70 I Weisz

[25] M. Milman, On interpolation of martingale L spaces, Indiana Univ, Math. J. 30
(1981), 313-318.

[26] J. Nevew, Discrate-Parameter Mertingales, North-Holland, 1971.

271 G. Pisier and Q. Xu, The strong p-variation of martingales and orthogonal series,
Probab. Theory Related Fields 77 (1988), 497-514.

[28] M. Pratelli, Sur certuins espaces de marlingales locelement de carré intégrable,
in: 3éminaire de Probahilités X, Lecture Notes in Math. 511, Springer, Berlin, 1078,
401-413.

[28] N.M.RivitreandVY. Sagher, Inierpolation between L™ and I, the real method,
I. Funct. Anal. 14 {1973), 401-400.

[30] H. P. Rosenthal, On the subspaces of L? (p > 2) sponned by sequences of inde-
pendent random variables, Israel J. Math. 8 (1970), 273-303.

[31] F.Schipp, The dual space of martingale VMO space, in: Proc. Third Pannonian
Sympos. Math. Statist., Visegrad, 1982, 305-315,

[32] B. M. Stein, Topics in Harmonic Analysis, Princeton Univ. Press, 1970.

[38] J.-O. Strémberg, Bounded mean oscillation with Orliez norms ond duality of
Hardy spaces, Indiana Univ. Math. J. 28 (1979), 511544,

{34 F.Weisz, Interpolation between martingale Hardy and BMO spaces, the real method
Bull. Sci. Math. 116 (1992), 145-158.

[35] —, Martingale Hardy spaces for 0 < p < 1, Probab. Theory Related Fields 84
{1990), 361-376.

[36] —, Murtingale Hardy Spoces and Their Applications in Fourier-Analysis, Lecture
Notes in Math, 1568, Springer, Berlin, 1994.

371 T. H. Wolff, A note on interpolation spaces, in: Lecture Notes in Math. 908,
Springer, Berlin, 1982, 199-204.

[38] K. Yosida, Functional Analysis, Springer, Berlin, 1980.

3

DEPARTMENT OF NUMERICAL ANALYSIS
EGTVOS LORAND UNIVERSITY

MUZEUM KRT. 6-8

H-1088 BUDAPEST, HUNGARY

E-mail: WEISZOLUDENS.ELTE. HU

Received February 7, 1994 (3228)
Revised version November 7, 1994

icm

STUDIA MATHEMATICA. 114 (1) (1895)

Relatively perfect os-algebras for flows

by

. BLANCHARD (Marseille) and B. KAMI NEKI (Toruh)

Abstract. We show that for every ergodic flow, given any factor o-algebra JF, there
axists o o-algebra which s relatively perfect with respect to F. Using this resulf and
Ornstein’s isomorphism theorem for fows, we give a functorial definition of the entropy
of flows,

Introduction. Perfect o-algebras play an important role in ergodic the-
ory and. statistical mechanics, especially in the spectral theory of dynamical
systems with discrete time (measure preserving Z%-actions). The existence
of these g-algebrag in the case d > 2 has been proved by the use of their rel-
ative versions {for Z“ !-actions), the so-called relatively perfect o-algebras
([K1]). In [K2] the relatively perfect ¢-algebras have been used to give a
fanetorial definition of entropy of a Z%-action.

Blanchard in [B1] and Gurevig in [G2] have shown that for every ergodic
flow there exists a perfect o-algebra. The main purpose of the present paper
is to prove a relative version of this result (Theorem B). The motivations of
this theorem are, on the one hand, expected applications of relatively perfect
c-algebras to the investigation of the spectral structure of multidimensional
flows and, on the other hand, an application to an axiomatic, i.e. functorial
definition of entropy of cne-dimensional flows. Such definitions have been
given for Z%action hy Rokhlin {[Ro]) in the case d = 1 and by Kamifski in
[K2] for d > 2, but it was not known whether such a characterization exists
for flows. Section 1 contains definitions and auxiliary results needed in the
sequel. Tn Section 2 we prove a relative version of the Abramov formula for
the entropy of a special fow. Section 3 is devoted to relatively excellent
g-algebras. Resulis of these sections together with a relative version of the
Ambrose Kakutani- Rudolph theorem allow us to prove in Section 4 the
existence of relatively perfect o~algebras.
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Key words and phreses: entropy, flow, principal factor, relatively excellent o-algehra,
relutively perfect o-algebra.
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Tn Section 5 we first introduce a concept of a principal factor for a flow
in terms of increasing o-algebras. Next, using Theorem B we describe prin-
cipal factors in terms of entropy. It follows from the Ornstein isomaorphism
theorem for Bernoulli flows and the result above that, as in the case of
Z%-actions, the behaviour of the entropy of fows under factor and principal
factor maps and direct products determines it uniquely up to normalization.

1. Preliminaries. Let (X, B, 1) be a Lebesgue probability space and let
Nx be the trivial sub-o-algebra of B. N

With every measurable partition P of X we agsociate the o-algebra P
of P-sets, i.e. P consists of all measurable sums of elements of P. It is
well known that for every sub-c-algebra 4 C B there is a unique (mod p)
measurable partition .4 such that A is the o-algebra of A-sets.

The symbol Z stands for the set of all countable measurable partitions
with finite entropy.

Let P = {P;} € Z and let A be a sub-g-algebra of B. The information
of P given A is

I(P|A) =~} xp -logp(Bi | A).
For a given function f € L' (X, u) we put
E(f)= [ fdp.
X

Let now 7 be an automorphism of (X, B, u). With every partition P € Z
we associate the two o-algebras

o0 + oo
P =\/r7"P, P.=\/ P
§=1 1= —00

Let T = (T*) be a measurable flow on (X, B, u).

A sub-o-algebra A C B is said to be increasing if T°A 5 A for all £ > 0.
It is called a factor o-algebra if T4 = A for all ¢t € [R.

We denote by h(T*) and m(T*) the entropy and the Pinsker o-algebra of
the automorphism T* respectively, ¢ € R. It is well known ([A2], [31]) that

| (T = [t M(TY), =(T =T, teR
Recall that the entropy A(T) and the Pinsker o-algebra w(T) of the flow T
are defined as follows:

WT) = (T,  =(T) =r(T").

Let now H be a fixed factor sub~c-algebra of T’ and let Ty, be the factor
flow induced by H. We dencte by A(T* | W) and w(T* | H) the relative en-
tropy and the relative Pinsker o-algebra of T* with respect to M respectively,
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t € R. Proceeding similarly to [A1] and [G1] one easily obtains
AT [ M) =t AT | M), #(T*|H)==n(T|H), tcR.

We define the relative entropy and the relative Pinsker o-algebra of T with
respect to M as

AT | H) =h(T" | H), =(T|H)=nr(T"{H)
respectively. Clearly
R(T)=h(T|N) and «(T)= (T |N).
We shall use in the sequel the following equalities:
{1 h{(T) = h{Tw) + h(T | H),
(2) (T | =(T)) = m(T).

They have been shown for Z-actions in [K2] and [K1| respectively.

Now we recall the concept of a special flow built under a function.

Let (Y,C,v) be a Lebesgue probability space, T be an automorphism of
Y and f:Y — RT a measurable function such that inf{f(y) : y € Y>>0
and f € LY(Y,v). Let Y5 = {(y,u) € Y x R : u < f(y)} and let C;
be the restriction of the product o-algebra ¢ ® £ to Y, where £ denotes
the o-algebra of Lebesgue sets of RT. We denote by v; the measure on C 7
defined by

vp= (B (v x A,
where A stands for Lebesgue measure. Let 74 be the measurable flow on
(Yy,Cy,vy¢) defined as follows. For 0 < i < inf{f(y),y € ¥} we put

" u)__—{(y,u+t) if w2 < f(y),

’ ryutit—fly)) Huttzfy).

For other values of ¢ the automorphism TJE is uniquely determined by the
condition that ("r}'-) is a one-parameter group of automorphisms,

The flow 77 is called the special flow built under the function f, the au-
tomorphism 7 is the base automorphism and f is the ceiling funciion of 7y

Since Bernowlli flows will play an essential role in Section b we recall
their deflnition and the Qrastein result which we will need.

A flow 1 iy said to be a Bernoulli flow if for every ¢ s 0 the automorphism
T iy a Bernoulli shift.

The existence of Bernoulli llows has heen proved by Ornstein in [O1]. The
following “Siual type” theoremn may be easily deduced from the corollary to
the Main Lomma frow [Q2],

TuroreM A, For every ergodic flow T with h(T) > 0 and every a &

(0, R(T)] there emists o Bernouwlli flow S which is tsomorphic to a factor
of T', with h(9) = a.
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2. Relative version of the Abramov formula for flows. Let (¥,C,»)
be a Lebesgue probability space, 7 an automorphism of Vand FC Ca
factor o-algebra of . Let 4 € C be a set of positive measure such thatl
U2 7" A = Y. Tt is well known that if 7 is ergodic then every set A of
positive measure satisfies this condition. The automorphism of A induced
by = is denoted by Ta.

Let F4 be the sub-c-algebra of A consisting of the sets of the form F'NA
where F' € F.

Remark 1. If A € F then F# is a factor o-algebra of 4. Indeed, the
Poincaré recurrence theorem implies that A = [J7_; Am, where Ay, denotes
the set of the mth return time. The desired property follows at once from
the equality

TA(FNA)= G M ENANTTIAC N roim=lig®yn 4,
m=1
where F' ¢ F.
LeMMA 1. For every A € F with v(A) > 0 we have
h(ra | F4) = ({471 M7 | F).

We omit the proof because it may be easily obtained from the proof in
the absolute case (see [Al]}.

Let now o be an automorphism of (¥,C,v) and let F C € be a factor
o-algebra of o. Let L' denote the o-algebra of Lebesgue sets of the interval
[0,1), A the Lebesgue measure on [0,1) and ¢ : ¥ = [0, 1) a C-measurable
function.

We consider the product measure space

(X,B,u) = (Y,C,v) x ([0,1), L}, N)
and the automorphism v = 7, of (X, B, i) defined by

7(y,u) = (oy, u+ oY),

where + means addition mod 1.
We put H = F ® L. One easily checks the following

Remark 2. If ¢ is F-measurable then H is a factor o-algebra of 7,.
LEMMA 2. If @ is F-measurable, then
Lt | H) = hlo|F).

We omit the proof for the same reason as in the case of Lemina 1 {sec
the Lemma in [A2]}.

Let now (Y}, Cr,vyp,7r) be the special flow over (¥,C,v,7) under a func-
gion f: ¥V — R*. '
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For a c-algebra F C € we denote by Fy the restriction of the product
c-algebra F & L to Yy,

Remark 3 ([B2]). If  is a factor o-algebra for 7 and f is F-measur-
able then Fy is a factor o-algebra for 7.

Lenma 3. If f is F-measurable then

hirp | Fr) =8 - (B() ™ hir | F), teR

Proof It is enough to show the equality for 0 < ¢ < inf{f(y) :y € V'}.
We consider, as in the absolute case ([A2]), the product space ¥; = ¥ x [0, 1)
equipped with the product c-algebra 7, = F ® L', where £ denotes the
o-algebra ol Lehesgue sets of [0,1), and the natural product measure,

Let 7 be the antomorphism of ¥; defined by

T, u) = (Tyu+ oY),

where - means addition moed £ and

ely) =t — fly)+ H—f(y}]-

As Abramov observed, 7' is the automorphism induced by 7"} on ¥;. There-
fore, by Remark 1, 71.F, = .7?, It follows from Lenuma 1 that
() AF [ Fa) = ()7 h(rf | Fr) = ¢ B(f) - h{r} | Fp).
Applying Lemma 2 we have
(4) WF | Fi) = hir| F).
Combining (3) and (4) finishes the proof.

3. Relatively excellent o-algebras. Let 7 be an automorphism of a
Lebosgue probability space (V,C,») and let F be a factor o-algebra of r.

DermNrrion 1. A sub-g-algebra A C C is said to be relatively excellent
Jor = with respect to F if

(5) FoA 1ADA,
,.lum
(6) \/ A = C,
oz e %)

(7)  ihere exists o sequence (F,) ¢ 2 with ]”:L A such that
.J{%llga(}‘p.(l?,,,, | F)— H{P, | A7) = 0.
The proof of Theorem 1 of [K2] yields

LaiviMA 4. For every factor o-algebra F of T there exists a relatively
excellontd o-algebra A with respect to F. Bvery such o-algebra is relatively
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perfect with respect to F, i.e. it also satisfies the following two equalities:

+oo
(®) N rA=alr| )
) hir| F)=H(rA | A).

If F = N, then A is simply an excellent o-algebra as defined in [B1].
In the sequel we shall use the relative Pinsker formula ([K2]):
(10) for P,Qe Z, h(PVQ,r|F)=nh(P,7 | F)+h(Q, 7| PrV F).
LEMMA 5. If A C C is relatively excellent with respect to 7 and @ € £
then the o-algebra AV TQ™ is also relatively excellent with respect fo F.

Proof. It is clear that the o-algebra AV rQ~ satisfies (5) and (6). Let
a sequence (P,) C Z satisfy (7) and let @, = V=, 77'Q, n = 0. We claim
that the sequence (P, V @,,) also satisfies (7) (for the o-algebra AV Q™).

In the sequel we shall use some ideas from the proof of Proposition 1.3
of [B1].

For any natural numbers n, m, formula (10) gives
(11) WPrV Qm, T | F) = h(Po, 7 | F) + h(Qum, 7 | (Pa)r V F)

=h(Pp,7 | F)+ h(Q, 7| (Pa)r vV F).

Assume n < N. Since H(Py | P,) < oo there exists a partition Py with
finite entropy such that P, V P% = Py. Simple properties of the conditional
entropy give

(12) H(Py | Py VF)=H(P, | PR VF)+ H(Py | Py v PV F).

It follows from (11) with n = N, m = n and from (12) that

H(PoVQul Py VQ™VF)
=H(P,VQun| Py vQyVF)
=H(PyVQn |PyVQ,VF)—H(PL | PoVPyVQnYQ,VF)
=H(P, | PgVF)+H(P} | Py V PV F)

+H(Q|Q™V (Pn)r VF) — H(PY | PaV Py vV Qu V@,V F)

> H(P, | PR VF) +HQ] Q™ V(Py), V F).

Hence, in view of (11) for m = n, we get

O0SHP. VQu|BIVQR,VFY—HEP,VQ, | PLVQ VF)
<SH(P, | Py vF)—H(P, | Py VF)

+H@Q|Q V(P VF) - H(Q|Q V(PN),VF), n<N.
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Since A is generating ghnd {Py) satisfies (7), it follows that taking the lirait,
first as N — oo, and then as n ~ oo, we obtain the desired result.

COROLLARY. If f:Y — R is measurable with an a.e. finite set of val-
ues then for every factor o-algebra F ihere exists o o-algebra A relatively
excellent with respect to F such that f is A-measurable.

Proof. Let D be an arbitrary relatively excellent ¢-algebra with respect
to F. Lemma 4 assures that such a o-algebra exists. Consider the parti-
tion Q = {@1,...,@Qmu} of ¥ into sets where F is constant. It follows from
Lemma i that the o-algebra A = DV 7Q~ is also relatively excellent with
respect to 7. It is clear that f is A-measurable.

Now suppose g is an integrable function on ¥ with values in N. Let
(Y9,C9, 0%, 77) be the integral dynamical system over (Y, C, v, ) under the
function g {cf. [CFS]). We denote by Q¥ the partition of ¥ generated by g,
1.¢.

Q= {97 ({k}) : k e N}.
It follows from Lemma 1.1 of [B1] that Q9 € Z.

For a given sub-o-algebra F C C we denote by F9 the sub-c-algebra of

€9 defined in the same way as C9, ie.

[a <]
AeFi, A=|JAix{i} f AjeF ieN
gl
One casily checky the following
Remark 4. If the function ¢ is F-measurable and F is a factor o-
algebra of » then FY i a factor o-algebra of 79. '
Let P = (Py) be a countable meagurable partition of ¥. We associate

with it the partition P of Y9 as follows. The atoms of P are all the sets
Py x {1}, k € N, and the set Y9\ (¥ x {1}).

LeMuma 6. If F 4s a foctor o-algebra of v such that g is F-measurable
then for every I € Z we have
WPV TR, | F9Y == (B(g)) ™' R(P VTR, T | F).

Proof Let ¥ =V x {1}, R = PV+Qi and T = 79. It follows casily
from the definition of 7' that

(13) Yo € Ry

and

(14) (RpvFYNYy=[(PVrQ?) v F] x {1}
Hence

(15) viI(Yo | Rp V F9) = xv
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and
(16) (A x{1}| Rz vV F)(y, 1) = (4 | (PV7QY) T vV F)(y),

Ael, yeY.
From (16) it follows that

(17) [ I(R|RpvFo)dv*
Yo

= [ xasquy 1) -logrf(Ax {1} | Ry v F)(y, 1) d
vy AEPVrQe

= (Blg)™- [ I(PV7Q | (PV Q") V F)y)dv
Y

= (B(g) ™ WPV TQl 7| F).
The eguality (15) implies
(18) [ I(R} By v Fe)dve
¥§
= — f xve(y,4) - logv? (Y | Ry vV Fé{y, 4) de? = 0.
}rOKZ
Comparing {17) and (18) one gets
WRT | F0) = [ I(R| Ry v Fo)dv® = (Blg))™" - h(PV rQY,7 | F),
Ve
which completes the proof.
Now suppose f : ¥ — R* is an integrable function such that
inf{f(y):ye¥}=a>0.
Let 77 be the special flow on the space (Y7, Cy, vy}, built under f and over .

For a given sub-e-algebra 4 C C we denote by A; the sub-o-algebra of
Cs defined by

.Af == {AﬂYf AAe A@ﬂ}.
Remark 5 ([B2]). If A C C is an increasing sub-o-algebra for = and
7 is A-measurable then Ay is increasing for the flow ;.

Let ¥ =Y x [0,1). With any measurable partition P of ¥ we associate
the partition P! = P x [0,1) of ¥7. For a sub-g-algebra A ¢ C put A =
ALl

Let Ry = {Ry,;:0 < i < 2%71} be the partition of ¥; defined by
Res={(y,u) €Y1 27" <uc (341)-27%), 0<i<c2b=1, k>1.
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It is clear that the smallest o-algebra R containing all Ry, k > 1, coincides
with the o-algebra Ny ® £1.

Let 7 be the automorphism of ¥j induced by 7" = 7}, It follows from
Abramov’s remark (see the proof of Lemma 3) that

mi{y, ) = (ru,u -+ o(y)),
where o(y) = 1~ {f(1)}. The o-algebra € ® N,y is a principal factor
o-algebra of 7 and the corresponding factor automorphism is isomorphic
to 7.

Since 7y {8 induced by T on the set ¥7, T is an integral automorphism
over 7. Let g be the corresponding ceiling function on Yy, ie. the Poincaré
cocycle for 7. If the flow 7 i3 ergodic then the well-known Katz theorem
implies [, gdvy =1, Le.

Blg) = [ gly,w)dv du = E(f).
Yy

For a given measurable partition Q of Y1 we denote by @ the partition of
v/ which consists of all atoms of @ and the set Y. If D is a sub-o-algebra
of Y1, D stands for the g-algebra D = {A UY : A € D}.

Tt F he a factor o-algebra of 7.

LeMMA 7. If A C C is a relatively excellent for v with respect to F and
[ is A-measurable then Ay is
{19} dnereasing for the flow T,
20y relatively excellent for 7§ with respect to Fy.

Proof Since A O F and A is generating, A; is of course generating
and Ay D Fy.

We may assume v = 1, Put T = T} as above. It is easy to check that
TV Ay = (A v R. Since, by Remark 5, A ¢ s increasing with respect to
T the above cquality implies
(213 Ap = (AL VR)L..

Let (I7,) be a sequence of partitions of ¥ with finite entropy such that

"'3,“, A andd
'Jl"}rnﬁ.:_(h.(l’,,,’r | F) - H(B, | A7V F)) = 0.

Lot Qo = (7P vV fy, n,k > 1. We shall show that there exists an
increasing sequence {ng) of natural numbers such that

!"(Qmﬂ,!\:a Tl ‘ FJ) e ‘EI(Q“I«J‘: | ‘AJ’ v FI") -+ 0
as b — oo. Since Qp,p (TA)T VR the equality (21) implies that A; is
relatively excellent for 7' with respect to Fp. One easily checks the following
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equalities:

vi(TA % [0,1) | Af v Fp)y,u) = w(rA| AV Fily)
and

v | AV F)Y=xv,, (hu) €Y, APy n2l
From these equalities a straightforward computation ylelds
(22) H((rP) | Ap V Fp) = (B(f)) - H(r Py | AV F).
For every set 4 € C we have
A% [0,1) = 77H4) % [0,1),
(rxANAx[0,1) | D& L) =vA]|D),

where P is an arbitrary sub-g-algebra of C. Therefore we get

(23) W(rPu) 1 | F® LY = (P, 7| F)

and

(24) H{(rB) | (A vV F@ LY = H(P, | AT VF).
We have

h(@n,kyTl ! -Ff) - H(én,k ‘ -Af v -?:f) = gk -+ bn,iﬂ T e ke

where
tnp = M@np, T | Fr) — (B(@) ™ bQua V11Q%, 1 | F & L1,
bok = (BN RQuie V@, 1 | F® LY
~(E(H)™ - A7 n)lm | FeLh),
ene = (B R(rP) | FRLY) = H(Quw | Ar V Fr),
for m,k > 1. By Lemma 6 we have
ok =W Qnp TY | Ff) — h(Qur V@9, TV | F4) < 0.

It follows from the relative Pinsker forraula (10) and the equality Ef = Fg
that

b = (B k(R V@9, | (TPu)7,)s
Since Ry C A; we have, by (22)-(24),

Cak = (E(f))_l‘h(PmTIF) H{(rP)' [ Ap V Fy)
= (BN (MPo,7 | F) = H(rF, MVF)
= (BN AWPo, T | FY = H(P, | A"V F), mnk21,

Since P, /' A and A is generating we have [(mP,)'r, = [(Pu).]* ./ C® LL.
But C! is a principal factor o-algebra for 7 so Hmoy oo b = 0 for every
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k > 1. Theretore there exists an increasing sequence (m) of natural numbers
such that littg .o by, 5 = 0. Thus

}\lll’l ( (Q”k MT \ Ff) (@—w,k ‘ A.f V'Ff}) =0,

i.e. Ay is relatively excellent for T with respect to Fy, which completes the
prool.

4. Relatively perfect o-algebras. Our proof of Theorem B below

requires a relative version of the well-known Ambrose Kakutani-Rudolph
(AKR) theorem ([AK], {Ru]).

LEMMA 8. For every ergodic flow T on o Lebesgue probability space
(X, B, 1), given o nonatomic factor o-algebra M of T and two positive
real numbers poand g with p/q irrational, there exists o special flow
(Y, Cpyvyp,mp)y where §ds a measurable function with values p and g, o fac-
tor a-algebra F for v such that f is F-measurable and an isomorphism
: X =Yy of the flows T and 7 such that @(H) =

Proof. Let £ be a measurable partition of X associated with 7, i.e,
€ == H. It is clear that T = ¢, ¢ € R. We consider the quotient Lebesgue
space (X/€, Be, pg) equipped with the quotient fow T;. We denote by H :
X — X/€ the natural homomorphism. It follows from the proof of the AKR,
theoreny (ef, [CFS]) that there exists a measurable partition (¢ of X/¢ which
is regular for Tg, i.c.

(25} (e is a measurable partition of X/€ into intervals of trajectories with
lengths p and ¢, Le. sets of the form {T*O 0<t< f 1}, where
f@)=por flO) =4, )

(26)  the functions F, & defined by F(D) = f(C),
TEL(_C'), are Be-measurable.

G(D) = t, where D =

Now we deline a measurable partition ¢ of X which is regular for T.
Let E be an clement of ¢ and let Cu(E) € X/¢, OL(F) C E denoting the
beginuing ol the trajoctory of Te included in £. We denote by ¢ the partition
of X consisting of the following lntervals of trajectories of 1"

{T'aw ¢ H OL(ED),
where Jv ¢ G,

1L 38 eady Lo check that ¢ 18 regalar for T
of trajectorios,

Now we construct the desired probability space (Y, C, v} and the auto-
morphisin 7 of ¥ in the same way as in the proof of the AKR, theorem. Recall
that Y is the set of left ends of elements of ¢, i.e. the points belonging to
H'OW(E), B € G

with the same lengthy p and g
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Let 1 be the measurable partition of ¥ whose elements are the sets
Hgle(E), E € (¢, and let F be the o-algebra of n-sets.
Tt is clear that F is a factor o-algebra of 7. Foreveryy €Y, y € Hgl (¢,

C = Ou(E), E € (¢, the length f(y) of the trajectory of y is equal to f(C).
Hence f is F-measurable.

Denoting by ¢ the isomorphism between X and ¥ defined in [CFS] we
ohtain the equality @(#) = Fy.

Let T be a measurable flow on a Lebesgue space (X, B, p) and let H be
a factor o-algebra of T.

DEFINITION 2. A sub-o-algebra A C B is said to be relatively perfect
with respect to H if

i) A>H, T"HDOH, £>0,
(i) Vier T"A =B,
(i) Myer T*A = (T | H),
(iv) h(T? | H) = H(T'A | A), t > 0.
In the case H == A the concept of a relatively perfect o-algebra recuces
to the concept of a perfect o-algebra ([B1], [G2]).

THEOREM B. For every ergodic flow T and o Lebesgue space (X, B, p)
and every factor o-algebra H of T there exists o relatively nerfect o-algebra
with respect to H.

Proof. We may assume that 7 is nonatomic. Indeed, in the opposite
case, due to the ergodicity of T', H is finite, therefore H C «(T). Then it is
easy to show, using formulas (1) and (2), that any perfect o-algebra A for
T {such o-algebras exist by [B1], [G2]) is also relatively perfect with respect
to H.

Suppose now that H is nonatomic. Due to Lemma 8 we may assumc that
X =Ys, B=Cp, p=vs, T" =7} and H = Fy, where F is a factor o-algebra
of the automorphism 7 of (¥,C,v) and f is a F-measurable function with
two values. We put

a=min{f(y) 1y €Y}

In view of the corollary to Lemma 5 there exists a relatively excellent
g-algebra D < C for 7 with respect to F such that f is D-measurable.

We put A = Dy. The D-measurability and the conditions (5} and (6) of
relatively excellent g-algebras imply that

ADH, T'ADA, t>0, \/T'A=B
. tem
Applying Lemma 3.1 of [G1] and the equality {9) we get

H(TA|A) =t (B(f))y™ HOD [ Dy=t-(B(F))" - hir | F), t>0
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On the other hand, Lemma 3 gives
R M) = hirp | Fy)=t- (BN h(r|F), ¢>0.
Therelore we have
WM | H) = H{T'A| A), t>0.

It follows from Lem.ma 7 that A is relatively excellent for T% = 7§ with
respect to H. Applying the equality (8) to T we get

oo
m T A v ﬂ e g ﬂ.(T”‘ 1 ’H) =] W(T ‘ H);
L(';.’EH: gm0

which completes the proof.

5. Principal factors and an axiomatic definition of entropy. Let
T = (") be a measurable flow on a Lebesgue space (X, B, p).

DEFINITION 3. A factor o-algebra H of T is said to be principal if every
increasing g-algebra A D H iy a factor o-algebra.

DEFINITION 4. A factor flow S = (S*) of T is said to be principal if
every factor e-algebra M of T" yuch that the flows Ty and S are isomorphic
is principal.

LeMma 90 If a flow S 48 o principal foctor of T then h(T) = h(5).
Conversely, if h(T) < oo then the reverse implication is also true.
Proof Let H be a principal o-algebra such that § and T are isomor-

phic. It follows from Theorem B that there exists an increasing o-algebra
A DM with

(T |H) = H(T'A | A), t>0.
It follows from the assumption that h(T? | M) = 0, t > 0. Therefore the
formula (1) implies .
h(T") = h(Ty) = h(S).
Now snppose h(T) < oo and A(T) = h(5). Let H be a factor o-algebra
sch that S and Ty wre Isomorphic. Therefore we have hWT) = h{Ty), ie.
WO H) == 0 Tet A 2 K be increasing, Since

H(T'A|A) = H(A| T A) < T | H)
we have H (' A | A) = 0, > 0, and s0 A is a factor g-algebra.

Lot now 7 be an antomorphism of a Lebesgue space (Y,C,v) and f :
Y - Rt o measurable function with inf{f(y) : y € Y’} > 0. From Lemma 9
and Abramov’s formula ([A]) for the entropy of a special flow one obtains
at once the following
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COROLLARY. If an eutomorphism o of (¥,C,v) 15 4 principal factor of T
then the special flow oy is a principal factor of Ty

Let ActR denocte the set of all ergodic flows on Lebesgue probability
spaces. We denote by T the flow defined as follows (cf [O1]). Let 7 be a
Bernoulli 2-shift which acts on a Lebesgue space (Y,C, v). Let P = {A, B}
be an independent generating partition of ¥ for 7 and let

f=pxa+aqxe

where p and g are positive reals such that p+¢ = 2 and pg~! is lrrational,
We define Too = (T%) as the flow built ander f with base antomorphism
7. Tt follows from [01] that T is a Bernoulli flow. The Abramov formula
implies

1

h(To) = (B(f))™ - hir) =log2.
Applying the Ornstein isomorphism theorem for Bernoulli flows ([o2])
and Lemma 9 one may prove, using Rokhlin’s idea (cf. [Ro]), the following

PROPOSITION. Let H : ActR — [0,40c0] be a function such that H(Tp)
=log2 and for all T, S € ActR the following conditions are salisfied:

(i) if S is o factor of T then H(T) 2 H(S),
(ii) if S is a principal factor of T then H(T) = H(S),
(iil) H(T x Sy = H(T) + H(S).

Then H(T) = h(T) for oll T € ActR.
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