2, 1.2} char-
acterize the cases where the maps S+W(E, F) - Q(S) and S+W(E, F) —
(5") have closad range within the class of separable Banach spaces.

Q1) 1s more dillienlt to handle than E**/E. However, in Example 1.5
the map Q ¢ L{EY, B /WL EY wo LIQEY), Q(E*)) has closed range in
view of (1.5), but Tm(#) fails to be closed. Hence @ and R have different
properties in general, On the other hand, the proof of Theorem 2.2 implies
that QUAVE)) N L(Q(E)) = {0} il B is among the spaces mentioned in the
theorem.
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Adjoint characterisations of unbounded
weakly compact, weakly completely continuous
and unconditionally converging operators
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Abstract. Choracterisations are obtained for the following classes of unbounded lin-
ear operalors hetwoen normed spacos: weakly compact, weakly completely coutinnous, and
uneanditionally eonverging operators, Examples of closed unbounded operators belonging

to these clusses ave exlibited, A sufficlent condition is obtained for the weak compactness
of T to tmply that of 7,

1. Introduction and preliminaries, In this paper we shall be consid-
ering a linear operator 70 X D D(T) — ¥ where X and ¥ are normed
Spaces,

Lt us first recall sowe facts about bounded operators. Let T be bounded
aud everywhere dofined and let X and ¥ be Banach spaces. Then 7' is weakly
tompact iF it transforis hounded sequences into sequences having a weakly
convergent subsequence; 7' is weakly completely continuous if it transforms
weak Cauchy sequences into weakly convergent sequences; and T' is uncondi-
tonally converging 16 it transforms wealkly unconditionally convergent series
into unconditionally convergent series. In order to characterize these classes
of operalors we futroduce, for a given normed space £, the following subsets
of 1"

BOEY - e ¢ B there exists v soquence (e,,) in £ such that

o e (B B -l J ey, b

NI A ¢ 17 there exists o weakly uneonditionally Cauchy

saries 7 ep in I such thai
L (J‘(ib‘”, Z!j’)"lilll E;?I -]f’-w,i}
UM Muathemativs Subject Classification: Primary 471307,
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weakly campuet, weakly completely cantinuous and unconditionnlly converging operators

e thedr adfoinds,
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