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On the joint spectral radius of commuting matrices
by

RAJENDRA BHATIA and
TIRTHANKAR BHATTACHARYYA (New Delhi)

Abstract. For a commuting n-tuple of matrices we introduce the notion of a joint
spectral radius with respect to the p-norm and prove a spectral radins formula.

1. Introduction. Let V,, 1 < p < co, be the d-dimensional compiex

vector space C% equipped with the p-norm:
d 1
o= (Yl=p) ", zec
i=1

Let T = (Ty,...,73) be an n-tuple of d x d matrices. The joint spectrum
ops(T) of the n-tuple T is the set of all points A in C" for which there exists
a non-zero vector z (called a joint eigenvector) in V;, satisfying

{1) Tie=Xz, Jj=1,...,n

If the T; commute then there exists a unitary matrix U such that U*T;U is
upper-triangular for all 1 € 7 < n, i.e.,

Agj) *
,\(‘ﬂ
U*I}U — 2
0 W

We then have
(2) o(Ty={(, . Ay i =1, .4}
Let |A|p denote the p-norm of a vector A in C™. We define the geometric
spectral radius of T as
(3) rp(T) = max{[Al, : A € ope(T)}
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The n-tuple T can be identified with an operator from V; to the space
" the direct sum of n copies of ¥V, equipped with the natural p-norm. The
norm of this operator iz given by

@) 2= o (Z imslz)
1: T,,_

If S is another m-tuple of commuting d x d matrices then define TS to
be the nm-tuple whose entries are 7355, 1 £¢ < n, 1 < j < m, arranged
in lexicographic order. Using this multiplication rule, one can snccessively
define the powers T2, T2, ... Then T™ is a vector with n™ entries; these are
the products T3, ... 75, Where the indices are chosen from {1,...,n} with
repetitions allowed, and are then arranged lexicographically. The algebraie
spectral radius of the n-tuple T is defined as

(5) 05(T) = inf [T™|¥™, 1< p< oo,

One of the basic theorems in matrix theory is the spectral radius formula
which asserts that for a (single) matrix T the inf above is actually a limit, is
independent of the norm || - [[p; and is equal to the geometric spectral radius
r{T. See, e.g., [HJ, page 299]. The main result of the present note is an
analogue for the joint spectral radius:

THEOREM 1. Let T = (TYy,...,Th) be an n-tuple of commuting d x d
matrices. Then

(6) ra(T) = go(T), 1< p<oco.

For p = 2 alone this has been proved in [CH]. In fact, in that case this
formula can be extended to infinite dimensions as shown in [MS].

One of the basic ideas of our proof lies in the introduction of a new
operator T corresponding to any n-tuple T. This is an operator on V°,
the Banach space of all sequences z = (z1,23,...) with z; € V, and
Yoge x5 < 0o, equipped with its natural norm |||, = (352, [l;]|B)/.
The operator T is defined as

0
om0
(7) T=|0 7 ... |,
0 I,

ie., T is an infinite matrix each of whose columns contains one copy of T
according to the rule

Tie =T (motnyy (k=1 +1<j<kn, k=12 ..
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In Section 2 we investigate the properties of T and show that 0p(T) is

the ordinary spectral radius of T acting on the space V7°. This is used
in proving the main theorern. Section 3 is devoted to mﬁmte dimensional
Hilbert spaces. Here we observe how the operator T leads to a simpler

arrangement of the proof in [MS]. We also derive an analogue of a theorem
of Rota.

2. Proof of the main theorem

LEMmMA 1. Let T be an n-tuple of commuting matrices and let T be the
operator defined in (7). Then

W ITllo = [Tllp,
(it) T = (T)™,
(if) T, < ||THp ,
(iv) 0p(7T) is the (ordinary) spectral radius of T.
Proof Let z = (21,2,...) be an element of V. Then

‘Tl’ = (TI.’EI, . ‘.,Tnml,Tlmg, ...,Tﬂl‘g,T]_.’Eg, .. ) = (TSC},TQ)Q, ‘e .),

so that, [Telly = £, Tadlp < ITIEE2, lalp = I T2l Hence
| T|lp < [|T||p- On the other hand, for z € V,,

i
Tzl =3 [Tyl = 1 T(z,0,0,.. )| < | T2
j=1
So [T, < |\'T|!p This proves (I).

The statement (i} is an cbvious consequence of the definition of T™. The
statement (iii) follows from (i), (ii) and the fact that any operator norm is
submultiplicative. To prove {iv) note that

ep(T) = inf | T™{/™ = inf | T |2/™ - by (i)

inf [ (TY™[/™ by (i),

and this is the (ordinary) spectral radius of T. m

Let S be an invertible matrix. The tuple STS~! is defined as

(8) STS™ = (ST 871, ..., 8T8 h).
LEMMA 2. We have
(9) ISTS o < ISHpI TS~ 5

Proof Let R = STS™!. Let diag(S,S,...) be the infinite block-diag-
onal matrix with the diagonal blocks all equal to 5. The operator R on V;*
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is then the same as the operator diag(S, S,. )T‘ diag(§-t,57%,...). So
IRll, < || diag(S, 5, - Mol Tllo| diag(S™%, 87, )llp = ISTelI Tl 15~ 5.
Now use Lemma 1(i). =

Tor A in C™ define A™ in the same way as T™.

Lemma 3. We have
(10) apt(T™) = {A™ : A€ ope(T)}

Proof If A is a joint eigenvalue of T with a joint eigenvector z then
any product of the form A;, ... A; is an eigenvalue of T3, ... 7}, with the

Tm kic)

same eigenvector z. So A is a joint eigenvalue of T™. w
LEMMA 4. For any commuting n-tuple T of matrices,
(11) p(T) < || T|p-

Proof Let A € oy, (T), and let z € V, be such that Tz = A;z for all
i=1,...,n. Then |\]|z]lp, = |71"J'J:|L(J forall j=1,...,n. Hence

Z| le = Iz ”p Z HTJQ:’“g < “T”g
=1

This shows 7,(T) < ||T(p. m

LeMMA B. Let T be o commuting n-tuple of matrices. Then
(12) 7p(T) < 0p(T).

Proof. Applying Lemma 4 to the tuple T™ we get r,(T™) < ||T™,.
But rp(T™) = (rp(T))™ by Lemma 3. Hence

rp(T) < | T™ /™ forallm=1,2,...
S0 rp(T) £ 0p(T).

‘We have noted before that for a commuting n-tuple T there exists a uni-
tary matrix U/ such that U*T;U is upper-triangular for all j = 1,...,n. We
denote the diagonal part of U*T;U by D; and the strictly upper-triangular
part by N;. Then D; = cliag()\(l“"),‘ ..,Asf)). Let D = {Dy,...,D,) and
N = (Ny,..., Nn).

LeMMA 6. For the n-tuple D the geomeiric and aelpebraic spectral radii
are egual, i.e.,

(13) op(D) = rp(D) = ryp(T).
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Proof Let x = (#1,...,24) € V,. Then Dz == (/\gj)a:l,...

, 2 24). The
norm of D as an operator from V, to V,* is given by

= 1/p
14) 1Dl = s (3 1Dsel)
n 4 d n
= e (3 pap) = s (525N epeir)”
wle=1 "4y =1 Hzlle=1 327 =5
d

< rp(D) sup (Zimilp)lfpzrp(D).

flzllz=1 > ;2%
S0 gp(D) = inf “Dm][l/m < |Dlly < rp(D). By Lemma 5, 0p(D) =rp(D). m
For any real t, let C; be the d x d diagonal matrix with entries ¢, 2, ...,

Lemma 7. For any € > 0, there exists t such that

(15) IC:U*TU G Hl, < 7p(T) + &
Proof. Let A be any d x d matrix. Then
a11 t"lau R A d+la]_d
(16) CLACTY = tagy @22 2y,
T

If A is strictly upper-triangular then for large ¢ we can make the p-norm of
C,ACT! as small as we want. We apply this fact to NV 5 (the strictly upper-
triangular part of U*T,;U) for all j = 1,...,n. We choose ¢ large enough so
that ||C;N;C; |y < e/n for all § = 1,...,n. Then

ICU"TUCT ], = IC(P + N)CT |, < |CDCT [ + HONCT Iy
= [D|ls + !thNCtnlup <rp(T)+e m
The next lemma is the final step in the proof of the theorem.

LeMMA 8. For a commuting n-tuple T, if r5(T) < 1 then |T™|, — 0
as m — oo.

Proof. If rp(T) < 1 then by Lemma 7 there exists ¢ such that
|C*TUC Y|, < 1. We have

[Ty = |(TC )(CtU*TmUC_ TS
= |(UCrHYCU TUCTY™UCT ) ™ )iy
<NUC M MCT TUCT )™ b IUCT) iy by Lemma 2

< TS NCUT TUC)IRIUC ) ™, by Lemma 1(ii).
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Now as m — oo the middle term tends to zero because ||C,U*TUCT |,
<1l =

To complete the proof of the theorem define for any € > 0 a new n-tuple
1

= T
S rp(T) +¢

Then

1 ™m
T —_ T'm X
571 = (;s) 1T

Since r,(S) < 1, Lemma 8 says that [|S™], — 0. So for sufficiently large m,
1™, < (rp(T) +&)™. Hence

2p(T) < rp(T).
In view of Lemma 5, this proves the theorem.

Remark. Let X be any bounded set of matrices and let 2™ Dbe the
set consisting of products of matrices from X of length m. Let || - || be any
operator norm on the space C%. The Rota-Strang joint spectral radius (see
[RS]) of &' is defined as »( &) = limsup,, vm(X), where v, (2) = sup{}|4] :
A€ Z,}. In two recent papers, [BW] and [E|, it has been shown that »(X)
is equal to the generalized spectral radius T(X) (introduced in [DL}) defined
by 7(%) = limsup,, 7m(X), where 7, (Z) = sup{r{d) : A € T} If T
is taken to be the set {77,...,7} and if the co-norm is used then it is
easy to see that 7, (X)) = (Feo(T))™ and vp, (&) = || T™| 0o. Since v(&) and
7(X) are equal, one gets 7o, (T) = 00 (T). Hence this gives another proof of
Theorem 1 for the special case p = oo.

3. The infinite-dimensional case. Now let H be a separable Hilbert
space and let £L(H) be the space of all bounded operators on H. Let T ==
(Ty,...,Ty) be an n-tuple of commuting elements of L(H). As before, we
consider T to be a bounded operator from H to H™, the direct sum of n
copies of H. We will denote by o{T) the (Taylor) joint spectrum of T and by
0app (T} the joint approzimate point spectrum of T. See [C2] for definitions.
The geometric spectral radius is then defined to be

(17) r{T) = sup{| A2 : A € o(T)}.

In [CZ], Ohd and Zelazko have shown, in the more general comtext of a
Banach space, that r{T') does net change if, in (17), o(T) is replaced by any
other joint spectrum having the polynomial spectral mapping property. In
particular,

(18) r(T) = sup{|Alz : A € oupp(T}}-
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The algebraic spectral radius is defined as
(19) o(T) = inf [T/,

The operator T defined as in (7) is now an operator on H™ for which all

the facts proved in Lemma 1 remain true. So the inf in (19) is actually a
limit.
Let My : L{H) — £{H) be the operator defined as

(20) My (A4) = i 5 AT},
i=1

‘We then have

THEOREM 2 (Miller-Sottysiak). Let T be a commuting n-tuple of Hilbert
space operators. Then

(21) H(T) = r(Mp)? = o(T) = Tim [T/

Our next two remarks are directed towards a simplification of the proof
in [MS] even while following their essential ideas.

By a theorem of Curto [C1], the (ordinary) spectrum of Mt and the
joint spectrum of T are related by

(22) o(Mr) = {ij\_juj tAp € O‘(T)}.

Using this and the Cauchy-Schwarz inequality one sees that

(23) r(Mr) < r(T)2

From the definition {17) it is also clear that v(T)? is a point in o(Ms).
Hence

(24) (T < r(Mr).

This proves the first equality in (21). Next note that the operator My is a
completely positive map on L{H) (see [P]). Such maps attain their norm at
the identity operator I. Applying this to all powers of Mg we see that

(25) M| = M (D) = [T
So the ordinary spectral radius formula for My gives the second equality in
(21).
It is clear from Theorem 2 that
(26) r(T) < | T

Let Liny(H) and £4(H) denote, respectively, the set of all invertible
operators and the set of all positive-definite operators. For any § € Liny(H)
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we have o(STS™") = o(T), where STS™" is the tuple defined in (8). So it
follows from (26) that

(27) r(T) < inf{||STS™|: § € Linv (H)}-
We can prove more: there is equality here; for a single operator this was
proved by Rota [R].

THEOREM 3. Let T be o commuting n-tuple of Hilbert space operators.
Then

(28)  r(T) =inf{|STS™||: § € Line(H)} = inf{|STSH|: § € LL(H)}.

Proof. The proof for the case of a single operator T' in [FN] can be
modified for the present situation. To prove the assertion, we need to produce
for each 7 > #(T) an § € L4 (H) such that [|STS™*|| < n. By Theorem 2,
given such an n we can find a positive integer m such that ||T™|| < #™. This
means that the operator

R= Zn"Zm (T* mewI-;-——ZT*T + QZT TPT4T; + .
me=

is well defined. {(Here in all summations all subscrlpt indices vary over
1,2,...,n.) Note that R > I. Further,

* * 1 el
STIRT = YT+ o 3BT LT+
Put § = R'2. Then :
ISTS 2 = (ST S)(STS ™) = || 3 5777 577 5

— -1 *
= s~ (X 7rm)s
We remark that in the finite-dimensional case we have, from the discus-

sion in Section 2, a version of Theorem 3 for all p-norms, 1 < p < 0. More
precisely, we have, for any commuting tuple T = (T3, ..., T,) of matrices,
(29) rp(T) = inf | STS™|,,
where the infimum is taken over all invertible matrices S.
Can the result of Theorem 1 be extended to infinite dimensgions? For
p = 2-this question is answered in the allirmative by the theorem of Miiller
and Soltysiak. For other values of p we formulate the problem as follows.
Cosider the Banach space I, for 1 < p < 00, Let T = (T%,...,7},) be an
n-tuple of commuting bounded operators on l,. Equip I} with the natural
p-norm and define |||, as in (4). Let 7,(T) = sup{{Al, : A € o(T)},

where o(T) is the Taylor joint spectrum of T. Let ¢,(T) = inf HT”’”Hé/m.
We propose the following

= ‘r]z(R -1} < ?jzR.

T <8RS =
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CONJECTURE. For a commuting n-tuple T of bounded operators on 1,
(30) o(T) = 2p(T)-

One of the referees has pointed out that we need not restrict our analysis
to I, spaces alone. Let X be any Banach space with norm |- ||. Let X be the
dlrect sum of n copies of X, with the norm of an n-tuple z = (3:1, cr Zp)
defined to be flz{| = (377, Hijp)l/p Let T = (T1,...,T,) be an n-tuple
of commuting bounded operators on X. As before, we can identify T with
an operator from X to Xy The norm of this operator is

(31) IT), = sup (ZnTmn )

ll=li=1

The number g,(T) can be defined as before with respect to the above norm
on operator-tuples. The definition of r5(T) is unchanged. The problem then
is to show that these two quantities are equal.
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Martingale operators and Hardy spaces generated by them
by

FERENC WEISZ (Budapest)

Abstract. Martingale Hardy spaces and BMO spaces generated by an operator T

are investigated. An atomic decomposition of the space HE is given if the operator T
is predictable. We generalize the John-Nirenberg theorem, namely, we prove that the
BMQy spaces generated by an operator 1" are all equivalent. The sharp operator is also
considered and it is verified that the Lp norm of the sharp operator is equivalent to the
Hg norm. The interpolation spaces between the Hardy and BMO spaces are identified by
the real method. Martingale inequalities between Hardy spaces generated by two different
operators are considered. In particular, we obtain inequalities for the maximal function,
for the g-variation and for the conditional g-variation. The duals of the Hardy spaces
generated by these special operators are characterized.

1. Introduction. We consider martingale operators like Burkholder and
Guudy did in their paper [10]. In the literature Hardy spaces generated by
the maximal function or by the quadratic variations were dealt with. In this
paper Hardy and BMO spaces generated by an operator T are investigated.
Several new results are proved and many known results for the maximal
function and quadratic variations are generalized to the case of an arbitrary
operator T'.

In Section 2 the basic definitions are given. In Section 3 the atoms are
defined and the atomic decomposition of the H ;j" space generated by a pre-
dictable operator T is formulated. Two special cases of this result can be
found in Herz [18] for the Py space and in Weisz [35] for the conditional
quadratic variation.

In the next section the sharp operator T% of an operator T is introduced.
The BMQO, spaces are defined and then generalized by considering the Lo
norm of Tg . The latter spaces are denoted by B.MOE. We generalize the
John-Nirenberg theorem [22] (see also Herz [18], Garsia [16]) and show that
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