F. Weisz

70

- M. Milman, On interpolation of martingale L^p spaces, Indiana Univ. Math. J. 30 (1981), 313-318.
- J. Neveu, Discrete-Parameter Martingales, North-Holland, 1971.
- G. Pisier and Q. Xu, The strong p-variation of martingales and orthogonal series, Probab. Theory Related Fields 77 (1988), 497-514.
- M. Pratelli, Sur certains espaces de martingales localement de carré intégrable, in: Séminaire de Probabilités X, Lecture Notes in Math. 511, Springer, Berlin, 1976,
- N. M. Rivière and Y. Sagher, Interpolation between L^{∞} and H^{1} , the real method, J. Funct. Anal. 14 (1973), 401-409.
- H. P. Rosenthal, On the subspaces of L^p (p>2) spanned by sequences of independent random variables, Israel J. Math. 8 (1970), 273-303.
- F. Schipp, The dual space of martingale VMO space, in: Proc. Third Pannonian Sympos. Math. Statist., Visegrad, 1982, 305-315.
- E. M. Stein, Topics in Harmonic Analysis, Princeton Univ. Press, 1970.
- J.-O. Strömberg, Bounded mean oscillation with Orlicz norms and duality of Hardy spaces, Indiana Univ. Math. J. 28 (1979), 511-544.
- F. Weisz, Interpolation between martingale Hardy and BMO spaces, the real method. Bull. Sci. Math. 116 (1992), 145-158.
- -, Martingale Hardy spaces for 0 , Probab. Theory Related Fields 84(1990), 361-376.
- -, Martingale Hardy Spaces and Their Applications in Fourier-Analysis, Lecture Notes in Math. 1568, Springer, Berlin, 1994.
- T. H. Wolff, A note on interpolation spaces, in: Lecture Notes in Math. 908, Springer, Berlin, 1982, 199-204.
- K. Yosida, Functional Analysis, Springer, Berlin, 1980.

DEPARTMENT OF NUMERICAL ANALYSIS

EÖTVÖS LORAND UNIVERSITY

MÚZEUM KRT. 6-8

H-1088 BUDAPEST, HUNGARY

E-mail: WEISZ@LUDENS.ELTE.HU

Received February 7, 1994 (3228)Revised version November 7, 1994

STUDIA MATHEMATICA 114 (1) (1995)

Relatively perfect σ -algebras for flows

F. BLANCHARD (Marseille) and B. KAMINSKI (Toruń)

Abstract. We show that for every ergodic flow, given any factor σ -algebra \mathcal{F} , there exists a σ -algebra which is relatively perfect with respect to \mathcal{F} . Using this result and Ornstein's isomorphism theorem for flows, we give a functorial definition of the entropy of flows.

Introduction. Perfect σ -algebras play an important role in ergodic theory and statistical mechanics, especially in the spectral theory of dynamical systems with discrete time (measure preserving \mathbb{Z}^d -actions). The existence of these σ -algebras in the case d > 2 has been proved by the use of their relative versions (for \mathbb{Z}^{d-1} -actions), the so-called relatively perfect σ -algebras ([K1]). In [K2] the relatively perfect σ -algebras have been used to give a functorial definition of entropy of a \mathbb{Z}^d -action.

Blanchard in [B1] and Gurevič in [G2] have shown that for every ergodic flow there exists a perfect σ -algebra. The main purpose of the present paper is to prove a relative version of this result (Theorem B). The motivations of this theorem are, on the one hand, expected applications of relatively perfect σ -algebras to the investigation of the spectral structure of multidimensional flows and, on the other hand, an application to an axiomatic, i.e. functorial definition of entropy of one-dimensional flows. Such definitions have been given for \mathbb{Z}^d -action by Rokhlin ([Ro]) in the case d=1 and by Kamiński in [K2] for $d \geq 2$, but it was not known whether such a characterization exists for flows. Section 1 contains definitions and auxiliary results needed in the sequel. In Section 2 we prove a relative version of the Abramov formula for the entropy of a special flow. Section 3 is devoted to relatively excellent σ -algebras. Results of these sections together with a relative version of the Ambrose Kakutani-Rudolph theorem allow us to prove in Section 4 the existence of relatively perfect σ -algebras.

¹⁹⁹¹ Mathematics Subject Classification: Primary 28D15.

Key words and phrases: entropy, flow, principal factor, relatively excellent σ -algebra, relatively perfect σ -algebra.

Research of the second author supported by KBN grant 211109101.

In Section 5 we first introduce a concept of a principal factor for a flow in terms of increasing σ -algebras. Next, using Theorem B we describe principal factors in terms of entropy. It follows from the Ornstein isomorphism theorem for Bernoulli flows and the result above that, as in the case of \mathbb{Z}^d -actions, the behaviour of the entropy of flows under factor and principal factor maps and direct products determines it uniquely up to normalization.

1. Preliminaries. Let (X, \mathcal{B}, μ) be a Lebesgue probability space and let \mathcal{N}_X be the trivial sub- σ -algebra of \mathcal{B} .

With every measurable partition P of X we associate the σ -algebra \widehat{P} of P-sets, i.e. \widehat{P} consists of all measurable sums of elements of P. It is well known that for every sub- σ -algebra $A \subset B$ there is a unique (mod μ) measurable partition \widehat{A} such that A is the σ -algebra of \widehat{A} -sets.

The symbol $\mathcal Z$ stands for the set of all countable measurable partitions with finite entropy.

Let $P = \{P_i\} \in \mathcal{Z}$ and let \mathcal{A} be a sub- σ -algebra of \mathcal{B} . The information of P given \mathcal{A} is

$$I(P \mid \mathcal{A}) = -\sum_{i} \chi_{P_i} \cdot \log \mu(P_i \mid \mathcal{A}).$$

For a given function $f \in L^1(X, \mu)$ we put

$$E(f) = \int_X f \, d\mu.$$

Let now τ be an automorphism of (X, \mathcal{B}, μ) . With every partition $P \in \mathcal{Z}$ we associate the two σ -algebras

$$P_{\tau}^{-} = \bigvee_{i=1}^{\infty} \tau^{-i} P, \qquad P_{\tau} = \bigvee_{i=-\infty}^{+\infty} \tau^{i} P.$$

Let $T = (T^t)$ be a measurable flow on (X, \mathcal{B}, μ) .

A sub- σ -algebra $\mathcal{A} \subset \mathcal{B}$ is said to be increasing if $T^t \mathcal{A} \supset \mathcal{A}$ for all t > 0. It is called a factor σ -algebra if $T^t \mathcal{A} = \mathcal{A}$ for all $t \in \mathbb{R}$.

We denote by $h(T^t)$ and $\pi(T^t)$ the entropy and the Pinsker σ -algebra of the automorphism T^t respectively, $t \in \mathbb{R}$. It is well known ([A2], [G1]) that

$$h(T^t) = |t| \cdot h(T^1), \quad \pi(T^t) = \pi(T^1), \quad t \in \mathbb{R}.$$

Recall that the entropy h(T) and the Pinsker σ -algebra $\pi(T)$ of the flow T are defined as follows:

$$h(T) = h(T^1), \quad \pi(T) = \pi(T^1).$$

Let now \mathcal{H} be a fixed factor sub- σ -algebra of T and let $T_{\mathcal{H}}$ be the factor flow induced by \mathcal{H} . We denote by $h(T^t \mid \mathcal{H})$ and $\pi(T^t \mid \mathcal{H})$ the relative entropy and the relative Pinsker σ -algebra of T^t with respect to \mathcal{H} respectively,

 $t \in \mathbb{R}$. Proceeding similarly to [A1] and [G1] one easily obtains

$$h(T^t \mid \mathcal{H}) = |t| \cdot h(T^1 \mid \mathcal{H}), \quad \pi(T^t \mid \mathcal{H}) = \pi(T^1 \mid \mathcal{H}), \quad t \in \mathbb{R}.$$

We define the relative entropy and the relative Pinsker σ -algebra of T with respect to $\mathcal H$ as

$$h(T \mid \mathcal{H}) = h(T^1 \mid \mathcal{H}), \quad \pi(T \mid \mathcal{H}) = \pi(T^1 \mid \mathcal{H})$$

respectively. Clearly

$$h(T) = h(T \mid \mathcal{N})$$
 and $\pi(T) = \pi(T \mid \mathcal{N}).$

We shall use in the sequel the following equalities:

(1)
$$h(T) = h(T_{\mathcal{H}}) + h(T \mid \mathcal{H}),$$

(2)
$$\pi(T \mid \pi(T)) = \pi(T).$$

They have been shown for Z-actions in [K2] and [K1] respectively.

Now we recall the concept of a special flow built under a function.

Let (Y, \mathcal{C}, ν) be a Lebesgue probability space, τ be an automorphism of Y and $f: Y \to \mathbb{R}^+$ a measurable function such that $\inf\{f(y): y \in Y\} > 0$ and $f \in L^1(Y, \nu)$. Let $Y_f = \{(y, u) \in Y \times \mathbb{R}^+ : u < f(y)\}$ and let \mathcal{C}_f be the restriction of the product σ -algebra $\mathcal{C} \otimes \mathcal{L}$ to Y_f , where \mathcal{L} denotes the σ -algebra of Lebesgue sets of \mathbb{R}^+ . We denote by ν_f the measure on \mathcal{C}_f defined by

$$\nu_f = (E(f))^{-1} \cdot (\nu \times \lambda),$$

where λ stands for Lebesgue measure. Let τ_f be the measurable flow on $(Y_f, \mathcal{C}_f, \nu_f)$ defined as follows. For $0 \leq t < \inf\{f(y), y \in Y\}$ we put

$$\tau_f^t(y,u) = \begin{cases} (y,u+t) & \text{if } u+t < f(y), \\ (\tau y, u+t-f(y)) & \text{if } u+t \ge f(y). \end{cases}$$

For other values of t the automorphism τ_f^t is uniquely determined by the condition that (τ_f^t) is a one-parameter group of automorphisms.

The flow τ_f is called the special flow built under the function f, the automorphism τ is the base automorphism and f is the ceiling function of τ_f .

Since Bernoulli flows will play an essential role in Section 5 we recall their definition and the Ornstein result which we will need.

A flow T is said to be a *Bernoulli flow* if for every $t \neq 0$ the automorphism T^t is a Bernoulli shift.

The existence of Bernoulli flows has been proved by Ornstein in [O1]. The following "Sinai type" theorem may be easily deduced from the corollary to the Main Lemma from [O2].

THEOREM A. For every ergodic flow T with h(T) > 0 and every $a \in (0, h(T)]$ there exists a Bernoulli flow S which is isomorphic to a factor of T, with h(S) = a.

2. Relative version of the Abramov formula for flows. Let (Y, \mathcal{C}, ν) be a Lebesgue probability space, τ an automorphism of Y and $\mathcal{F} \subset \mathcal{C}$ a factor σ -algebra of τ . Let $A \in \mathcal{C}$ be a set of positive measure such that $\bigcup_{n=0}^{\infty} \tau^n A = Y$. It is well known that if τ is ergodic then every set A of positive measure satisfies this condition. The automorphism of A induced by τ is denoted by τ_A .

Let \mathcal{F}^A be the sub- σ -algebra of A consisting of the sets of the form $F \cap A$ where $F \in \mathcal{F}$.

Remark 1. If $A \in \mathcal{F}$ then \mathcal{F}^A is a factor σ -algebra of τ_A . Indeed, the Poincaré recurrence theorem implies that $A = \bigcup_{m=1}^{\infty} A_m$, where A_m denotes the set of the mth return time. The desired property follows at once from the equality

$$\tau_A(F \cap A) = \bigcup_{m=1}^{\infty} \tau^m(F \cap A \cap \tau^{-1}A^c \cap \ldots \cap \tau^{-(m-1)}A^c) \cap A,$$

where $F \in \mathcal{F}$.

LEMMA 1. For every $A \in \mathcal{F}$ with $\nu(A) > 0$ we have

$$h(\tau_A \mid \mathcal{F}^A) = (\nu(A))^{-1} \cdot h(\tau \mid \mathcal{F}).$$

We omit the proof because it may be easily obtained from the proof in the absolute case (see [A1]).

Let now σ be an automorphism of (Y, \mathcal{C}, ν) and let $\mathcal{F} \subset \mathcal{C}$ be a factor σ -algebra of σ . Let \mathcal{L}^1 denote the σ -algebra of Lebesgue sets of the interval [0,1), λ the Lebesgue measure on [0,1) and $\varphi:Y\to [0,1)$ a \mathcal{C} -measurable function.

We consider the product measure space

$$(X, \mathcal{B}, \mu) = (Y, \mathcal{C}, \nu) \times ([0, 1), \mathcal{L}_{\perp}^{1}, \lambda)$$

and the automorphism $\tau = \tau_{\varphi}$ of (X, \mathcal{B}, μ) defined by

$$\tau(y, u) = (\sigma y, u + \varphi(y)),$$

where + means addition mod 1.

We put $\mathcal{H} = \mathcal{F} \otimes \mathcal{L}^1$. One easily checks the following

Remark 2. If φ is \mathcal{F} -measurable then \mathcal{H} is a factor σ -algebra of τ_{φ} .

Lemma 2. If φ is \mathcal{F} -measurable, then

$$h(\tau \mid \mathcal{H}) = h(\sigma \mid \mathcal{F}).$$

We omit the proof for the same reason as in the case of Lemma 1 (see the Lemma in [A2]).

Let now $(Y_f, \mathcal{C}_f, \nu_f, \tau_f)$ be the special flow over $(Y, \mathcal{C}, \nu, \tau)$ under a function $f: Y \to \mathbb{R}^+$.

For a σ -algebra $\mathcal{F} \subset \mathcal{C}$ we denote by \mathcal{F}_f the restriction of the product σ -algebra $\mathcal{F} \otimes \mathcal{L}$ to Y_f .

Remark 3 ([B2]). If \mathcal{F} is a factor σ -algebra for τ and f is \mathcal{F} -measurable then \mathcal{F}_f is a factor σ -algebra for τ_f .

LEMMA 3. If f is \mathcal{F} -measurable then

$$h(\tau_f^t \mid \mathcal{F}_f) = |t| \cdot (E(f))^{-1} \cdot h(\tau \mid \mathcal{F}), \quad t \in \mathbb{R}.$$

Proof. It is enough to show the equality for $0 < t < \inf\{f(y) : y \in Y\}$. We consider, as in the absolute case ([A2]), the product space $\widetilde{Y}_t = Y \times [0, t)$ equipped with the product σ -algebra $\widetilde{\mathcal{F}}_t = \mathcal{F} \otimes \mathcal{L}^t$, where \mathcal{L}^t denotes the σ -algebra of Lebesgue sets of [0, t), and the natural product measure.

Let $\tilde{\tau}^t$ be the automorphism of \tilde{Y}_t defined by

$$\tilde{\tau}^t(y, u) = (\tau y, u + \varphi_t(y)),$$

where + means addition mod t and

$$\varphi_t(y) = t - f(y) + \left[\frac{1}{t}f(y)\right].$$

As Abramov observed, $\tilde{\tau}^t$ is the automorphism induced by τ_f^t on \tilde{Y}_t . Therefore, by Remark 1, $\tilde{\tau}^t \tilde{\mathcal{F}}_t = \tilde{\mathcal{F}}_t$. It follows from Lemma 1 that

(3)
$$h(\widetilde{\tau}^t \mid \widetilde{\mathcal{F}}_t) = (\nu_f(Y_t))^{-1} \cdot h(\tau_f^t \mid \mathcal{F}_f) = t^{-1} \cdot E(f) \cdot h(\tau_f^t \mid \mathcal{F}_f).$$

Applying Lemma 2 we have

(4)
$$h(\widetilde{\tau}^t \mid \widetilde{\mathcal{F}}_t) = h(\tau \mid \mathcal{F}).$$

Combining (3) and (4) finishes the proof.

3. Relatively excellent σ -algebras. Let τ be an automorphism of a Lebesgue probability space (Y, \mathcal{C}, ν) and let \mathcal{F} be a factor σ -algebra of τ .

DEFINITION 1. A sub- σ -algebra $\mathcal{A} \subset \mathcal{C}$ is said to be relatively excellent for τ with respect to \mathcal{F} if

$$\mathcal{F} \subset \mathcal{A}, \quad \tau \mathcal{A} \supset \mathcal{A},$$

$$(6) \qquad \bigvee_{n=-\infty}^{+\infty} \tau^n \mathcal{A} = \mathcal{C},$$

(7) there exists a sequence $(P_n) \subset \mathcal{Z}$ with $\widehat{P_n} \nearrow \mathcal{A}$ such that $\lim_{n \to \infty} (h(P_n, \tau \mid \mathcal{F}) - H(P_n \mid \mathcal{A}^-)) = 0.$

The proof of Theorem 1 of [K2] yields

Lemma 4. For every factor σ -algebra \mathcal{F} of τ there exists a relatively excellent σ -algebra \mathcal{A} with respect to \mathcal{F} . Every such σ -algebra is relatively

Relatively perfect σ -algebras for flows

perfect with respect to F, i.e. it also satisfies the following two equalities:

(8)
$$\bigcap_{n=-\infty}^{+\infty} \tau^n \mathcal{A} = \pi(\tau \mid \mathcal{F}),$$

(9)
$$h(\tau \mid \mathcal{F}) = H(\tau \mathcal{A} \mid \mathcal{A})$$

If $\mathcal{F} = \mathcal{N}$, then \mathcal{A} is simply an excellent σ -algebra as defined in [B1]. In the sequel we shall use the relative Pinsker formula ([K2]):

(10) for
$$P, Q \in \mathcal{Z}$$
, $h(P \vee Q, \tau \mid \mathcal{F}) = h(P, \tau \mid \mathcal{F}) + h(Q, \tau \mid P_{\tau} \vee \mathcal{F})$.

Lemma 5. If $A \subset C$ is relatively excellent with respect to \mathcal{F} and $Q \in \mathcal{Z}$ then the σ -algebra $A \vee \tau Q^-$ is also relatively excellent with respect to \mathcal{F} .

Proof. It is clear that the σ -algebra $\mathcal{A} \vee \tau Q^-$ satisfies (5) and (6). Let a sequence $(P_n) \subset \mathcal{Z}$ satisfy (7) and let $Q_n = \bigvee_{i=0}^n \tau^{-i}Q$, $n \geq 0$. We claim that the sequence $(P_n \vee Q_n)$ also satisfies (7) (for the σ -algebra $\mathcal{A} \vee \tau Q^-$).

In the sequel we shall use some ideas from the proof of Proposition 1.3 of [B1].

For any natural numbers n, m, formula (10) gives

(11)
$$h(P_n \vee Q_m, \tau \mid \mathcal{F}) = h(P_n, \tau \mid \mathcal{F}) + h(Q_m, \tau \mid (P_n)_\tau \vee \mathcal{F})$$
$$= h(P_n, \tau \mid \mathcal{F}) + h(Q, \tau \mid (P_n)_\tau \vee \mathcal{F}).$$

Assume n < N. Since $H(P_N \mid P_n) < \infty$ there exists a partition P_N^n with finite entropy such that $P_n \vee P_N^n = P_N$. Simple properties of the conditional entropy give

$$(12) H(P_N \mid P_N^- \vee \mathcal{F}) = H(P_n \mid P_N^- \vee \mathcal{F}) + H(P_N^n \mid P_N^- \vee P_n \vee \mathcal{F}).$$

It follows from (11) with n = N, m = n and from (12) that

$$\begin{split} H(P_n \vee Q_n \mid P_N^- \vee Q^- \vee \mathcal{F}) \\ &= H(P_n \vee Q_n \mid P_N^- \vee Q_n^- \vee \mathcal{F}) \\ &= H(P_N \vee Q_n \mid P_N^- \vee Q_n^- \vee \mathcal{F}) - H(P_N^n \mid P_n \vee P_N^- \vee Q_n \vee Q_n^- \vee \mathcal{F}) \\ &= H(P_n \mid P_N^- \vee \mathcal{F}) + H(P_N^n \mid P_N^- \vee P_n \vee \mathcal{F}) \\ &+ H(Q \mid Q^- \vee (P_N)_\tau \vee \mathcal{F}) - H(P_N^n \mid P_n \vee P_N^- \vee Q_n \vee Q_n^- \vee \mathcal{F}) \\ &\geq H(P_n \mid P_N^- \vee \mathcal{F}) + H(Q \mid Q^- \vee (P_N)_\tau \vee \mathcal{F}). \end{split}$$

Hence, in view of (11) for m = n, we get

$$\begin{split} 0 &\leq H(P_n \vee Q_n \mid P_n^- \vee Q_n^- \vee \mathcal{F}) - H(P_n \vee Q_n \mid P_N^- \vee Q^- \vee \mathcal{F}) \\ &\leq H(P_n \mid P_n^- \vee \mathcal{F}) - H(P_n \mid P_N^- \vee \mathcal{F}) \\ &\quad + H(Q \mid Q^- \vee (P_n)_\tau \vee \mathcal{F}) - H(Q \mid Q^- \vee (P_N)_\tau \vee \mathcal{F}), \quad n < N. \end{split}$$

Since \mathcal{A} is generating and (P_n) satisfies (7), it follows that taking the limit, first as $N \to \infty$, and then as $n \to \infty$, we obtain the desired result.

COROLLARY. If $f: Y \to \mathbb{R}$ is measurable with an a.e. finite set of values then for every factor σ -algebra \mathcal{F} there exists a σ -algebra \mathcal{A} relatively excellent with respect to \mathcal{F} such that f is \mathcal{A} -measurable.

Proof. Let \mathcal{D} be an arbitrary relatively excellent σ -algebra with respect to \mathcal{F} . Lemma 4 assures that such a σ -algebra exists. Consider the partition $Q = \{Q_1, \ldots, Q_m\}$ of Y into sets where f is constant. It follows from Lemma 5 that the σ -algebra $\mathcal{A} = \mathcal{D} \vee \tau Q^-$ is also relatively excellent with respect to \mathcal{F} . It is clear that f is \mathcal{A} -measurable.

Now suppose g is an integrable function on Y with values in \mathbb{N} . Let $(Y^g, \mathcal{C}^g, \nu^g, \tau^g)$ be the integral dynamical system over $(Y, \mathcal{C}, \nu, \tau)$ under the function g (cf. [CFS]). We denote by Q^g the partition of Y generated by g, i.e.

$$Q^g = \{g^{-1}(\{k\}) : k \in \mathbb{N}\}.$$

It follows from Lemma 1.1 of [B1] that $Q^g \in \mathcal{Z}$.

For a given sub- σ -algebra $\mathcal{F} \subset \mathcal{C}$ we denote by \mathcal{F}^g the sub- σ -algebra of \mathcal{C}^g defined in the same way as \mathcal{C}^g , i.e.

$$A \in \mathcal{F}^g, \quad A = \bigcup_{i=1}^{\infty} A_i \times \{i\} \quad \text{iff} \quad A_i \in \mathcal{F}, \ i \in \mathbb{N}.$$

One easily checks the following

Remark 4. If the function g is \mathcal{F} -measurable and \mathcal{F} is a factor σ -algebra of τ then \mathcal{F}^g is a factor σ -algebra of τ^g .

Let $P = (P_k)$ be a countable measurable partition of Y. We associate with it the partition \overline{P} of Y^g as follows. The atoms of \overline{P} are all the sets $P_k \times \{1\}$, $k \in \mathbb{N}$, and the set $Y^g \setminus (Y \times \{1\})$.

Lemma 6. If $\mathcal F$ is a factor σ -algebra of τ such that g is $\mathcal F$ -measurable then for every $P \in \mathcal Z$ we have

$$h(\overline{P \vee \tau Q^g}, \tau^g \mid \mathcal{F}^g) = (E(g))^{-1} \cdot h(P \vee \tau Q^g, \tau \mid \mathcal{F}).$$

Proof. Let $Y_0 = Y \times \{1\}$, $R = \overline{P \vee \tau Q^g}$ and $T = \tau^g$. It follows easily from the definition of T that

$$(13) Y_0 \in R_T^-$$

and

$$(14) (R_T^- \vee \mathcal{F}^g) \cap Y_0 = [(P \vee \tau Q^g)_T^- \vee \mathcal{F}] \times \{1\}.$$

Hence

(15)
$$\nu^g(Y_0 \mid R_T \vee \mathcal{F}^g) = \chi_{Y_0}$$

and

(16)
$$\nu^g(A \times \{1\} \mid R_T^- \vee \mathcal{F}^g)(y, 1) = \nu(A \mid (P \vee \tau Q^g)_\tau^- \vee \mathcal{F})(y),$$
$$A \in \mathcal{C}, \ y \in Y.$$

From (16) it follows that

(17)
$$\int_{Y_0} I(R \mid R_T^- \vee \mathcal{F}^g) \, d\nu^g$$

$$= -\int_{Y_0} \sum_{A \in P \vee \tau_{Q^g}} \chi_{A \times \{1\}}(y, 1) \cdot \log \nu^g (A \times \{1\} \mid R_T^- \vee \mathcal{F}^g)(y, 1) \, d\nu^g$$

$$= (E(g))^{-1} \cdot \int_{Y} I(P \vee \tau_{Q^g} \mid (P \vee \tau_{Q^g})_{\tau}^- \vee \mathcal{F})(y) \, d\nu$$

$$= (E(g))^{-1} \cdot h(P \vee \tau_{Q^g}, \tau \mid \mathcal{F}).$$

The equality (15) implies

(18)
$$\int_{Y_0^c} I(R \mid R_T^- \vee \mathcal{F}^g) \, d\nu^g$$

$$= -\int_{Y_0^c} \chi_{Y_0^c}(y, i) \cdot \log \nu^g (Y_0^c \mid R_T^- \vee \mathcal{F}^g)(y, i) \, d\nu^g = 0.$$

Comparing (17) and (18) one gets

$$h(R,T\mid \mathcal{F}^g) = \int_{Y^g} I(R\mid R_T^- \vee \mathcal{F}^g) \, d\nu^g = (E(g))^{-1} \cdot h(P \vee \tau Q^g, \tau \mid \mathcal{F}),$$

which completes the proof.

Now suppose $f: Y \to \mathbb{R}^+$ is an integrable function such that

$$\inf\{f(y): y \in Y\} = \alpha > 0.$$

Let τ_f be the special flow on the space $(Y_f, \mathcal{C}_f, \nu_f)$, built under f and over τ . For a given sub- σ -algebra $\mathcal{A} \subset \mathcal{C}$ we denote by \mathcal{A}_f the sub- σ -algebra of \mathcal{C}_f defined by

$$\mathcal{A}_f = \{ A \cap Y_f : A \in \mathcal{A} \otimes \mathcal{L} \}.$$

Remark 5 ([B2]). If $A \subset C$ is an increasing sub- σ -algebra for τ and f is A-measurable then A_f is increasing for the flow τ_f .

Let $Y_1 = Y \times [0,1)$. With any measurable partition P of Y we associate the partition $P^1 = P \times [0,1)$ of Y_1 . For a sub- σ -algebra $\mathcal{A} \subset \mathcal{C}$ put $\mathcal{A}^1 = \mathcal{A} \otimes \mathcal{L}^1$.

Let
$$R_k = \{R_{k,i} : 0 \le i < 2^{k-1}\}$$
 be the partition of Y_1 defined by
$$R_{k,i} = \{(y,u) \in Y_1; i \cdot 2^{-k} \le u < (i+1) \cdot 2^{-k}\}, \quad 0 \le i < 2^k - 1, \ k \ge 1.$$

It is clear that the smallest σ -algebra \mathcal{R} containing all R_k , $k \geq 1$, coincides with the σ -algebra $\mathcal{N}_Y \otimes \mathcal{L}^1$.

Let τ_1 be the automorphism of Y_1 induced by $T^1 = \tau_f^1$. It follows from Abramov's remark (see the proof of Lemma 3) that

$$\tau_1(y, u) = (\tau u, u + \varphi(y)).$$

where $\varphi(y) = 1 - \{f(y)\}$. The σ -algebra $\mathcal{C} \otimes \mathcal{N}_{[0,1)}$ is a principal factor σ -algebra of τ_1 and the corresponding factor automorphism is isomorphic to τ .

Since τ_1 is induced by T^1 on the set Y_1 , T^1 is an integral automorphism over τ_1 . Let g be the corresponding ceiling function on Y_1 , i.e. the Poincaré cocycle for τ_1 . If the flow τ_f is ergodic then the well-known Katz theorem implies $\int_{Y_1} g \, d\nu_f = 1$, i.e.

$$E(g) = \int_{Y_1} g(y, u) d\nu du = E(f).$$

For a given measurable partition Q of Y_1 we denote by \overline{Q} the partition of Y^f which consists of all atoms of Q and the set Y_1^c . If \mathcal{D} is a sub- σ -algebra of Y_1 , $\overline{\mathcal{D}}$ stands for the σ -algebra $\overline{\mathcal{D}} = \{A \cup Y_1^c : A \in \mathcal{D}\}$.

Let \mathcal{F} be a factor σ -algebra of τ .

LEMMA 7. If $A \subset C$ is a relatively excellent for τ with respect to F and f is A-measurable then A_f is

- (19) increasing for the flow τ_f ,
- (20) relatively excellent for τ_f^{α} with respect to \mathcal{F}_f .

Proof. Since $A \supset \mathcal{F}$ and A is generating, A_f is of course generating and $A_f \supset \mathcal{F}_f$.

We may assume $\alpha = 1$. Put $T^1 = \tau_f^1$ as above. It is easy to check that $T^1 \mathcal{A}_f = \overline{(\tau \mathcal{A})^1} \vee \overline{\mathcal{R}}$. Since, by Remark 5, \mathcal{A}_f is increasing with respect to T^1 the above equality implies

(21)
$$\mathcal{A}_f = (\overline{(\tau \mathcal{A})^1} \vee \overline{\mathcal{R}})_{T^1}^{-}.$$

Let (P_n) be a sequence of partitions of Y with finite entropy such that $\widehat{P}_n \nearrow \mathcal{A}$ and

$$\lim_{n \to \infty} (h(P_n, \tau \mid \mathcal{F}) - H(P_n \mid \mathcal{A}^- \vee \mathcal{F})) = 0.$$

Let $Q_{n,k} = (\tau P_n)^1 \vee R_k$, $n, k \geq 1$. We shall show that there exists an increasing sequence (n_k) of natural numbers such that

$$h(\overline{Q}_{n_k,k}, T^1 \mid \mathcal{F}_f) - H(\overline{Q}_{n_k,k} \mid \mathcal{A}_f \vee \mathcal{F}_f) \to 0$$

as $k \to \infty$. Since $\overline{Q}_{n_k,k} \nearrow \overline{(\tau A)^1 \vee \mathcal{R}}$ the equality (21) implies that A_f is relatively excellent for T^1 with respect to \mathcal{F}_f . One easily checks the following

equalities:

$$\nu_f(\tau A \times [0,1) \mid \mathcal{A}_f \vee \mathcal{F}_f)(y,u) = \nu(\tau A \mid \mathcal{A} \vee \mathcal{F})(y)$$

and

$$\nu_f(Y_1 \mid A_f \vee \mathcal{F}_f) = \chi_{Y_1}, \quad (y, u) \in Y_1, \ A \in P_n, \ n \ge 1.$$

From these equalities a straightforward computation yields

(22)
$$H((\tau P_n)^1 \mid \mathcal{A}_f \vee \mathcal{F}_f) = (E(f))^{-1} \cdot H(\tau P_n \mid \mathcal{A} \vee \mathcal{F}).$$

For every set $A \in \mathcal{C}$ we have

$$\tau_1^{-1}(A \times [0,1)) = \tau^{-1}(A) \times [0,1),$$

$$(\nu \times \lambda)(A \times [0,1) \mid \mathcal{D} \otimes \mathcal{L}^1) = \nu(A \mid \mathcal{D}),$$

where \mathcal{D} is an arbitrary sub- σ -algebra of \mathcal{C} . Therefore we get

(23)
$$h((\tau P_n)^1, \tau_1 \mid \mathcal{F} \otimes \mathcal{L}^1) = h(P_n, \tau \mid \mathcal{F})$$

and

$$(24) H((\tau P_n)^1 \mid [(\tau A)^1]_{\tau_1}^- \vee \mathcal{F} \otimes \mathcal{L}^1) = H(P_n \mid A_{\tau}^- \vee \mathcal{F}).$$

We have

$$h(\overline{Q}_{n,k}, T^1 \mid \mathcal{F}_f) - H(\overline{Q}_{n,k} \mid \mathcal{A}_f \vee \mathcal{F}_f) = a_{n,k} + b_{n,k} + c_{n,k},$$

where

$$a_{n,k} = h(\overline{Q}_{n,k}, T^1 \mid \mathcal{F}_f) - (E(g))^{-1} \cdot h(Q_{n,k} \vee \tau_1 Q^g, \tau_1 \mid \mathcal{F} \otimes \mathcal{L}^1),$$

$$b_{n,k} = (E(g))^{-1} \cdot h(Q_{n,k} \vee \tau_1 Q^g, \tau_1 \mid \mathcal{F} \otimes \mathcal{L}^1)$$

$$- (E(f))^{-1} \cdot h((\tau P_n)^1, \tau_1 \mid \mathcal{F} \otimes \mathcal{L}^1),$$

$$c_{n,k} = (E(f))^{-1} \cdot h((\tau P_n)^1, \tau_1 \mid \mathcal{F} \otimes \mathcal{L}^1) - H(\overline{Q}_{n,k} \mid \mathcal{A}_f \vee \mathcal{F}_f),$$

for $n, k \ge 1$. By Lemma 6 we have

$$a_{n,k} = h(\overline{Q}_{n,k}, T^1 \mid \mathcal{F}_f) - h(\overline{Q}_{n,k} \vee \tau_{\mathfrak{l}} \overline{Q}^g, T^1 \mid \mathcal{F}_f) \leq 0.$$

It follows from the relative Pinsker formula (10) and the equality Ef = Eg that

$$b_{n,k} = (E(f))^{-1} \cdot h(R_k \vee \tau_1 Q^g, \tau_1 \mid (\tau P_n)_{\tau_1}^1).$$

Since $\overline{R}_k \subset \mathcal{A}_f$ we have, by (22)–(24),

$$c_{n,k} = (E(f))^{-1} \cdot h(P_n, \tau \mid \mathcal{F}) - H(\overline{(\tau P_n)^1} \mid \mathcal{A}_f \vee \mathcal{F}_f)$$

$$= (E(f))^{-1} \cdot (h(P_n, \tau \mid \mathcal{F}) - H(\tau P_n \mid \mathcal{A} \vee \mathcal{F}))$$

$$= (E(f))^{-1} \cdot (h(P_n, \tau \mid \mathcal{F}) - H(P_n \mid \mathcal{A}^- \vee \mathcal{F})), \quad n, k \ge 1.$$

Since $\widehat{P}_n \nearrow \mathcal{A}$ and \mathcal{A} is generating we have $[(\tau P_n)^1]_{\tau_1} = [(P_n)_{\tau}]^1 \nearrow \mathcal{C} \otimes \mathcal{L}^1$. But \mathcal{C}^1 is a principal factor σ -algebra for τ_1 so $\lim_{n\to\infty} b_{n,k} = 0$ for every $k \ge 1$. Therefore there exists an increasing sequence (n_k) of natural numbers such that $\lim_{k\to\infty} b_{n_k,k} = 0$. Thus

$$\lim_{k\to\infty} (h(\overline{Q}_{n_k,k},T^1\mid \mathcal{F}_f) - H(\overline{Q}_{n_k,k}\mid \mathcal{A}_f\vee \mathcal{F}_f)) = 0,$$

i.e. A_f is relatively excellent for T^1 with respect to \mathcal{F}_f , which completes the proof.

4. Relatively perfect σ -algebras. Our proof of Theorem B below requires a relative version of the well-known Ambrose–Kakutani–Rudolph (AKR) theorem ([AK], [Ru]).

ILEMMA 8. For every ergodic flow T on a Lebesgue probability space (X, \mathcal{B}, μ) , given a nonatomic factor σ -algebra \mathcal{H} of T and two positive real numbers p and q with p/q irrational, there exists a special flow $(Y_f, \mathcal{C}_f, \nu_f, \tau_f)$, where f is a measurable function with values p and q, a factor σ -algebra \mathcal{F} for τ such that f is \mathcal{F} -measurable and an isomorphism $\varphi: X \to Y_f$ of the flows T and τ_f such that $\varphi(\mathcal{H}) = \mathcal{F}_f$.

Proof. Let ξ be a measurable partition of X associated with \mathcal{H} , i.e. $\xi = \widehat{\mathcal{H}}$. It is clear that $T^t \xi = \xi$, $t \in \mathbb{R}$. We consider the quotient Lebesgue space $(X/\xi, \mathcal{B}_{\xi}, \mu_{\xi})$ equipped with the quotient flow T_{ξ} . We denote by $H_{\xi}: X \to X/\xi$ the natural homomorphism. It follows from the proof of the AKR theorem (cf. [CFS]) that there exists a measurable partition ζ_{ξ} of X/ξ which is regular for T_{ξ} , i.e.

- (25) ζ_{ξ} is a measurable partition of X/ξ into intervals of trajectories with lengths p and q, i.e. sets of the form $\{T_{\xi}^t C: 0 \leq t \leq \widetilde{f}(C)\}$, where $\widetilde{f}(C) = p$ or $\widetilde{f}(C) = q$,
- (26) the functions F, G defined by $F(D) = \tilde{f}(C), G(D) = t$, where $D = T_{\xi}^{t}(C)$, are \mathcal{B}_{ξ} -measurable.

Now we define a measurable partition ζ of X which is regular for T. Let E be an element of ζ_{ξ} and let $C_{\rm b}(E) \in X/\xi$, $C_{\rm b}(E) \subset E$ denoting the beginning of the trajectory of T_{ξ} included in E. We denote by ζ the partition of X consisting of the following intervals of trajectories of T:

$${T^t x : x \in H_{\xi}^{-1}C_{\rm b}(E)},$$

where $E \in \zeta_{\mathcal{E}}$.

It is easy to check that ζ is regular for T with the same lengths p and q of trajectories.

Now we construct the desired probability space (Y, \mathcal{C}, ν) and the automorphism τ of Y in the same way as in the proof of the AKR theorem. Recall that Y is the set of left ends of elements of ζ , i.e. the points belonging to $H_{\varepsilon}^{-1}C_{\mathbf{b}}(E)$, $E \in \zeta_{\varepsilon}$.

Let η be the measurable partition of Y whose elements are the sets $H_{\xi}^{-1}C_{\mathrm{b}}(E),\; E\in\zeta_{\xi},\; \mathrm{and\; let}\; \mathcal{F}\; \mathrm{be\; the\; } \sigma\text{-algebra of}\; \eta\text{-sets.}$

It is clear that $\mathcal F$ is a factor σ -algebra of τ . For every $y\in Y,\,y\in H^{-1}_\xi(C),$ $C = C_{\rm b}(E), E \in \zeta_{\xi}$, the length f(y) of the trajectory of y is equal to $\widetilde{f}(C)$. Hence f is \mathcal{F} -measurable.

Denoting by φ the isomorphism between X and Y defined in [CFS] we obtain the equality $\varphi(\mathcal{H}) = \mathcal{F}_f$.

Let T be a measurable flow on a Lebesgue space (X,\mathcal{B},μ) and let \mathcal{H} be a factor σ -algebra of T.

Definition 2. A sub- σ -algebra $\mathcal{A} \subset \mathcal{B}$ is said to be relatively perfect with respect to H if

- (i) $A \supset \mathcal{H}$, $T^t \mathcal{H} \supset \mathcal{H}$, t > 0,
- (ii) $\bigvee_{t \in R} T^t \mathcal{A} = \mathcal{B}$,
- (iii) $\bigcap_{t \in R} T^t \mathcal{A} = \pi(T \mid \mathcal{H}),$ (iv) $h(T^t \mid \mathcal{H}) = H(T^t \mathcal{A} \mid \mathcal{A}), \ t > 0.$

In the case $\mathcal{H} = \mathcal{N}$ the concept of a relatively perfect σ -algebra reduces to the concept of a perfect σ -algebra ([B1], [G2]).

THEOREM B. For every ergodic flow T and a Lebesgue space (X,\mathcal{B},μ) and every factor σ -algebra ${\mathcal H}$ of T there exists a relatively perfect σ -algebra with respect to \mathcal{H} .

Proof. We may assume that ${\cal H}$ is nonatomic. Indeed, in the opposite case, due to the ergodicity of T, \mathcal{H} is finite, therefore $\mathcal{H} \subset \pi(T)$. Then it is easy to show, using formulas (1) and (2), that any perfect σ -algebra $\mathcal A$ for T (such σ -algebras exist by [B1], [G2]) is also relatively perfect with respect to H.

Suppose now that \mathcal{H} is nonatomic. Due to Lemma 8 we may assume that $X = Y_f, \mathcal{B} = \mathcal{C}_f, \mu = \nu_f, T^t = \tau_f^t \text{ and } \mathcal{H} = \mathcal{F}_f, \text{ where } \mathcal{F} \text{ is a factor } \sigma\text{-algebra}$ of the automorphism τ of (Y, \mathcal{C}, ν) and f is a \mathcal{F} -measurable function with two values. We put

$$\alpha = \min\{f(y) : y \in Y\}.$$

In view of the corollary to Lemma 5 there exists a relatively excellent σ -algebra $\mathcal{D} \subset \mathcal{C}$ for τ with respect to \mathcal{F} such that f is \mathcal{D} -measurable.

We put $\mathcal{A} = \mathcal{D}_f$. The \mathcal{D} -measurability and the conditions (5) and (6) of relatively excellent σ -algebras imply that

$$\mathcal{A}\supset\mathcal{H},\quad T^t\mathcal{A}\supset\mathcal{A},\quad t>0,\quad\bigvee_{t\in\mathbb{R}}T^t\mathcal{A}=\mathcal{B}.$$

Applying Lemma 3.1 of [G1] and the equality (9) we get

$$H(T^{t}\mathcal{A} \mid \mathcal{A}) = t \cdot (E(f))^{-1} \cdot H(\tau \mathcal{D} \mid \mathcal{D}) = t \cdot (E(f))^{-1} \cdot h(\tau \mid \mathcal{F}), \quad t > 0.$$

On the other hand, Lemma 3 gives

$$h(T^t \mid \mathcal{H}) = h(\tau_f^t \mid \mathcal{F}_f) = t \cdot (E(f))^{-1} \cdot h(\tau \mid \mathcal{F}), \quad t > 0.$$

Therefore we have

$$h(T^t \mid \mathcal{H}) = H(T^t \mathcal{A} \mid \mathcal{A}), \quad t > 0.$$

It follows from Lemma 7 that A is relatively excellent for $T^{\alpha} = \tau_f^{\alpha}$ with respect to \mathcal{H} . Applying the equality (8) to T^{α} we get

$$\bigcap_{t \in \mathbb{R}} T^t \mathcal{A} = \bigcap_{n = -\infty}^{+\infty} T^{n\alpha} \mathcal{A} = \pi(T^{\alpha} \mid \mathcal{H}) = \pi(T \mid \mathcal{H}),$$

which completes the proof.

5. Principal factors and an axiomatic definition of entropy. Let $T = (T^t)$ be a measurable flow on a Lebesgue space (X, \mathcal{B}, μ) .

DEFINITION 3. A factor σ -algebra \mathcal{H} of T is said to be principal if every increasing σ -algebra $\mathcal{A} \supset \mathcal{H}$ is a factor σ -algebra.

Definition 4. A factor flow $S = (S^t)$ of T is said to be principal if every factor σ -algebra \mathcal{H} of T such that the flows $T_{\mathcal{H}}$ and S are isomorphic is principal.

LEMMA 9. If a flow S is a principal factor of T then h(T) = h(S). Conversely, if $h(T) < \infty$ then the reverse implication is also true.

Proof. Let \mathcal{H} be a principal σ -algebra such that S and $T_{\mathcal{H}}$ are isomorphic. It follows from Theorem B that there exists an increasing σ -algebra $\mathcal{A} \supset \mathcal{H}$ with

$$h(T^t \mid \mathcal{H}) = H(T^t \mathcal{A} \mid \mathcal{A}), \quad t > 0.$$

It follows from the assumption that $h(T^t \mid \mathcal{H}) = 0$, t > 0. Therefore the formula (1) implies

$$h(T) = h(T_{\mathcal{H}}) = h(S).$$

Now suppose $h(T) < \infty$ and h(T) = h(S). Let \mathcal{H} be a factor σ -algebra such that S and $T_{\mathcal{H}}$ are isomorphic. Therefore we have $h(T) = h(T_{\mathcal{H}})$, i.e. $h(T \mid \mathcal{H}) = 0$. Let $\mathcal{A} \supset \mathcal{H}$ be increasing. Since

$$H(T^t \mathcal{A} \mid \mathcal{A}) = H(\mathcal{A} \mid T^{-t} \mathcal{A}) \le h(T^t \mid \mathcal{H})$$

we have $H(T^t A \mid A) = 0$, t > 0, and so A is a factor σ -algebra.

Let now τ be an automorphism of a Lebesgue space (Y, \mathcal{C}, ν) and f: $Y \to \mathbb{R}^+$ a measurable function with $\inf\{f(y): y \in Y\} > 0$. From Lemma 9 and Abramov's formula ([A]) for the entropy of a special flow one obtains at once the following

85

F. Blanchard and B. Kamiński

COROLLARY. If an automorphism σ of (Y, \mathcal{C}, ν) is a principal factor of τ then the special flow σ_f is a principal factor of τ_f .

Let $Act \mathbb{R}$ denote the set of all ergodic flows on Lebesgue probability spaces. We denote by $T_{\mathcal{O}}$ the flow defined as follows (cf. [O1]). Let τ be a Bernoulli 2-shift which acts on a Lebesgue space (Y, \mathcal{C}, ν) . Let $P = \{A, B\}$ be an independent generating partition of Y for τ and let

$$f = p\chi_A + q\chi_B$$

where p and q are positive reals such that p+q=2 and pq^{-1} is irrational. We define $T_{\mathcal{O}} = (T_{\mathcal{O}}^t)$ as the flow built under f with base automorphism au. It follows from [O1] that $T_{\mathcal{O}}$ is a Bernoulli flow. The Abramov formula implies

$$h(T_{\mathcal{O}}) = (E(f))^{-1} \cdot h(\tau) = \log 2.$$

Applying the Ornstein isomorphism theorem for Bernoulli flows ([O2]) and Lemma 9 one may prove, using Rokhlin's idea (cf. [Ro]), the following

PROPOSITION. Let $H: \operatorname{Act} \mathbb{R} \to [0, +\infty]$ be a function such that $H(T_{\mathcal{O}})$ $= \log 2$ and for all $T, S \in \operatorname{Act} \mathbb{R}$ the following conditions are satisfied:

- (i) if S is a factor of T then $H(T) \geq H(S)$,
- (ii) if S is a principal factor of T then H(T) = H(S),
- (iii) $H(T \times S) = H(T) + H(S)$.

84

Then H(T) = h(T) for all $T \in Act \mathbb{R}$.

References

- [A1] L. M. Abramov, The entropy of a derived automorphism, Dokl. Akad. Nauk SSSR 128 (1959), 647-650 (in Russian).
- -, On the entropy of a flow, ibid., 873-875 (in Russian).
- [AK] W. Ambrose and S. Kakutani, Structure and continuity of measurable flows, Duke Math, J. 9 (1942), 25-42.
- [B1] F. Blanchard, Partitions extrémales des flots d'entropie infinie, Z. Wahrsch. Verw. Gebiete 36 (1976), 129-136.
- -, K-flots et théorème de renouvellement, ibid., 345-358.
- [CFS] I. P. Cornfeld, S. V. Fomin and Y. G. Sinai, Ergodic Theory, Springer, 1982.
- B. M. Gurevič, Some existence conditions for K-decompositions for special flows, Trans. Moscow Math. Soc. 17 (1967), 99-126.
- Perfect partitions for ergodic flows, Functional Anal. Appl. 11 (1977), 20-23.
- [K1] B. Kamiński, The theory of invariant partitions for \mathbb{Z}^d -actions, Bull. Acad. Polon. Sci. Sér. Sci. Math. 29 (1981), 349-362.
- [K2] -, An aziomatic definition of the entropy of a Zd-action on a Lebesgue space. Studia Math. 46 (1990), 135-144.
- [O1] D. S. Ornstein, Imbedding Bernoulli shifts in flows, in: Contributions to Ergodic Theory and Probability (Columbus, 1970), Lecture Notes in Math. 160, Springer, 1970, 178-218.

[O2] D. S. Ornstein, The isomorphism theorem for Bernoulli flows, Adv. in Math. 10 (1973), 124-142.

Relatively perfect \u03c3-algebras for flows

[Ro] V. A. Rokhlin, An axiomatic definition of the entropy of a transformation with invariant measure, Dokl. Akad. Nauk SSSR 148 (1963), 779-781 (in Russian).

[Ru] D. Rudolph, A two-step coding for ergodic flows, Math. Z. 150 (1976), 201-220.

CENTRE NATIONAL WYDZIAŁ MATEMATYKI I INFORMATYKI DE LA RECHERCHE SCIENTIFIQUE UNIWERSYTET MIKOŁAJA KOPERNIKA LABORATORE DE MATHÉMATIQUES DISCRÈTES UL. CHOPINA 12/18 UPR, 9016-163 87-100 TORUŃ, POLAND AVENUE DE LUMINY-CASE 930 E-mail: BKAM@MAT.UNI.TORUN.PL 13288 MARSEILLE CEDEX 9, FRANCE E-mail: BLANCHAR@LMD.UNIV-MRS.FR

> Received March 10, 1994 (3245)Revised version December 30, 1994