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Trichel-Lizorkin spaces for Hermite expansions

by

JAY EPPERYSON (Albuguerque, N.Mex.)

Abstract. This paper develops some Littlewood- Paley theory for Hermite expan-
stung. The malo vesult i that eortain analogues of Trichel Lizorkin spaces are well-defined
iu the contest of Hemuite expansions,

1. Introduction and main results. Let Hy(z) denote the kth Hermite
polynonial (consult [4] for hackground), and let

Do) = MRV () e

denote the Mb L*normalized Hermite fanetion. Recall that the collection
{he b B 8 complete orthonormal basis for L2(R). The kth Hermite func-
tion Ay is an cigenfunetion of the IMermite operator H = —~d?/da? + 22
with corresponding eigenvalue 2k -+ 1. If 0 R ~ C is a bounded function,
then we let mi(H) denote the bounded linear operator on L? defined by the
property m{ Ny = {2k - Dy,

Suppose @ B~ C s O™ and satisfes

(i) suppe < [1/2,2],

(if) Jp(a)] 2 e = 0w e [3/4,7/4).
Define operators @, = (2 #I1) for each g € Ny = {0,1,2,...}, and let L?
denote the space of all finite linear combinations of Hermite functions. For
J e L7 define the Hempite Trichel Lizorkin norm.

2

1 g = H (2(2""‘1@#]'”“) INHM(M

fismie]
Soe [5], 6] for & detailed deseription of the Trichel Lizorkin spaces which
ocewr in Fourier analysis, We assume throughout this paper that the pa-
raneters o, g, p satisly o € 8, 1 <p < oo, and 1 < ¢ € oo, If ¢ = 00, the
fmner I norm is replaced by sup, 2/Q, f1.
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88 J. Epperson

It turns out that the completion of Lf with respect to | - || ey denoted
by HjY, is essentially independent of the particular choice of ¢ chosen to
satisfy conditions (i), (ii). To be precise, suppose ) and &} are two
different C*° functions satisfying (i), (ii) and let || - || grogpys & = 1, 2, denote
the corresponding norms. We will show that there exist positive constants
¢z, ¢ independent of f € L2 such that

(1 allfllazeqy € IFllagae S call fllagra)-

Let HY(k), k = 1,2, denote the completion of L§ with rospect to [1-[[ 0.
As a consequence of (1) we have

THEOREM 1.1. Let e e B, I < p < o0, 1 < ¢ < o¢. Then the Banach
spaces Hy(1) and HY(2) are identical as sets, and have equivalent norims.

Another consequence of (1) is that the operator H, initially defined on
LZ, extends naturally to a bounded linear operator from H7¢ to HS =M,
for all # € R. The main idea is that if ¢ satisfies (), (i}, then so does the
function 3(z) = zPp(x).

Asin the case of ordinary Triebel-Lizorkin spaces, the parameter setting
a =0, g = 2 is recognizable,

TrEOREM 1.2. Let 1 < p < co. Then the spaces HY* and L' are isomor-
phic, and have eguivalent norms.

The proofs of both theorems depend on estimates for the kernel of an
operator m(H), where m : R — C is C* and compactly supported. Of
course the kernel K(z,y) of m(H) is given hy

o0
K(z,y) = Zm(Zk + Dyhg () (y),
k=0
but this expression is not very useful for getting decay in x — y. Section 3
contains a more useful formula for K(xz,y) based on Mehler's kernel. From
this formula we derive two different types of estimates.

LEvmma 1.1. Let m : R — C be O™ and compactly supported. For each
b € No let K, (z,y) denote the kernel of the operator w2~V H). Then for
every k > 0 there exists o constant ¢ < co independent of p such that
o2 22

\Ka(-’ﬁ:y S I
e S R T T T e T g

and also
o 03u/2 372
IK[L(m:y)i < 172 CYa] + ¢2 VG - .
(1420722 — g2 (2? +42) (142052 + y])2 (2 + y?)
'The standard techniques for proving Theorems 1.1 and 1.2 also require
estimates on (8/dz)K ,(z, y). Unfortunately, such estimates do not come as
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cavily as Lemna 1.1, On the other band, it is trivial to handle the second
derivative. We write

- Hz--fg,,(a:,'y) = (( e + 332) - m2> > m(27#(2k + 1)) hi(2)hi(y)

o d e
(),I, ()Jl Je==0)

= O f: m(278(2k + 1)) (27H(2k -+ 1)) ()i (y)
=0

— Zm(?“‘“(?k 4 1)) () e ()

80, hy Lemma 1.1 we have

Limma 1.2, Let m and K, (z,y) be as in Lemma 1.1. Then for every
k> 0 there ewists a constant ¢ < oc independent of 1 € No such that

82 023;!./2 623;1./2
ne < .
gartne )| S g Ty E T G r 2o+ o)

With a little work we can exploit this lemma in place of a first derivative
estimate, : .

1t is interesting to note that any improvement in the decay exponent 2
occwrring in Lemma 1.2 would allow us to take the legal range of p,q in
Theorem 1.1 below 1. On the other hand, & worse decay exponent would
force us to take min{p, ¢} > ¢ > L

The remainder of this paper is organized as follows. The proof of
Lemma 1.1 is postponed until Section 3. Assuming this lemma, Section 2
contains proofs of the main theorems. One of the auxiliary results there,
used to prove Theorem 1.1, is that a Peetre type maximal inequality holds
for Hermite expansions.

Previously Thangavelu [4] studied the more classical g-functions de-
fined via the Hermite semigroup. He used these g-functions to prove a
Marcinkiewicz type multiplier theorem for Hermite expansions. One advan-
tage of working directly with the Hermite semigroup iy that its kernel is ex-
plicitly known. Thangavelu established nico estimates on this kernel, from
which the g-function characterization of LP, 1 < p < oo, follows almost
immediately by standard Calderén Zygiand theery.

Tt would be a natural outgrowth of this paper to study houndeduess
criteria for Hermite multiplier operators acting on the Hermite-Triebel-
Lizovkin spaces HyY. We plan to discuss this elsewhere.

2. Proofs of theorems. We need to define more opera‘r‘.ors. For & >0
let ¢(2) = p{x) (X ez lp(2~#2)[})~". By (i), (i) this function is % and
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supported on [1/2,2]. Also,
Zga(2””a:)1/)(2””m) =1 foralxz>0,
veZ

and so in particular,

Zso “z)Pp(2”

=0
For u € Ny define R, = (27#*H)and T,
Note that by (i), ¢)—1 = 0 on L% Also note that Q. =T.0Q,.
Next, if f € L?, define

1Qufy)l
Auf(z) = sup 1n1n{(1+§#/2|$ﬂ:’!/|) *}

Y2y =1 forallz > 1.

and

p (@uf)"(w)
yE]R min{(1 + 2#4/2|z £ y|)A}’

Thle operator Ay is a Hermite analogue of Peetre’s maximal function [3]. We
write min{(1+ 22|zt y|)*} for min{(1+ 2472z ~ y|)*, (14 2/2|m + )}

B, f(z) =

LEMMA 2.1. For every 0 < X < 1 there exzists a constant ¢ < co indepen-
dent of 11 € Ny and f € L? such that B, f(z) < c2*A, f(z).

Proof Write

(@uf)"(y) = 82 fz",L ¥, 1)@ f(w) du

and then apply Lemma 1.2 to get

o @)
min{(1+ 2+[a = y )]

) o 93/2 '
B 2, )
</ ( 2 (1+2“/21?J+MD2)min{(l“i"f?“'/zw:}:yl)*} &

—oo  So==]

= 981/2 P T A
< Auf(z) ( ‘- )mm{(“ 2 ek )},
f 021 (L4 20730y + qu[)? ) min{ (1 + 2072]z &£ y|)>} o

The quantity min{(l +2#/%|z 4 u|)*} is bounded above by
min{(1+ 2/2fe 4 3l) (14 242] — y Ll
(14 2473 — g} (14 972y — )}
= (1+2*2]y — u|)* min{ (1 + 242 & y|)*}

Q;L 1Ru J'lQu ,(L"| Qe-lln,ull-
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and also by
min{ (1 + 2% — y)*(1 + 2“”\@; +u)?,
L+ 22w =y (1 + 2% — y —u)?}
= (1 + 2"/2|J + 1) min{(1 4+ 2973z =y}
Henee (2) is bounded by
s (.23;5/2

. " E*‘ . e ; Y20, X
A”‘j(d')..‘l, (amﬁ (1 - 2072 ]y - au!)"") min{ (1 2%y )"} d
<c2A,f(z). m

Iu the next lemma M denotes the Hardy--Littlewood maximal operator.

LeMMA 2.2. Let r = L/A, where 0 < A < 1 is the parameter in the
definition of A,,. Then there exists o constant ¢ < oo independent of p € Ny
and f € L? such that

Auf(ay ey (MQufIM oa))'".

oozl

Proof Let 0 < 6 < 1, to be chosen sufficiently small later. By Taylor’s
theoren,
p)
. U
Q f(J:'L' - y) Q;L (ﬁ:m -y - 'U') + 'u'(Q,uf)f(:l:m - y) "— "Q_(Q}-Lf)”(g)
and
2
W !
Q,,,f(ﬂ:m‘ - y) = Q;Lf(:i:“: - Y+ 'Uf) - U(Quf)’(im - y) - _Z“(Q#f), (77)1

where £ is between dx —y and £z — y + v and 7 is between +z —y and
Hw — y — 1w We add these to get

2Quuf (2 — )| £ |Quf (e —y = w) + Quf(Ez —y + )l
2
+ @) + (Qu) )

Hence
2Qu f (& -~ y)|
(1+ 2772 ]y)>
m-u/'}b
1 ( 1 :
< — f |Quf(Ea ~y—u)
=TT e T A B g2
(l %_2’/ |y|) '2 2 .f/ é__Q-—;.L/Zﬁ

(Quf)' (e —y — u)|
(1+2W2|y|

1/r
+ Quflde —y+ u)l"du) 4 27RE2 sup
| |ul<2-H/26
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c + QRIS . M
< (1+2w2|y|),\(|y|2"ma MQuf] )(:i:sc))

(1+ 292y + u* [(Quf)"(Fx ~ y — u)|
(L4 20/2y + )

+e27H8 sup
LA ]

ly| +27#/26 )“ (L
M(|Q,
(e ) (9 E)
N
—p g2 1 A max{I(Q“f) (iw_y—u)‘}
FEELTY) ueh (14 2072y 4+ uf)>
< ey (67 + DM M(IQufI) FENYT + 6278 (L + 6)* B, f ()
with ¢; and ¢o independent of §, The result now follows from Lemma 2.1 by
taking § small enough. m

Proof of Theorem 1.1. It suffices to prove the first inequality in
(1). So suppose ™, k = 1,2, are two different C°° functions satisfying
(i), (ii), and let TR Qﬂ“), Rﬂc), AH“) denote the corresponding objects as
defined earlier. Then we can write

a1 .
QM f = Z QS})R&?)QP(j?)f_
v a1

Let H,,(xz,y) denote the kernel of the operator QR %), According to
Lemma 1.1,
/2

H (2, y)] < U:Zil (14 242z + oy|)*

_1rI‘J’1/-L+l= 80

with ¢ independent of x and v =

() Gk e v/ "
@ ; f :LN < QUZ ) da
! H ( V;].g;il“.[o (1+2)//2|m+0.y|)41 -f(J)‘ Y
k1
< Y, AP
V= pl— 1
c2v/? ,
i /21, A
"521 f 1272 5 oy (427 |z g ) dy
H+1
<c Y APf(z)
U=#--l

We finish the proof by taking the parameter A such that (min{p, ¢}) ™ < A =
1/r < 1, applying Lemma 2.2, and using the Fefferman-Stein vector-valued

icm

Trizbel-Tizorkin spaces 03

maximal inequality [1] to get

®. 1/
<o (L(ﬂ-f'@""”'lfo’fl"))““') "

;1 ()

Wil zrgee oy

Ly

X /,rl
= pl|( (M (2 |Q(2)f| ))rzfr) H i < C—'Hf“H,‘f"(Z)' n

jhet)

Now we prove Theorem 1.2, Let L*(I#)r denote the subspace of L*(1%)
consisting of sequences {f, 1%, such that only finitely many f, are nonva-
nishing. Define operators

Q@ LE~ L2(%)y, R EP(%) — L
by Qg = {Qu9} %0 and R({gu}ie0) = 3 pmo Rudp-

LEMMA 2.8. @ eztends to a bounded linear operator from L* to L?(I%)
and R extends to o bounded linear operator from L*(I%) to L°.

Proof Trivial caleculation. m»
LEMMA 2.4. @ s weak-type bounded from L' to L*(I?).

Proof The method of proof is standard, except for a few minor detours
due to the nature of the kernel estimates in Lemmas 1.1, 1.2. We need to
show that there exists a constant ¢ < oo such that

{o: (LI@ur@P) " > 2} < S5l

p=0

for all f € L*, A > 0. (Note that each of the operators @, has a natural
extension from L*NL? to LY.) So fix f € L' , A > 0, and apply the Calderén-
Zygmund lemma to get a collection of disjoint dyadic open intervals {I;}
such that

(&) 17(@)] £ A for ae. v € R\ Uy I,
() ;1451 < A7 I ey
{¢) A<\I|""fl, [f(2)| de < 2A for all 7.

Let z; denote the centerpoint of I;, and for z € I; let

g(w)r—-_—ﬁl—;[ f syay+ ZEZE [ sty - 5) dy
. M J I

Algo, if & € Ij, let b(z) = f(z) — g(z). For & & U, I;, let g(z) = f(2) and
bz)=0. Thus f=g + b everywhere. Note that it € I;, then |g(z)] < 8A.
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Also, for a.e. z & J, I;, [g(z)| S A. Therefore, in the usual way,

lgl3s = [ lo(@)Pdz+ [ lo(z)|d=

R\UI; Ui;
. an 1
<A [ f@) dw+ 3 @A S Al an+ 607 Sl o
RALIL, J
It follows by Chebyshev's inequality and Lemma 2.3 that
o ) 1/
{2 (T 1@uote))” > M2} < 551@Qolegs) < Sl

#=0

Next we have to prove that the correct sort of estimate holds for

e (;QLLb(m)z)uz > M2}

Define
I5 = (25 — Ll 25 + | 1) U (=25 = {I;], =25 + [ 1;]).
Since |J; I7] < [/ £llz1, it suffices to estimate
. o0 2\ 172
I{m er\|JIr: (Z|Q“b(m)\ ) > )\/2}1.
i u=0

For each j let by = bys,. Then we have b =} b; a.e., [b;(x)da = 0, and
fo5(z)(z — z) dm = 0. By Chebyshev’s and Minkowski’s mequahhes,

H“’ < R\UI; ‘ (i)@ub(r)ﬁ)m > )\/QH
J Jo=
%Z [ (X @uyr) e
J I- L=}

For each j define the kernel
i Q,u.(x:y)
Ly(wly) = Q;_.,(‘T,y) -

where of course @, (z,y) denotes the kernel of Q - Because of the vanishing

if 24/2|05] 2 1,
(Qulm, ;) + (¥ — 2)(8Q/ Dz) (2, 2;))
if 242\ < 1,
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moment conditions fmposed on by, we have

[ (i\@;ab.f(lz ) (f,jm ICZ'IL 290 (y dy‘ )L/z

AN ByL; =0T
f|b )| (Zw s dway,
ue\r* n=(

inequality for integrals. Now we need

The last line follows from Minkowski’s
Lo estimate
[

(4) f‘ (Z ”"{ﬁ(‘tfsiu)

whIy o gl

|2)l/2(1;':1:§ f iwi(w,y)[dﬂ

WAL =)

Suppose first that 2”“}{” > 1. Then according to Lemma 1.1, if y € I,

f|L{b(:z:,y)|dm= f}Q“(m,y)\d:‘C

R\I R\JY
< ¢ f ( ezl ) da < e(2H2 ;)78
oI 4 - 7 g
B\L; il (L4 20722 + o)

Suppose on the other hand that 2#/%[1;| < 1. In this case we use the fact
that

1 *Q

Lﬁ,(wiy) = _(y"zj)2 2'“ ('I?,f)

2 Oz}

for some ¢ between y and z;. Then according to Lemma 1.2, if y € I,

. . 2.5,LL/2
' . . PV Y]
f ‘L;‘L(Il y)l dr<e f (y Z.J) ( Z (l +2;4/Z|$ _|__0-yi)2) dz

WAL R\

nid 2 c2n/?
< e(247]15) f ( Z e a‘y|)2) da

R\ Ty o=kl

< 22|14,
Combining these estimates we have
00
1) < e S minf(2*%)5) 7%, 272|151}

p=0
< const. independent of 7.
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Since fr b; ()| dy < 5f1 | Fly \dy, the result is that
8= SN [ 1w dy < :\"i!f”uv u
i

For the next lemma define operators R, : L'({*) — L}, n € Ny, by

Ba({fu}) = Zeo Bufi

LeMMA 2.5. The operators Rn, n € Ny, are uniformly weak-(L*(1%), L1)
bounded.

Proof. We need to show that there exists a constant ¢ < oo independent
of n € Ny such that

Hwyipmh@w>xﬂs§mnmuw

for all {f,} € L'(%), A > Q. So fix {f,} € L*(I®), A > 0, let hiz) =
= e | fu(2) P )1/2, and apply the Calderén~Zygmund lemma to get a col-
lection of disjoint open intervals {I;} such that

(a) |h(z)| S Afor ae. z € RA U, 4,
(b) 255 12] < A7H[A]za,
() A< |t Jr, |h(z)] dz < 2) for all j.,

Again let z; denote the centerpoint of I;, and for x € I; let
1 12(z — 24
9l =77 [ R+ 222 [ g - @
I J I;

For z € I; let by(z) = f.(z) — g.{z), and for @ ¢ {J; I; let g, (z) = fu(z
bulz)=0.If z € I Wehave g o)

QQM@WY”

- 172
= (;) A ff.“«(y dy )
12(z — 2 12
+(Z _M(II_PL)— ffﬁ* y)?)“fzj)a’y )
p=0

< [ (Sinwr)

I

')1/2 dy < 8A.

ﬂmf(gwmw
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It follows that ||{g#}]1%2(12) < eAl{fu}llz2q22), and therefore by Chebyshev’s
inequality and Lemma 2.3,

{a |§_ﬂjRpgu($)‘ > M2} < Sz,
p==0

with ¢ independent of n.
Next we have to estimate |[{z : | 22}.q Rubu(2)] > A/2}|. As in the
previous lemma, it suffices to handle

'{meR\UI;‘:|iRMbN(m)‘>A/2}|
J p=0
= )\Z f|ZR bw(o:!

J ryI; p=0
Here of course b, ; = buXz,. Now for each j define the kernel
' if 20721 2 1,

. “(m‘,y)
Li(z,y) = { Ru(m,y) — (Ru(z, 2;) -+ (y — 2;) (0R,/8w2) (2, 25))
if 2#/2|1;] < 1.

Then
HZR b3 ()| dr = j|z [ T, 1)b ) dy | do
RALF =0 R\L; 4=0 I
<f(i!bm y)l) ( f(ZlLJ z,y)| )1/2 m)dy

p=0 ®\I} p=0
i 1/2
<cf (Zlba,j(y)lz) dy<c | (Zlfu )
Ij =0 j =}
with ¢ independent of n. Substituting this in (5} finishes the proof.
In the next proof we use the fact that L% is dense in L* for 1 € p < o0
(see for example [2], Lemma 2).
Proof of Theorem 1.2. Let 1 < p < co. It suffices to show that
there exist constants cy, cg > 0 such that
erllFllge S S llee < call Fllage

for all f € L2 First, by Lemmas 2.3, 2.4, Marcinkiewicz interpolation, and
duality, the operator @ extends to a bounded linear operator from LP to
LP(1?) for every 1 < p < oo. Hence

[ Filaes = {HQF Hlzog2y < clifllze
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Next, by Lemmas 2.3, 2.5, Marcinkiewicz interpolation, and duality, each of
the operators R, extends to a bounded linear operator from LP(I*) to L7,
for 1 < p < oo. Moreover, the operators Ry, : LP(*) — LP, n € Ny, are
uniformly bounded. If f € L2, then for large enough n,

f=> R.Quf = R.({QF))

=0

Hence, for such a function f,

I fllzr = | Bo{@fPlize < el {QFH 202y = €l fllag

with ¢ independent of n.

3. Kernel estimates. It remains to prove Lemma 1.1. Let m be as in
the lemma, and let P denote the orthogonal projection in L? onto hy. If we
use the convention for the Fourier transform that fi (&) = f = flx)e @ dr,
then, at least formally,

Fa@eesa= [ a( 3w erp) g

—cQ —00 k=0

2rm{27*H) =

The kernel of the operator inside the parentheses is given by Mehler’s for-
mula. We will use the following (slightly nonstandard) version.

LeEMMA 3.1. Suppose z € C, |z| < 1, 2 £ &1, and let f € L2. Then

izk(Pkf)(m) =2 (L — )2
k=0

s fexp( 1_1+22( oy )+1izzzmy)f(y)dy-

Note that (1 — 2%)~1/? is defined by cutting C along the negative real
axis. Also note that the sum over k is actually a finite sum.

Proof of Lemma 3.1. This is standard if |2| < 1 (see e.g. [4], p. 2).
If |z| = 1, z % £1, then

Zz (Ppf)(z) = llm ZT‘Z ¥ (Pyf)(z)

= 111{1 71'“1/2(1— (rz)?)~1/2
r—s1—

T 1
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e 121 = 2)—1/2
x fc:cp( LA ) g

The last line follows from the dominated convergence theorem. m

Now let # = z(£) = e277'¢, and let

wy)f( ) dy.

6 Kuloy) =27 [ Age 6057

1 1422
- . dE.
o 3 e 1 )

An application of Fubini’s theorem and Lemma 3.1 shows that if f e L
then

(@)@ = | Kale,s) 0 dy

-0

It will be useful to put the integral in (6) in the more concise form

(m 2 j‘ 2 1g)ei/A(1

¢i%)=1/2

X exp (— —%((m2 +y*)cot € — Bmycscg)) dE.

Proof of Lemma 1.1. Since m is compactly supported, there exists
some N such that for all p=10,1,...,
28N

} S m{2 (2 + 1))hk(m)hk(y)}

k=0
< i (3 00) (T )
k=0 k=0

Now we recall the argument used to prove Lemma 3.2.1 in [4]. If 0 <r <1
and L > 1, then by Mehler’s formula,

z 2 -—Lm k1,2 ~1/2,—L 2v—-1/9 1L—7r o
!‘th(w) <7 ?:61" Ri(m) = 7~ (1 —r®) exp { ~7 5% |-
pm== ) =

Substituting 7 = e~"/% we get
2
SR (e) < DM
k=0

|Ku(m7 y)l =
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Hence
JK;L(CU, ,y)] < 612#/28—c22‘#(m2+y2) < cmin{QH/Q, 23;.4,/2(:[:2 + y2)—1}.
This proves the lemma if 2#/2|z — y| < 1 or 24%|z + y| < 1.

So suppose that both 2¢/2[2z —y| > 1 and 2#*|z +y| > 1. To continue we
integrate by parts in (7). Let

F(&) = m(24718)e¥/2(1 — %)~ 112
and
G(€) = (2% + y*) cot £ — 2ay csc .
Also let 1
ﬁ%‘é = d%G’(E) = *Sinzg(nﬁ 1 — 2y cose).

Then we can rewrite (7) as
o0 d
T
2 Ofo s

Of course this integration by parts is justified by showing that when
|$—y!,i$+yJ7’{‘-0,

H(£))e @O/ e,

o0

[ E‘%—(F@)H(s)e%“”% dé = 0.

The main ideas are that (1) the integrand (d/d€)(-} is integrable, (2) the
function inside (-} is ¢'*° away from the points nr, n € Z, and (3) as £ — n,
the function inside (-) tends to zero. Integrating by parts once more we get
© Ko = [ g (FEOmEmE )

The rest of the proof consists of analyzing many separate integrals, de-
pending on where the two differentiations in (8) fall. In each case we split
up the integral over R into three integrals over subsets of R. Let

A= U [~7/8 + 2wn, m/8 + 27n),

ned

B = | J([x/3+ 2mn, 2m/3 + 2xn] U [4n /3 + 2zn, 57/3 + 2irn]),
nez

C= U [27/3 + 27n, 4w /3 + 27n).
nEZ

Then R is the essentially disjoint union of the sets 4, B, 0. We will repeat-
edly use the trivial inequalities
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(& —y)%/2+ (1 —cos&)(=2? +¢%) if{ € 4,
9y 2®+4y* —2zycosf > < (z? +y)/2 if¢ € B,
(z+1)2/2+ (1 +cosé)(z? +42) el

Also we will use the trivial inequality
(10) (@? + ") < max{(z —y) "% (& +4) 7).

Suppose now that both differentiations in (8) fall on M (2+~1£). Since 7
has rapid decay, we end up bounding & quantity of the form

(11) 623# T(1+2“|§|)~K(1——(:0825)“]‘/4311‘14§(w2—l-y2—Zmycosf)‘“z df,

-0

where K can be taken arbitrarily large.
The part of the integral over region A is bounded by

w/3
(12) 2™ 5" [ (12| +2mn])TFIE TR (02 -y - 2ay c0s€) TP dE
nEZ —mw /3

In proving the first inequality in Lemma 1.1 we apply (9) in the form
(z® +y? — 2zycosé) * < d(z —y)~*
and in proving the second inequality in Lemma, 1.1 we apply (9) in the form
(e Beyoose)™ < 2(a —3) (L - eost) & + )
In the first case by taking K large enough we get

T3
I(12)|£( Z [ 1+ 2#|¢ + 2mn|) K |67 dé
neL - /3
#/2 W/B
< ;'/;2 P f (1 4+ 2¢|€ 4 2mn|) 5 (2%1£]))T/22# d¢
@2 e~y g s
CQ"L/2
S T
@)
and in the second case we get
2% s K| p|3/2
12)| £ (1 o 28|€ o4 2mn|) "€ 7 dE
s Gy Xy S
823“/2

= @i - )P+ 9
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Again using (9), the part of the integral (11) over region B is bounded by

288 /8 . Ky
) (¢ + 2mnl)”
(as) (w2+y2)2%(w;’; (142818 + 2mnl)™" dt
5 /3 .
+ [ (2o 2mn) I de).
4r /3

It follows that |(13)| < c27#*(z? 4 y*)~2, where L can be taken arbitrarily
Jarge. This is more than sufficient, when combined with (10}.
Finally, the part of the integral {(11) over region C' is bounded by

4w /3
(14) 23 [ (4206 + 2mnl) K| — w2 E - )t
TLGZZ';T/S
2 2 N —2
x(z” +y* ~ 2aycos§) " dE.

As with (12) we use (9) to get
(14)] < 27 (z +y) 7 2 H R (m + y) R (@ )

with L arbitrarily large. This completes the discussion of the case where
both differentiations in (8) fall on .

It is helpful to index the remaining cases. If we substitute the definitions
of F(¢) and H(£), then there are 7 factors in (8) where a d/df can fall:
3 coming from F'(£) and 2 coming from each H(£). The first factor is M, the
second factor is e’¢/2, and so on. Let (4, j) refer to the case where the inside
d/d¢ operates on the ith factor and the outside d/d¢ operates on the jth
factor. There are 17 distinct cases: (1,1)—{1,5), (2,2)-{2,5), (3,3)-(3.5), (4,4)-
(4,6), (5,5), (5,7). Cases (1,2)-(1,4), (2,2)-(2,4), (3,3), (3,4), (4,4), and (4,6)
can be handled like the model case (1,1) discussed above. The remaining
6 cases involve differentiations on (22 -~ y? — 2zy cos €)1, For example we
bound the (1,5) case by a quantity of the form

15) ¢22# 14 2#E)) (1 — cos 26)~ 1% gin* |371.'5111§| -
(15) Ja+24en £ st ¢ s e e

-
It follows from (9) that
clsing](1 —cos &)~ if £ € A,

: if ¢ € B,
csing|(1+cosé)~t ifée C.

With this observation (15) can be handled just like (11). An interested reader
can now easily check the remaining 5 cases.

|y sin €]
x? +y? - 2zycosE T

icm
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