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Martingale operators and Hardy spaces generated by them
by

FERENC WEISZ (Budapest)

Abstract. Martingale Hardy spaces and BMO spaces generated by an operator T

are investigated. An atomic decomposition of the space HE is given if the operator T
is predictable. We generalize the John-Nirenberg theorem, namely, we prove that the
BMQy spaces generated by an operator 1" are all equivalent. The sharp operator is also
considered and it is verified that the Lp norm of the sharp operator is equivalent to the
Hg norm. The interpolation spaces between the Hardy and BMO spaces are identified by
the real method. Martingale inequalities between Hardy spaces generated by two different
operators are considered. In particular, we obtain inequalities for the maximal function,
for the g-variation and for the conditional g-variation. The duals of the Hardy spaces
generated by these special operators are characterized.

1. Introduction. We consider martingale operators like Burkholder and
Guudy did in their paper [10]. In the literature Hardy spaces generated by
the maximal function or by the quadratic variations were dealt with. In this
paper Hardy and BMO spaces generated by an operator T are investigated.
Several new results are proved and many known results for the maximal
function and quadratic variations are generalized to the case of an arbitrary
operator T'.

In Section 2 the basic definitions are given. In Section 3 the atoms are
defined and the atomic decomposition of the H ;j" space generated by a pre-
dictable operator T is formulated. Two special cases of this result can be
found in Herz [18] for the Py space and in Weisz [35] for the conditional
quadratic variation.

In the next section the sharp operator T% of an operator T is introduced.
The BMQO, spaces are defined and then generalized by considering the Lo
norm of Tg . The latter spaces are denoted by B.MOE. We generalize the
John-Nirenberg theorem [22] (see also Herz [18], Garsia [16]) and show that
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40 F. Weisz

the BM(’) spaces are all equivalent for 0 < ¢ < oo (Theorem 2). In Theorem
3 it is proved that the L, norm of Th( f) is equivalent to the H. f norm of
F{0<g<p<oo) Some very specml cases of this result can be found in
Fefferman and Stein [15], Garsia [16] and Lepingle [24].

Tn Section 5 the interpolation spaces between the Hardy and BMO spaces
are identified by the real method. We verify that

T — —
( pDIX )Bq H 5_ p 4

where XT = HE or XT = BMOT,0< 8 <1,0<g<ooand 0 <pp <0
if T is predlctable and 1 < pp < oo if T is adapted. Some special cases of
this result can be found in Fefferman, Riviére and Sagher [14], Riviére and
Sagher [29], Hanks [17] and Weisz [34].

In Section 6 martingale inequalities are verified. We show that if an in-
equality holds for a number p, then, by the atomic decomposition and inter-
polation, it also holds for all parameters less than p (Theorem 12 and Corol-
lary 5). As special operators the maximal operator M, the g-variation 5, and
the conditional g-variation s, are considered. The well-known Burkhoelder—
Davis-Gundy inequality is obtained from the general results. An inequality
relative to the strong g-variation due to Lepingle [23] and Pisier and Xu {27]
is proved.

- In Section 7 the duals of the Hardy spaces H and H," generated
respectively by the g-variation and conditional g-variation are characterized.

More exactly, the dual of I-If e is Hj‘; and the dual of Hp? is H o’ (1<

g < oo, 1/p+1/qg=1/p +1/q¢ = 1). The duals of H;* and Hl are
BMO, and BMO_;, respectively, where 1 < ¢ < oo and 1/q +1/¢" = L
These dua.llty results are known for q = 2 (see Garsia (18], Herz [18], [19],
Pratelli [28], Weisz [35]). The third duality result is due to Lepingle [24].
As a consequence we get a generalization of an inequality due to Rosenthal
130} and Burkholder [8]. Furthermore, we show that the duals of VMO,

and VMO, which are subspaces of BMOy and BMOZ, are HY* and H; ‘S“
(1<g¢ < oo L/g+1/q" = 1), respectively.

I would like to thank the referee for reading the paper carefully and for
his useful comments.

2. Preliminaries and notations. Let (2,4, F) be a probability space
and let F = (F,,n € N) be a non-decreasing sequence of o-algebras. The
o-algebra generated by an arbitrary set system H will be denoted by ¢(H).
We suppose that A = o (|, <Fn)-

The expectation operator and the conditional expectation operators rel-
ative to F,, (n € N) are denoted by E and E,, respectively. We briefly write
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Ly for the real or complex L,({2, A4, P) space; the norm (or quasinorm) of
this space is defined by |||, := (E|f|?)'/? (0 < p < o0). For simplicity, we
assume that for every function f € I and every martingale f = (fn,n € N)
we have Fof = 0 and f; = 0, respectively.

The stochastic basis F iz said to be regulor if there exists a number
R > 0 such that for every non-negative and integrable function f

Eof <RE,_1f (n€N).

We define E_1 = Fy. The simplest example of a regular stochastic basis is
the sequence of dyadic o-algebras, where 2 == [0,1), A4 is the c-algebra of
Borel measurable sets, P is the Lebesgue measure and

=g{k27", (k+1)27"}: 0 < k< 2"}
In this paper the constants C), depend only on p and may be different in

different places.
‘We define the martingale differences as follows:

dof =0, dnfi=fo—fam1 (n21).

The concept of a stopped mariingale is well known in martingale theory: if
v is a stopping time (briefly » € 7) and f is a martingale then the stopped
martingale f¥ = (f¥, n € N) is defined by

n
=Y x(v = k)dxf,
k=0
where x(A) is the characteristic function of a set A. f¥ has the property
that f¥ = f, on the set {v = m} whenever n > m. In particular, in case
v = n for any n € N one has f® = (fo, f1,-- -, fny frs o - o). Moreover, define
n
fi =) x> k)it
k=0
For these functions one has f¥° = fn_1 on the set {v = m} whenever
n>m-—1.
‘We shall consider the following special martingale operators. The maxi-
mal function of a martingale f = {fn,n € N) is denoted by

Fr=sup|fel, f7i=sup|fel
k<n BeM

The g-variation Sy(f) and the conditional g-variation sq(f) (1 < g < c0)
of a martingale f are defined by

Sym(f) = (kz;oidkﬂq)l/q Sy(f) = (g |dk:f|q) 1/q
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and

Sgnl(f) = (iEk_ﬂdkflq)l/q, sq(f) = (iEk—ﬂdkﬂq)]/qa

k=0 k=0
while for g == co let

Soom(f) = Soo,n(f) 1= sup |dk.ﬂu Soo(f) 1= Soo(f) = Bup |dhf|
k<n kel

Usually the 2-variations are dealt with; however, in the papers of Lepingle
(23], [24] and Pisier and Xu [27] the g-variations are also considered.

Following Burkholder and Gundy [10] we investigate more general mar-
tingale operators T' that map the set of martingales stopped by n for any
n € N into the set of non-negative A-measurable functions. Throughout the
paper we will assume the following conditions:

(B1) T is subadditive, i.e. if f = Y 77 o fr in the sense of frp = 30 fim
a.e. for all m € N, then T(f") < Y ooy T(fF) (n & N) where f, (k € N) are
martingales.

(B2) T is homogeneous, i.e. T'(cf) = |¢|T(f).

(B3) T is local, i.e. T(f) = 0 on the set {sa(f) = 0}.

(B4) T is symmetric, i.e. T(f) = T(—f).

Note that our condition (B1} is slightly stronger than the one in Burkholder
and Gundy [10]. These operators were also investigated in Hitczenko [20].

For every martingale f we define T,(f) = T(f™) (ne N), T*(f) =
SuPpen In(f) and suppose that Ty(f) = 0. Under these conditions the op-
erator T' has some natural properties. For example, 7'(f — g) < T(f)+ T(g)
and T(f#— f¥) = O on the set {p = v}. Moreover, if weset T,(f) = T,(f) on
{v =n} where v € T is a finite stopping time, then we have T}, (f) = T'(f*).
It is easy to see that the operator T* also satisfies all the above conditions.
For more details and examples we refer to Burkholder and Gundy [10].

An operator T is said to be adapted (resp. predictable) if T, (f) is Fo-
(resp. Fr—1-) measurable for all martingales f and for alln € N. If M{f") :=
|fn| then MZ(f) = fr and M*(f) = f* (n € N). One can easily check that
the operators M, 5; and s, (1 < ¢ < o0) satisfy the condition (B); moreover,
M and §, are adapted, and s, is predictable.

The predictable operator of an operator T satisfying (B) is now intro-
duced. We consider all the non-decreasing, non-nsgative and predictable
sequences A = (A,,n € N) of functions for which

Set

To(f)=infhe (mEN), T7(f) = sup T ().
. neN
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Omne can easily prove that T~ satisfies (B) and is predictable, and moreover,
that T;, (f) is non-decreasing in n. We remark that T~ (f) is not necessarily
finite a.e. whenever T*(f) is. T~ was introduced for the maximal operator
by Garsia [16] and for Sy by Weisz {35].

The martingale Hordy space HE (0 < p € o) generated by T is the
space of martingales for which

ez == 1T (e < co.

3. Atomic decompaosition. The atomic decomposition is a useful char-
acterization of Hardy spaces used in proving some duality theorems, mar-
tingale inequalities and interpolation results.

Let us introduce first the concept of an atom:

DEFINITION 1. A martingale a is a p-atomn relative to an operator T if
there exists a stopping time v such that

D ap=0ir>n,
(ii) [ 7*(a) oo < P(v # co) 7.

Note that atomic decompositions have already been investigated for spe-
cial operators: for M~ see Herz [18], Bernard and Maisonneuve 5] and
Chevalier {11], for S, and s; see Weisz [35).

THEOREM 1. Assume that T is a predictable operator. If the martin-
gale f = (fa,n € N) is in H (0 < p < 00) then there exist o sequence
(ax, k € Z) of p-atoms and a sequence (i, k € Z) of real numbers such that
for all n € N,

(1) Z Helkn = fa
k=—oca
and
@) (3 wsl)" < Cliflmg-
k=—o0

Conversely, if 0 <p <1 and the martingale [ has a decomposition of type
(1) then f € H] and

© g ~int (3 )™

o= — 00

where the infimum is taken over all decomposilions of f of the form (1) and
~ denotes equivalence of norms.
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Proof. Assume that f € HY. Consider the following stopping times for
all k € Z:

=inf{n e N: T¢ (f) > 2*}.
It is easy to gsee that

a0}
(4) Fa= D (rme =15,
k==
Let
LB . ¥
pn = 2F3P (v # oo)l/p and apn = Iﬁ—wﬁ

It is clear that, for a fixed k, ax = (agn,n € N) is a martingale. Since T' is
local, we have

T*(ax) < Py # 00) 2.
TIf n < v, then ag , = 0, thus we see that ay, is really a p-atom. As usual, by
Abel rearrangement we get

(5) S luklr =3 Y 2PPIT()) > 27 < GEIT(f)7),
=—00 k00 .
which proves (2).
Assume that 0 < p < 1 and f has a decomposition of the form (1). By
(B1),

(6) E[T* (1< Y |uw[PEIT(ax)?].
k=—co

It follows from the definitions that

(7) T*(ay) = T*{ar —ay*) =0 on {v =0},

hence

E[T*(ax)?] £ P(uy # 00) " Py # 00) =
which proves the theorem.

Note that this result yields that the Hardy spaces generated by s, (1 <
g < o0) and by the predictable operator of an arbitrary operator have atomic
decompositions.

4. BMO spaces and sharp operators. It is well known that the duals

of the Hardy spaces H,:,V’ and HZ? are the BMO spaces that are usually
defined with the norms

| fllBMoO, (a) = SuPP(V —Hae| £ -
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1 ltmo; (ay = sup P(v # 00) T f — 177y,
veT

where 1 < ¢ < oo and o > 0 (cf. Garsia [16], Herz [18], [19], Weisz [35]). To

characterize the duals of the spaces H;° and H,* we have to change slightly
these formulas. For 1 < g < oo and & > 0 let

| Flaro,cay = sup Py # 00) /e B(Y it < )]
vE k=1

and
fggP(v # oc)TH [E(g:l 2k f9x (v < k))] Ve

We say that f € BMO,(a) (resp. f € BMOZ (o)) if [[fllamoe <o
(resp. ||f||5MDq~(a) < o0). Set BMO, := BMO,(0) and BMO, =
BMO, (0). Note that

| Al BAO o () = sUP P(¥ 5 00) ™% sup |de fx(¥ < k)|,
veT keM

Il Atz oy = 5UP P (v # 00) " *sup |de fx(v < k) loo
veT keN

and BMO, = BMO_, = H3>. It is easy to see that

|FilBator (@ =

”f“BMOz = Hf“BMOo(oa)a “f“BMOz_(cz) = “f“BMc);(a)-
Finally, one can verify that
= 1/q
(®) | Flssio, = [sup (B2 37 1desie) |
nEN k=n+1 e
and
ad 1/q
— ¢
(9) HfHBMo; = ”ilég(En gl]dk-ﬂ ) “m
The sharp operator of an operator T satisfying (B) is defined by
(10) TI(f) = SUp L Sup [Ex(Tops—i(f — FFHMY,

where v € T and, in the sequel of this section, ¢ = 0 if T' is predictable and
i =117 is adapted.

Note that one can write T* instead of Ty1_¢ in (10) if Tn (n € N) is
non-decreasing.

The sharp function generated by M was first investigated by Fefferman
and Stein [15] in the classical case and by Garsia [16] and later by Lepingle
[24] in the maxtingale case. Garsia ([16], pp. 31, 115) has proved that the L,

norm. of Mf( f) {resp. ME(f)) is equivalent to the L, norm of f whenever



46 F. Weiss

1< p< oo (resp. 2 < p < o). This result will be generalized to every
operator satisfying (B) and every 0 < p < co.
Obwiously, we have | M§(f) s = Ifllnmog (1 < @ <00} [(S)5{Fllee =

1Flsamo; 2nd 1(sg)§i(f)lleo = [ fllzro, (L = <00).

We introduce the BMO? space generated by an operator T' satisfying
(B) with the norm

I lsator = IT§(Flleo (0 < g < 00).

It was proved by John and Nirenberg [22], Garsia [16] and Herz [18] that
the BMO, spaces are all equivalent for 1 < ¢ < cc and, in the classical case,
by Strémberg [33] and Hanks [17] for 0 < ¢ < ec. This result iy generalized
to every operator and every 0 < ¢ < oo in the next theorem,

THEOREM 2. If T satisfies (B) then the BMOZ spaces are all equivalent
for 0 < g < oo.

Proof. An adapted (1 = 1) or predictable (i = 0) sequence (4,) is a
BMO(B) sequence if

BylApti-i — Ap—i| £ B (n = k).
1t is proved in Garsia [16] (p. 66) that if (4, ) is BMO(B) and non-decreasing
then for all n € N,

1 ’ PAnpimi)
(1) By(ettneier) < ——

Let0<g<lbefixedand f & BMOE. Since af ~b? < (a—b)¢ (@ > b > 0)
and, by (B1},

(12) Tl ) = Tomi () < Togr-a(f = 1579,

we see that T.(f)? is a BMO(B) sequence with B := ||f|zsor. Conse-
quently, T ()% is BMO(8B) (see Garsia [16], p. 75) and, by (11),

(tB <1, t>0).

Ey (et Tt () (8tB < 1).

<
— 1— 8B
Applying this to the martingale f — F%~% we can see that

PO T L L s La LN
k[e‘ ]— k(e )—1—8tB

The proof can be finished as in Garsia [16] (p. 65). m

8tB < lveT).

Since

BT pa () — smu () S I o,
and

Er(570 (1) = St-i () < [ F i ps07
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the sequence (s} . (f)) (resp. (S7.(f))) (1 < r < co) is BMO(B) with
B = | fllspme, (resp. B = ||f], ). Consequently, the inequalities

BMOT
E(ePHN) < 1 ,
1=t fllzamo,

follow from (11). Note that, for r == 2, the second inequality was proved by
Burkholder [8] and by Garsia [16] (p. 69) and the first one by Weisz [34].

Garsia [16] proved in Theorem IV.4.4 that every function f € H32 (p > 1)
can be derived as a martingale transform of an A € BMOs = BMOZ? and
conjectured that this does not hold for p = 1. However, he proved this
result for h € BMO??, In other words, the conjecture says that BMOT® is
not equivalent to BAO,, though this is true by Theorem 2.

Finally, we are going to prove the theorem relative to the sharp operators
mentioned at the beginning of this section.

The following lemma is a slight modification of Theorem 1 of Bassily and
Mogyorddi [2}.

. 1
E etsr(.f) < —_ e ————
E < =47

ra

BMO,S

LEMMA 1. Let 0 < ¢ < oo be fized and T' be a predictadle (¢ = 0} or
adepted (i = 1) operator satisfying (B). If v is a function such that

Sup Ex(Tyqa—i(f — £577)7) < Epny?
veT k-l<v<ee

for all k € N then for all § > a >0,
(B~ &) Ex(Thqa—s(f) > B)] < Bi[x(T7,1a_:(f) > a)y?]  (mé€N).

Proof Let us introduce the following stopping times:

_finf{n <m: Tap-a(f) > Ay HTn (5 > A
vy = m 4 1 lf T;L+1—i(f) S A

where A > 0 is arbitrary. Obviously,

4

Eilx(Thpn i) > B) = Billve < m)] = B[ 3. s =, va = b))

n=1 k=1

On the set {vg = n, ¥o = k} we have Tyy1-:(f) > 8 and Te—i(f) <€ o, s0
Tpr1—i(f) = Thi(f) > B — c. Using (12) we obtain

Ei[x(Thi1-:(F) > B)]

< B {Z S x(vg =n, va =k (T"+1—i({g:)fk—i(f))q}
n=1 k=1

. m _ T(u'g«l»l—i)v(k»—i,)(f — fk-vi)q
=" [;X(% = (5= )1 |
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From this it follows that
(8 - @) Bl (T 1-s(F) > B)] < [;x
which proves the lemma. &
TrEOREM 3. If T satisfies (B} then

cpll fllmr S INTE(Alp € Cogllfllay (0 <g<p<oo)

Proof. Write # = 2a in Lemma 1. Multiplying by pee? ¢~ ! the inequal-
ity
AE[(T*(£)/2 > o] < Ex(T*(f) > o)v¥l;
integrating it in o from 0 to oo and using Fubini’s theorem we obtain

BT (7)/2) < B(py? [ P4 (T"(f) > @) da) = e, BT (f779).
o]

By Holder’s inequality

1T7(H)llp < collvlle (2> )

If we choose v = T}(f) then the left hand inequality of the assertion is
verified.

To prove the other inequality, let us estimate T{E( F) by the quantity
25UPpen [Bn (T (£)9)]Y/4. Using Doob’s inequality we get

NTE )il < 2(1151(511;1[3’En[T"(f)q])“’/q)”p SCpgT* (Al @ >4)

and this completes the proof. u

5. Interpolation of martingale spaces. In this section the interpo-
lation spaces between the martingale Hardy and BMO spaces generated by
an operator T satisfying (B) are identified with the real method. For this
we shall need some additional definitions.

For a measurable function f the non-increasing rearrangement is intro-
duced by

() == inf{y : P({e : (=) > 9}) < 1},

The Lorentz space Ly, ; is defined as follows: for 0 < p < oo and (0 < ¢

< o0,
1/q
1l o= (ff el & ) ,

while for 0 < p < oo,
|10 = sup8/20).
>0
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Set
Lpg =Ly o(02, A, P) = {f : || fllp,q < 00}

One can show that L, , = L, and Ly o is the weak L, space (0 < p < o).

For 0 < p, ¢ £ oo the martingale Hardy—Lorentz space Hg: ¢ is the set of
martingales f for which

1z, = 17 () g < oo

In case p = g we recover the original definition of the Hardy space Hg: p =
Hg .

The basic definitions concerning the real method of interpolation are now
briefly recalled. For the details see Bennett and Sharpley [3] or Bergh and
Léfstrém [4]. Suppose that Ay and A; are quasi-normed spaces continuously
embedded in a topological vector space A. The interpolation spaces between
Ag and A; are defined by means of an interpolating function K (1, f, Ag, A1).
If f € Ay + 44, define

K(t:vaﬂvAl) = ' inf fl{”fOHAO +t“-fln«41}’

where the infimum is taken over all choices of fo and fy such that fo € Ap,
fi € Aj and f = fg -+ f1. The interpolation space (Ag, A1)s,; is defined as
the space of all functions f in Ap+ A; such that

_g dt Ve
) hontiren = ( J oKt A0 A Y ) <o

where 0 < § < 1 and 0 < g < oo. We use the conventions {Ap, At)o,q = Ao
and (Ap, 41)1,4 = Ay for each 0 < g < co.
It is well known that
100
(13) Kt f, Loy Loo) ~ ( f Fla)ro d:c) (0 < pg < 00)
and the interpolation spaces of Lorentz spaces are Lorentz spaces again,
more precisely, if pg # p1 then

. 1 l—n 7
{14) .(Lm,qumm)n,q = Lpg 5 = I + p—1’

provided that 0 < 7 < 1 and 0 < po,p1,90,%1,:9 < oo (see e.g. Bergh and
Léfstrom [4]).

Suppose that By and B, are also quasi- normed spaces confinuously em-
bedded in a topological vector space B. A map

UV:Ap+ 4 — B+ By
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is said to be quasilinear from (Ao, A1) to (Bo, Bi1) if for given a € Ag + 4,
and a; € A; with ag + a1 = @ there exist b; € B; satisfying
U(a) = by -+ by
and
lB:]| B, < Killailla, (Ki>0,i=0,1).
The following theorem, which is used several times in this paper, shows that

the boundedness of a quasilinear operator is hereditary for interpolation
spaces.

THEOREM 4 (Riviére and Sagher [29]). If 0 < ¢ <00, 0K B < 1 and U

s a quasilinear map from (Ag, Ay} to (Bo, By) then
U . (A(),Al)g,q — (Bo,Bl)g’q
and
”U(Q)”(Bn,Bﬂa,q < K(]J._BKfHa’H(AG;Al)ﬂ.q'

We prove the following consequence of this theorem.

COROLLARY 1. Suppose that B; has the lattice property, i.e. |g| < |f]
a.e. implies thot ||g||B; < || f| B, whenever f € B; (1=0,1). If 0 < ¢ < 00,

0<8<1 and U is a subadditive operator which is bounded from A; to B,
with norms K; (1 =0,1), then

”U(G)H(Bn,l?x)e,q < KémgKf HQH(AmAl)&.q‘

Proof Let a € Ag+ 4y and a; € 4; (1 = 0,1) with ag + a1 = a. By
subadditivity, |U{a)| < [U(ag)| + |U(a1)]|. Define.
by := sign(U(a)) min{|U(ao)|, |[U{a)|}, b1 :=U(a)~ by.
Since [bg| < |U(ag)| and |61} < |Ulay)|, we have
1billz; < 1U(as)lls, < Kiflaslla,  (i=0,1),

which shows that U is quasilinear from (Aqg, A1) to (By, B;y). The corollary
follows from Theorem 4. m

Note that the Lorentz spaces Ly, (0 < p,¢ < o) have the lattice prop-
erty (see Bennett and Sharpley [3], p. 41).

With the help of the atomic decomposition a new decomposition theorem
for martingales is now given.

THREOREM 5. Let T be a predictable operator satisfying (B), f € HY,
¥y > 0and 0 < p < 1. Then f can be decomposed into the sum of two
martingales ¢ and h such that

lgll ez < 4y
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and

1/p
Il <G [ T dP)
{T"(#)>y}
where the positive constant Cy depends only on p.
Proof. Choose N € Z such that 2¥-1 < y < 2%, Take the same

stopping times vy, atoms a;, and real numbers y;, (k € Z) as in Theorem 1.
Set

N o0
In = Z HiQkn and A, 1= Z Hilkn-
k=—cc R== N1
It was proved in Theorem 1 that f,, = gn + by for all n € N and g = f¥¥+1,
and moreover, that
T*(g) = T*(F*+) < 2V < 4y,

which proves the first inequality of the theorem.
On the other hand, the inequality

rlfr < 32 lmelP =Gy > @FPTHS) > 27)
k=N-+1 k=N+1

follows from Theorem 1. Similarly to (5), by Abel rearrangement, we obtain
IbfG: <G [ [ T*(f)Fap.
{r(5)>2™} {7 (£y>v}
The proof of the theorem is complete. =

T*(fFdP < Cp

The interpolation spaces between the martingale Hardy spaces generated
by predictable operators can be identified.

THEOREM 6. Assume that T is predictable. If 0 < 8 < 1,0 < pp £1
and 0 < ¢ < oo then
i 1-4
T _ T _
Hoo)egq = Hp,q? 5 - 70 .
The main step in the proof is the following result.

LEMMA 2. If T is predictable and 0 < pg < 1 then

(Hg,,

R0

K6 £, 15, HE) <O [ TP an) ™.
O .

Proof Choose y in Theorem 5 such that, for a fixed ¢t € [0,1], y =
T_’*—'U)(tp"). For this y denote the two martingales in Theorem 5 by g: and
hs. By the definition of the functional K,

Kt f, Hy, HS) < ikl gz + tlellaz -
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By Theorem b we get

1/wo
sz, <c( [ Teap)
(T (Fy>T (£}

$P0

(fT*(f J(z)P° diﬂ)

/Po

On the other hand,
1P0

w( 1/po
tllgell g, < CtT*(f)(t7) < c'( f T* ()P0 d;z:) ,

which shows the lemma. m

Proof of Theorem §. By (13) the right hand side of the inequality
in Lemma 2 is equivalent to K (¢, 7%([), Lp,, L'ac). Applying (14) we conclude
that

e f 0K (1, T*(f), Lm,Lm>q~ < CIT*(£)]8

g’

To prove the converse observe that 7 : HL — Lo and T* : Hg‘; — Ly,
are bounded. Therefore, by Corollary 1 and (14),
17z, = 1T (o < Cllflicuz, 2z,

ro?

The proof of Theorem 6 is complete if 0 < ¢ < co. With a fine modification
of the previous proof the theorem can also be shown in case ¢ = 00, »

Applying the reiteration theorem (see e.g. Bergh and Léfstrém [4]) we
get the following result.

COROCLLARY 2. Suppose that T' is predictable, 0 < n < 1 and 0 <
20, 91,90, 61,9 < 00. If py # p1 then

o T 1 1l-n 7

= + L,
p Po b1

This result was proved by Fefferman, Rivitre and Sagher [14] in the clas-
sical case and by Weisz [34] for the operator ;. In the classical case Janson
and Jones [21] verified the analogous result with the complex method.

The interpolation spaces between H, ;‘" and BMOT will now be identified,

where BM®T denotes one of the spaces BMO?. Recall that these spaces
are all equivalent.

HT

( P0sR0° TP, q1) P
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THEOREM 7. Assume that T is predictable. If 0 < 8 < 1, 0 < g < oo
and 0 < r < co then

(HT, BIMO)g, = HT i _ =9

P! r

Proof. It is obvious that

| Flizaor < Cllfllzz -
Thus
Il Batory,, < ClFllerr ey, = ClUFl ar
To see the converse consider the operator T for a fixed 0 < uw < ». In
Theorem 3 it was proved that T : HY — L, is bounded. Furthermore, so
is T : BMOT — L. Using Corollaly 1 with ¢ = p and Theorem 3, one
can see that f € (Hf BMOT )o.p implies

£z < ClITED s € CollFll iz mamomys s
which proves the theorem for p = g, namely,

B Fa

. 1 1-98

(HT,BMOT)g,, = HT, o=
Applying the reiteration theorem we can prove the theorem with a usual
argument (cf. Hanks [17]). m

As a further application of the reiteration theorem we get the following

CoroLLARY 3. Assume that T is predictable. If 0 <0 < 1,0 < pyp < 0
and 0 < gg,q < oo then

1 1—
(HT  BMOT)s, = HT m:pg.
0]

Poqo? ' p.g? p
This result is due to Hanks [17] in the classical case and to Weisz [34] in
the martingale case for g5,
Let us turn to the adapted operators and prove similar interpolation
theorems for them. First of all notice that the following two equivalences
can be verified with the same method as (14):

1 ¢
(15) (LI(E‘[),L;,,\(Z]))() q = pr q(ll) E‘ =1-8 -+ E;;'
where 0 < <1, 0< g <o, 1 <p <o, and
1 1-4 @
’ S g —
(18) { ?,“,H o = Hyle E-n . - ;9;,

where 0 < # < 1,0 < g € ocand 1 = py < p1 < oco. Moreover, with
that method one can show (16) for S, (1 < r < o) ingtead of Sy, but for
1 < py < p1 < oo only. We are going to extend this result. The idea of the
following proof is due to Milman [25].
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THEOREM 8. [f 0 <@ <1,0<g< oo and 1 £r < oo then

1
(H* H g, = HS, 5=1~9.

As we have seen in Theorem 6, thlS theorem follows from Corolary 1
and from the next lemma.

LeMMA 3. If 1 <r < oo then
[
K(t,f HY HS) < C [ S(Diw)de
o]

Proof. For a fixed t consider the following two stopping times:

= inf{n € N: 8,n(f) > S-(H®},

n+1l

=inf {n e N: (3 1Bumaldesxlv = Bl T S}
k=L
Set
gn = F2" =Y ldufx(v = k) — Ex-a{defx(v = k))]x(r = k),
=1
by = fn — Gn-
By the definitions of v and T,
Sr(g)
= (Z ldefx(vZ k) —difx(v=k) + Epr(drfx(v = k) x(r 2 k))l/r
k=1

< (30 ufxte > bxr 2 By

00

(1 Bcaldnxte = W)xir 2 1) < 25700,

k=1
Hence

150 (9) oo < CES(F )[;)<OIST (z) da.
Since Sr(~) < 81}, we have
[[Se ()2 < 15+(F = f"”)il

+ ”Sl( defx(v=k) — Bp_y(dpfx(v=
k=1

Dl 2 )]

Martingale operators 55

On the one hand, the second term of the right hand side can be estimated
by

(17) 2> E(ldeflx{v =k)) <2 [ s(nar
b=t (50 ()> SR}

t
<2 [ $.(f)(w)de
8]
On the other hand, by the definitions of » and r,
1S:(f = )& [ Self)dP+ [ S(fap
{r<oo} {v=co}n{r<oa}
< [ 5.5 aP + P(r < 0) 8. (F)(8).

—

{18 (F) =8 (F)(t)}
By the Markov inequality

Plr < oo),S'T

<H(Z|Ek1dkfx ).

and this is estimated in (17) by f; 5’1()")
complete.

(z) dz. The proof of the lemma is

The convexity theorem states that

09 [ S min], <Gl X,

for 1 < p = ¢ < oo, where fi, (k € N) are arbitrary functions (see Garsia
[16], p. 113). Therefore (15) and Corollary 1 yield that (18) is true for all
l<pn<ooand 0 <g<oo.

The following result is a generalization of the Davis decomposition for
the operator M (sce Garsia [L6], p. 91).

(1<p<oo 0<g<o0)

LuMma 4. Suppose that T 1s adopled and
(19) f«"dnfl < T’L(d?r.f) < G\dnﬂ

for all martingoles f and all n € N. If f € HJ, with either 1 < p < oo and

0 < g <oo, or p=g=1, then therc exist hEH"’ and eCHT such that
Ff=h+e ond

”h“pgﬁiq < Gp.q“fHHg:q’ e < Opgq”fHH;;",q-
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Proof. The martingales A and e are given by

o]

him Sl f (T () > 278 () — Brea (e fX(TE(F) > 2Tia ()]
k=1

and

= (i Fx (TR <€ 2050 (F)) = Breea(da fx(TR(F) < 2301 (D)),

k=1
respectively. One can prove that

3 ldkhl < ATH(F) +4> . Beoa(TE(F) — Tiall))

k=1 k=1
and |
n—1
Tr(9) S 1BTh_y (/) +4 ) Bua(Ti(F) — Tisy ()
k=1

(see Garsia [16], p. 91). Now the lemma follows from (18). m
Observe that

(20) Wl < Clflgs (0<p < o)

follows from (19).

The condition (19) looks like the equivalence condition ||sup,, Uy (dy f)]] v
~ |[sup,, T (dx f}||p which was used by Burkholder and Gundy [10] to derive
martingale inequalities (cf. Section 6).

THEOREM 9. Suppose that T is adapted and satisfies (19), and moreover,

that 0 < 8 < 1 and either 1 < po < p1 < o0 end 0. < g, 91,9 < og, o7

Po =go = 1. Then
1 1-¢ g
Po P1

T T T
Hpa=qo= Hm.ql)e,q Hp,q’ 1—3

Proof. By the reiteration theorem we only have to verify that
1
(HY, HL)o, = HT, ;=10
Applying (20}, Lemma 4, and Theorems 6 and 8 we can conclude that
Iz iz, < Hellarmzy, , + W0lar mzy,.,
< Heil(Hg” HI Vo + OHh”(Hfl’HOSQI Youq
< Cp,qHEHHE; + Op,q”hHH’f% < G,

The converse inequality follows from Corollary 1. w
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Observe that
1 1-6 @8
T T T —
(Hpn,qo’Hpnqz) CHpg —= .

P Po n
follows for all 0 < pp < p1 < o0 in this case, too. The analogous result for
Hardy spaces consisting of vector-valued harmonic functions can be found
in Blasco [6] and Blasco and Xu [7].
Analogously to Theorem 7 and Corollary 3 the following result can be
formulated.

THEOREM 10. Suppose that T is adapted and sotisfies (19), and more-
over, that 0 < 8 < 1 and either 1 < pg < o0 and 0 < go,¢ £ oo, or
po=qo=1. Then

1 1-9
BMOTYg,=HL , == .
Jou = Hpg P Po

An analogous result was proved for T' = M by Janson and Jones [21]
with the complex method.

Observe again that

( Pa a0’

T T 1 1-6
BMO )4 C Hy 4, p o
lholds for every 0 < py < co. Analogous results in the vector-valued classical
case can be found in Blasco [6] and Blasco and Xu [7].

Note that Theorems 9 and 10 do not extend to pg < 1 (cf. Janson and
Jones [21]).

In the proof of the last result in this section Wolff’s reiteration theorem
is used:

THEOREM 11 (Wolff [37]). Let Ay, Az, Az and A4 be quasi-Banach spaces
satisfying Ay N Ag C Ag N Az, Suppose that

Ao = (A1, As)gg, Az = (Az, Aa)yr
forany 0 < ¢, <1 and 0 < g, £ 00. Then
Ay = (Al:Afl)g,qa Ay = (Al'g Aﬂl)(),r: '

T
(Hposao:

where
. A S
L= g i’ T l—¢+ ey

Applying Theorem 10 to T = M and Wolfl’s theorem we get

Qﬂ

COROLLARY 4. If 0< 8 <1,0<py < oo and 0 < g, g £ oc then
C1-4

1
21 L oogs BMOMYg o= L, =
( ) . { PO, 40 )9,q .4 p 20
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Proof. By Theorem 10 we have (21) for 1 < pp < o0 and pyp = ¢
and, by the reiteration theorem, for all 0 < g9 < oo. Set Ay = Ly, ,, for
any 0 < po £ 1, Ay = Ly, q for any 1 < p1 < o0, Az = Ly, 4 for any
p1 < p < oo and Ay = BMOM, By (14) we can apply Theorem 11 to get
(21) for 1 < p < 00. Let us apply Wolft’s theorem again. Now set Ay = Ly, 4
forany 0 < pp < 1, Ag = Ly, for any pg < p < 1, Ay = Ly, 4, for any
1 < p1 < oo and Ay = BMOM. Applying (21) to 1 < p < oo together
with (14) and Theorem 11 we obtain (21) for all 0 < p < oo. The proof is
complete. =

6. Martingale inequalities. In this section the connections between
martingale Hardy spaces are investigated. The idea of the method is the
following. If an inequality holds for a number p, then by the atomic de-
composition we can verify it for all parameters not greater than 1 and by
interpolation for all parameters less than p. For special operators one can
also derive the inequality for parameters greater than p; however, for gen-
eral operators this is not the case. We single out the results for some special
operators. As a consequence the well-known Burkholder--Davis—Gundy in-
equality is obtained.

THEOREM 12. Assume that T is predictable and U s adapted, and more-
over, that there exists 0 < p; < oo such that for all martingales f,
(22) 1T (Fllo. < CINT ()2
Then
Ifllay < Cpllfllar (0<p <)

Proof. Suppose that f € HY and' 0 <p < 1Apy. Let f = 5200 ueap
be an atomic decomposition of f satisfying (2). As (6) also holds for the
operator UU, we only have to show that, for every p-atom a,

EU*(a)f] < C.
Indeed, applying (7), (22) and Hélder's inequality we can see that
E[U*(a)7] < /P U (@) Plu # o)t 5/m
< Q' RP/m T*(a)P ) P(v # Oo)l—p/m
< CIP(v # o0) /7 P(y # 00)P P(u # o) 0/ = C.
If 1 < py then we see that U™ : H — L, and U* : HY — L; are

bounded. It follows from Corollaries 1 and 2 that U* : HY — L, is also
bounded whenever 1 < p < p;. The proof of the theorem is complete. m

The equivalence HE, ~ HL and the inequality
(23) Mllag <Uflgz- (©<p <o)

icm
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are clear from the definition. The next result is a consequence of Theorem
12 and (23).

COROLLARY 5. Assume that U and T are adopted operators, and more-
over, that there exists 0 < p; < oo such that (22) holds. Then

“fHHg < OP“f”H%""" (0 <p<p1)
For a regular stochastic basis the converse of (23} is also valid.
PROPOSITION 1. If F is regular then HY ~ HY  for all 0 <p < oc.
We omit the proof because it is the same as the cne of Proposition 2 in
Weisz [35].

COROLLARY 8. Let F be regular. Assume that U and T are adapted and
for all martingales f,

(24) N0 llps ~ 1T (FMpas
where 0 < p; < 0o. Then
1y ~ ez (0<p<pi)
Proof. By Corcllary 5 and Proposition 1,
IT*(Hp € CollT=(H)lp S CollT*(F) -
The reverse inequality can be proved in the same way. »

THEOREM 13. Assume that U and T are adapted and satisfy (19) and

(22). Then
[Flay < Collfllzr (1 <p<p)-

Prool Let f € Hg Using Lemma 4 with p = g and Corollary 5 we can

conclude that
g < WBllay + llehay S 12l ges + Collellyr- < Coll fllags

which yields the assumption. =

COROLLARY 7. Assume that U and T are adapted and satisfy (19) and
(24). Then

[Hlay ~ 1flee L SpSp).

In the sequel of this section some results for special operators will be

given. The following basic inequalities are used:

(25) 18(F g = Ilsg(lls (1 £ g <oc),
(28) 1]y = Cyllsg(Plly (1 £g< 2),
(27) P M2~ [[S2 ()2

(26) can be found in Lepingle [24], while (27) comes from Doob’s inequality.
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ProrostTioN 2. If 1 < g < oo then
[l gzse € Collflmze @ <p=q)
1filmze < Collfllgse  (asp<o0),
Iz < Collfllmze  (O<p<gs2).

Proof. The first and third inequalities follow from (25), (26) and The-
orem 12, and the second one from (18) with p=g¢. m

From Corollary 6 and (25), (27) we obtain

CoROLLARY B. If F is regular and 1 < g < co then Hf" ~ Hp* (0 <
p < 00) and Hﬁ‘{mﬂf? (0 <p<2).

Note that Hﬁq ~ Hp® for g < p < oo comes easily from the regularity.
Furthermore, in the regular case “f”H:‘H < qurqz\lfHH;qz (g1 > g2), which

is not true for non-regular F.
COROLLARY 9 (Burkholder-Davis-Gundy [10], [13]). H5? is equivalent
o Hjﬁ"fforlgp<oo.

Proof. This can be derived from Corollary 7 and from (27) for 1 < p
< 2. With the duality method (see e.g. Garsia [16], pp. 32-33) one can verify
the equivalence forall L <p<co. »

The strong g-variation

Wo(f) —«sup{( \fnk fnk_llq)l/q},

where the supremum runs over all increasing sequences of integers 0 = ng <
ny < ..., was investigated by Lepingle 23] and Pisier and Xu [27]. They
have shown that

[We(£llla < CollSa(Filla(= Collsg(Flls) (1< q<2)
and
IWe(F)lle € Cellf*lle  (2<g<oo)
By our method we obtain
(28) IWa(Fllp < CpllSe{Nlp (1<p<Lg<2),
[Wo(F)llp < Collsg(F)lle (O<p<g<2)
and

(29) [We(Hlp < Collf"l, (A<p<g>2).
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Since |[f*lp < Cpllsa(f)]lp (0 < p < 2), from the preceding inequality we
get

Wl o < Colls2(Hl; O<p<2<y).
Note that Pisier and Xu [27] have also shown (28) and (29) for ¢ < p < oo.

7. Duality results, The dual spaces of the Hardy spaces generated by
the operators 5, and s, are now characterized.

THEOREM 14. The dual of Hp'*' is H), , where 1 < p,g < 00 or 1 =
g<p<oo,and L/p+1/p =1/qg+ 1/q =1,

Proof. Define the linear functional I, by

(Z d:cfdkff)

where g € H,f,"' ig fixed and f € Hp". Then it is obvious that
It (5] < 1F 1l zallgll s
P

(30) L(f) =

On the other hand, it follows from the weli—known duality between Ly (1)

and Ly (l,) that if [ is in the dual of Hp , then there exist functions hy
(k€ N) suc,h that

(f) = E(fj deie) = B3 defdihy)
k=1

k=1
and

ey 0 = | (35 ut?)” | s
Jem=1

Set H = Y o drhi. By a generalization of Stein’s inequality [32] (see
Asmar and Montgomery-Smith [1], Theorem 3.1) we conclude that

ql
110 = | (2 18uh = B )" <2 tls
k=1
which proves the theorem. m

Note that the dual of S was described by Herz [18]. The next theorem
was proved by Pratelli for continuous time and for the operator sq. Since
some new ideas are needed, we will outline the major steps. First we need a
lemma.

) = 201

»

LEMMA 5. Let 0 <p<ocoand pv 1l < g < oo. Then Hf“ 18 demse in
Hp¢ and in =i
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Proof. Since |[f]] pree 18 Mot greater than the right hand side of (25), it

is clear that Hf" C Hp°. It is also clear that every p-atom relative to s,

is in Hf “. Suppose that T’ = s, in Theorem 1 and take the same stopping
times v, atoms a; and real numbers g, (k € Z) as in Theorem 1. We now
show that the sum z;anE proy converges to f in Hp® norm as m — oo and
[ — —o0. Obviously,

k23

f~ Z[J’k@k = (f_ ‘fVm-H) +
=1

Notice that f — f¥=+1 — 0 in Hp¢ norm as m — oo because the a.e. limit of
SBf ~ £m) = [s3(F) = s )P

is equal to zero and it can be majorized by the integrable function s%(f).

Since s,(f*) < 2!, we obtain our statement. So the lemma is proved for

H,*. Considering the atomic decomposition for the operator S, one can
verify the lemma for Hp" with the same method. m

TuEOREM 15. The dual of Hp® is I—If‘ , where 1 < p < ¢ < oo and
Up+1/p =1/¢+1/¢ =1.

Proof. For the linear functicnal I, (g € H;?’ is fixed) defined in (30)
we again have

o (A< e

QHH’?' (feH;q)

Conversely, if I is in the dual of H;? then it is also in the dual of Hy".
Hence, there exists g ¢ H, 5“' such that | has the form (30) for all f ¢ HQS ",

By Lemma 5, H, 5 “ is dense in Hp?, hence the linear functional ! is uniquely
determined by (30).

First assume that g € Had' . Set
577 (9)
p'—1"
el
We define the martingale h in the following way:
dih 1= v lldeg!? " sign(dig) ~ Bi—1(|degl? sign(dpg))] (k€ N).
Since vy, is Fp_1-measurable, A is really & martingale. Thus
oo P ~qq’ ’ (2P —(a=1}g’
g <0,y Vg g oW

gl NPT AT
k=0 B
bl
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As g € Hy', this implies that h € Hf". On the other hand,

Bl
Elsy(h)] < Cpyq [Slpf(g)] Cr.g:

ol

Hence

oo
Ol 2 W) = o B 3 323 () B gl

“ ”II q’ kh=0)

H HEJ’ 1 [Z 5” _‘q (Sq’ x9)— :,k—L(g))]‘
H zr’ k=0

Applying the classical inequality
2" —1<afz -zt (1<a,2)

tox = 93: k( )/s": k-1(g) and to o =p' /g’ > 1 we get

[Sq’ k(g) — Sﬁf,mﬂﬂ)] < [ng,k(g) - 53’,&—1(9)]32-‘,_kq (9)-

Fromn thlh we can couciude that

1 o
Coallll = —';7—_"'1‘157(5';: (9)) = llgll yoor -
llall o

H“"’

This inequality for an arbitrary g € H " satisfying (30) can be proved with
a stopping time argument (see Pratelli (281). =

Note that applying the inequality
Y9+ lz —ylf <27 2|+ [y]Y) {zyER, ¢22)
we can prove that Hy? (p > ¢ > 2) is uniformly convex (cf. Pratelli [28]),
hence it is reflexive (sce Yosida [38]). This yields that Theorem 15 also holds
forpz g2 2

With the help of the atomic decomposition we peneralize this result to
0<p<l.

THROREM 16. The dual of Hy® is BMOy (o) where 0 <p <1, 1< ¢ <
o0, = 1fp-—1 und 1/qg+1/¢ = 1.

Proof. As we have seen in Lemma 5, H (‘15 “ is dense in Hp®. Let g €
5 :
BMOy (a); then, of course, g € Hqﬂ’. For f € Hqs" define 1, as in (30).
Since

o0
def= 3 mdiar (kEN),

[T
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with convergence also in Hg¢ norm (see Lemma 5), where i and aq are the
same as in Theorem 1, we can conclude that

Z Z (dpardrg)-

k=1ll=—o00

Applying the identity a;n = a1,nXx{(¥ < n) and Holder’s inequality we get

LNl S lulB( Y ldarx(ea < K)ldal)

I=—o0 k=1
< Z |m|(EZ |dzai|? ) (B gl x(m < k))”q.
I=—00 k=1

By the definition of a p-atom,
S Ha -1/p+1/q
(BX ldrarlt) " = llatll ga = laill e < P # o) :
k=1

Therefore

oo
A< S lllgllamo, @

i=—00
= 1/p
< (3 1ml?) lghsrio, @ < Collflazelslsrmoy a-
[=—00
‘We verify the converse similarly to Theorem 15 by using the test mar-
tingale

b oo lldrgl? ~*sign(dng) — Br—1(|drg|? Sigﬂ(dkg))lx(v < k)
' Py £ co)Yr=Ya (B3 |deg|¥ x(v < k))H/9 '

In this case
Hh” 2y < [E(Ezozl Ek—l'dkglq'x(y < k))p/qll/p
Hyt = MPUPl, L oo P 1/a(F 3o |deg|? x(v < k)14
C. (B3 pey ldugl? x(v < k)Y IP(w # oo)t/P-1/2 .
PPl 2 0o) -1 (B3 |degl x(v < YA P

Hence
B(TE, sl x( < &)
Coalll] 2 M = L oo et TS e SR

Taking the supremum over all stopping times we obtain

Cp ol = gl srmo (-

Martingale operators 65

With a slight modification the theorem can also be shown in the ¢ = 1
casc. m

Note that this theorem was proved by Lepingle [23] for p = 1 and by
Herz [19] and Weisz [35] for ¢ = 2.
Now Theorem 14 is extended to p = 1.

THEOREM 17. The dual space of Hg” (1<p<g<) can be given the
norm

lgll = |QHH g T HgHHsm (1<q <p < 00),
where 1/p+1/p' = 1/q+ 1/q =1 and Hod = BMOqu

Proof Ifg e H’ o n HS“” then clearly g € H . Let {; be defined on
H,," by (30). Recall that H is dense in Hp* by Lemma 5, so [  is also

well-defined on Hf". Since fp, — f in Hf“ norm {f & Hf") ag n — 00, we
have

() = lim B( )" dufdrg).
k=1

Let f € H(f ", T = 5, and consider the martingales h and e defined in
Lemma. 4. It is easy to see that the stopped martingales A™ and €™ are in
H,}g” for all n € N. By Theorems 14-16 we obtain

" [ n
(S ) < (5 ) (5 )
fo=1 k=1 k=1
< Collellazaligll o + IRl s holl e
It follows from (25) and Corollary 5 that

“eHH;“i < GI)HGHHS-; (0<p<a).

Applying Lemma 4 for p = ¢ we get
= Gpllfliﬂgq(llﬂlﬂﬂy +l9llgse ),

which yields that I; is really a bounded linear functional on Hyp Ja.

Jonwversely, if [ 1% an arbitrary bounded linear functional on Hf ¢, then
there existy g € H "' such that (30) holds for all f & Hq Obviously,

[ is bounded on Hgl and, by Proposition 2, it is also bounded on Hy,".
Consequently, from Theorems 14--16 we get

HQ’”H"?’ < Oqi“”a ”9”11;300 < Gyl
P

which completes the proof of the theorem. w
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Let us single out this result for p = 1. The formulas (8) and {9) imply
that
| lemor, ~ I lamo, + 1 lgges

So the following coroilary follows.

CoROLLARY 10. The dual of Hy' is BMOy, where 1 <
/g +1/¢ =1

This corollary is well known for g = 2 (see Garsia [16] and Herz [18]).

Note that using this result, Theorems 16 and 2 and Corollary 8 we con-
clude that BAMO,¢ is equivalent to BMOf” for every 0 < p, 7 < 00 provided
that the stochastic basis is regular.

g < oo and

8
Taking into account Theorem 14 we find that the " norm and the
norm given in Theorem 17 are equivalent.

COoROLLARY 11. For a martingale f we have

|Sq (F)llp < Cpglllsg (Fllpr -+ Hsggldnﬂ”p’) (1<q <o0,0< P < 00).

Proof The inequality follows from Theorems 14 and 17 for ¢’ < p’ and
from Proposition 2 for p’ < ¢'. =

Note that the converse of this inequality for ¢/ < p’ also follows from
Proposition 2. Corollary 11 was proved by Rosenthal [30] and Burkholder
[8] for ¢’ = 2.

Of course, the duals of BM@y and BMO,, are not Hy* and H 5. re-
spectively, However, a kind of special subspaces of BMOy and BMO; can
be defined, having dvals H 1S *and H lS ?, respectively. From now on until the
end of the paper we suppose that every o-algebra F,, is generated by finitely
many (set) atoms. Denote by L the set of functions with mean zero which
are Fp,-measurable for any n € N. Let VMO, and VMO be the closures
of L in BMO, and in BMO, norm (1 < ¢’ < oo), respectively. It is simple
to verify that a function f & BM(’)q is in VMO, if and only if

llm “ -

> ldefl ) H = 0.
k=n+1 oo
The analogous result holds for VMO .
Now we can identify the duals of VMO and VMO,

THEOREM 18. If every o-algebra F, is generated by finitely many atoms
then the dual of VMOy is H® and the dual of VMO g 18 lf:!’:L , where
1<q<oocmd1/q+l/q—-1 :
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Proof We only prove the first statement, the second one can be proved
similarly. By Theorem 16 we know that

oo
)= Eldefdrg) (g&l)
k=1
is a bounded linear functional on VMO,
To verify the converse, we embed the normed vector space (L, ||-[lvato,, )
isometrically in a space whose dual can easily he found. Let Xy and Yn

{(n € N) denote the spaces of function sequences £ = (£, k > n + 1) for
which
/¢
lelx, =] (B 32 tenie) | <oo
k=n-t+1 o2
and
lelv, = (e 32 leale) ] <oo,
k=n-+1

respectively. Since every o-algebra is generated by finitely many atoms, using
the duality result concerning the Ly (I;) spaces we can easily show that the
dual of X, is ¥}, (n € N), more exactly, if £ = (¢p,k 2 n+ 1) € X, and

(fi, k= n+1) €Y, then
> e VL > I )

o0

| 5 s < (5
k=11-R1

on the other hand, if ¥ is a bounded linear functlonad on Xn then there

exists a unique sequence (fi, k = n+ 1) € Y, such that

Y Elafs) (€€ Xa)

EE
and
b /g
7 =] (B 3 1a0) "
F=n-1 '
Let X = X oy X with the norm

€]l = sup 16" %, (€= (" meN)e X).

Denote by Xy those elements £ € X for which £" = 0 except for Anitely
many n € N. It is eagy to see that if A is a bounded linear functional on X
then there exist f* = (fi,k 2 n+1) €Y, (n € N) such that

EM”>—Z Z (Er f)

rpe=(} n=0 k=n1

(£ € Xy)
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and
a /g
4l = H > 1 e
1
n= k=n-+
Now we embed (L, || - [[vameo,,) in Xo in the following way:
R:L— Xy, Rg:=({drgk2n+1);neN).

Tf1 is in the dual of VM@, then loR™! is a bounded linear functional on the
range of R, thus, by Banach-Hahn’s theorem, [o R~! can be extended onto
Xy preserving its norm. Consequently, there exist f™ = (fi, k= n+1) €Y,
(n € N} such that

20"

(31) = o R =3 ]|(En

== fe=n-1
and
oo ) co k—1
=Y Bldgf) =YY Eldwdefi) (g€L).
n=0k=n+1 . fe=l ne=0

The martingale Y 5o, ., di f7* is denoted by g™, Set f =30, g™, which
exists in the sense described in (Bl). Thus f is a martingale and d;f =

L di fP. Hence
- ‘
= E(dgdnf) (g€ L)
k=1

Moreover, g(™ € H;?, f € H;? and, by (31),

1120 <}:ug(“ e < B( Y Bualdespe)

n=0 k=1

=S sl 55 A

=0 k=n+1
o0 ca . 1/q
<Y B(E. Y laspe) " <o,
n=_( k=n41
which completes the proof of the theorem. w

Note that this result was known for ¢’ == 2 (for VAMO5 see Schipp [31],
for VMO, see Weisz [35]).
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Relatively perfect os-algebras for flows

by

. BLANCHARD (Marseille) and B. KAMI NEKI (Toruh)

Abstract. We show that for every ergodic flow, given any factor o-algebra JF, there
axists o o-algebra which s relatively perfect with respect to F. Using this resulf and
Ornstein’s isomorphism theorem for fows, we give a functorial definition of the entropy
of flows,

Introduction. Perfect o-algebras play an important role in ergodic the-
ory and. statistical mechanics, especially in the spectral theory of dynamical
systems with discrete time (measure preserving Z%-actions). The existence
of these g-algebrag in the case d > 2 has been proved by the use of their rel-
ative versions {for Z“ !-actions), the so-called relatively perfect o-algebras
([K1]). In [K2] the relatively perfect ¢-algebras have been used to give a
fanetorial definition of entropy of a Z%-action.

Blanchard in [B1] and Gurevig in [G2] have shown that for every ergodic
flow there exists a perfect o-algebra. The main purpose of the present paper
is to prove a relative version of this result (Theorem B). The motivations of
this theorem are, on the one hand, expected applications of relatively perfect
c-algebras to the investigation of the spectral structure of multidimensional
flows and, on the other hand, an application to an axiomatic, i.e. functorial
definition of entropy of cne-dimensional flows. Such definitions have been
given for Z%action hy Rokhlin {[Ro]) in the case d = 1 and by Kamifski in
[K2] for d > 2, but it was not known whether such a characterization exists
for flows. Section 1 contains definitions and auxiliary results needed in the
sequel. Tn Section 2 we prove a relative version of the Abramov formula for
the entropy of a special fow. Section 3 is devoted to relatively excellent
g-algebras. Resulis of these sections together with a relative version of the
Ambrose Kakutani- Rudolph theorem allow us to prove in Section 4 the
existence of relatively perfect o~algebras.
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Key words and phreses: entropy, flow, principal factor, relatively excellent o-algehra,
relutively perfect o-algebra.
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