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Boundedness of certain oscillatory singular integrals
by

DASHAN FAN (Milwankee, Wise.) and YIBIAQ PAN (Pittsburgh, Penn.)

Abstract. We prove the LP and H! boundedness of oscillatory singular integral
operators defined by Tf = pv. 2% f, where 2(z) = e@(m)ﬂ'(x), K(z) is a Calderém—
Zygmund kernel, and ¢ satisfies certain growth conditions.

1. Introduction. Let 2 = (z1,...,2,) € R" and &(z) be a real-valued
function. Consider the oscillatory singular integral operator T defined by

(1) Tf(e)=pv. [ *CNK (e —y)fy)dy,
B®

where R{z) is a Calderén-Zygmund kernel. Operators of this type, with
various kinds of phase functions, have been studied by. many authors. For
example, operators with polynomial phases were considered in [2], [9], [12],
(14}, [15], [20]. Among the results obtained in the papers cited above are the
LP and weak (1,1) boundedness of such operators, as well as their bounded-
ness on Hardy spaces. Results concerning oscillatory singular integrals with
siooth phase functions can be found in [11], [13].

In this paper, we are interested in operators with phase functions of
another type. A typical example of the operators under our investigation is
the following hypersingular integral operator:

(2) [ —Dpv. fﬁzl‘rl?‘

R
Fefferman [7] and Fefforman-Stein [8] showed that, among other things, this
operator has weak-type (1,1) and is bounded on LP and H?'. This partic-
wlar operator belongs to a class of operators which are given by (1) with
$l) = |w]*. These operators were studied extensively and their bounded-
ness propertics were established in Sjolin [17], Jurkat—Sampson [10], Chanillo
et al, [3], in addition to [7] and [8] mentioned earlier (see also [1], [16], {18],
21)).
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106 D. Fan and Y. Pan

We shall consider operators with phase functions ¢ satisfying (3) and
(4), with @(z) = |2|* as our model case. The main results we obtain here
are the boundedness of such operators on L? (1 < p < co) and H'. A similar
problem in the context of the Besov space By’ Y(R") was studied earlier hy
one of the authors ([6]).

We shall use the following notation. For a = {a1,...,a,) we write

= (8/0z1)%" ... (8/ Oy ).

Sometimes we use DY to emphasize the differential operator D" acting on
the z-variable.
Let & € C*(R™\{0}) be a real-valued function which satisfies

‘a‘:al‘l‘-'-“}'an:

(3) |De®(2)| < Clz|*1* for |a| < 3,
(4) > 1DB()| = ¢z,
|a|z2

where a is some fixed real number, and C' and C" are constants independent
of z € R"\{0}. We now state our results.

THEOREM 1. Let T be given as in (1). Suppose $ satisfies (3) and (4)
with some a 3% 0. Then, for 1 < p < o, there is a Cp > 0 such that

17 fllony < Coll Fl Lo(rr)-

'THEOREM 2. Let T be given as in (1). Suppose & satisfies (3) and (4)

with some o # 0,1. Then the operator T extends to u bounded operator on
the Hardy space H*(R™).

When &(z) = |z|* by simple calculation we find that

(3 IpaaE)” -

lev|=2

Therefore, & satisfies (3) and (4) unlessa =0ora=n=1 Whena=0,T
is reduced to the usual Calderén-Zygmund singular integral operator, whose
boundedness is well known. For a = n = 1, 7' is known to be unbounded
on both LP and H'. Other examples of ¢ satisfying (3) and (4) are easily
available, such as &(z) = % cos(zy /(4]z|)), = € R%,

In light of Theorem 1, a question that arises naturally is whether L?
boundedness holds for operators whose phase functions satisfy (3) and (4)
with o = 0. The answer to this question is, in general, no. An example will
be given in Section 3. It was known previously that H* boundedness does
not hold when &(z) = ||, z € R™ ([17]), which explains why the condition
a # 1 is imposed in Theorem 2.

"This paper is organized as follows. In the second section we recall some
definitions and state a few lemmas. Theorems 1 and 2 are proved in Sec-

lall(@~1)% + (n ~ 1))/ *|a|*2,
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tions 3 and 4, respectively. In this paper, the letter C will denote (possibly
different) constants that are independent of the essential variables.

2. Notations and lemmas. First we recall the definition of the Hardy
Space HY(R™). Let ¥ be a Schwartz testing function which satlsﬁes
Jpn () dz # 0. For each f € §'(R™), we set

FH(x) = sup |f = Ty (x)],
>0

where W, (z) = t~"W¥(z/t).

DerFINITION 1 ([8]). A locally integrable function f is in the space
HY(R™) if and only if

1= [ £ (e)de < oo,
g
and we define |||z = | F*|1.

In order to prove Theorem 2, we need the atomic decomposition of H'*
functions. Let us recall the definition of atoms ([4]).

DEFINITION 2. A real-valued function a(z) is a (1,00) atom if

(1) a(=) is supported in a cube @ C R",
(2) [palz)dz =0,
(3) |lalleo < |@|71, where |@] is the volume of Q.

The following result can be found in [4] or [5].

LEMMA 1. For each f € HY(R"), there exist (1,00) atoms {ar} and
coefficients {ci} such that

(5) f= charm
k

and 3, [ex} o || fll 1, where the sum in (5) is both in the sense of distribu-
tions and in the H' norm.

DeFINITION 3. K £ CYR™\{0}) is said to be a Calderdn-Zygmund
kernel if there is-an A >0 such that :

(6) K (2) < Alo|™",  |VE(z)| < Ale|™"7,
(7) _ [ K@)dz=0 for0<a<b
a<|z|<h
LEMMA 2. Suppose that ¢ € C3(R™), ¢ is real-valued and for some k > 1,
(8) > (D) =1
loc}=k '
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on the support of 1. Then

©) [ N(a) da| < en N (ln + VL)
J

and the constant ¢y (@) is independent of A and o and remains bounded as
long as the ¥l norm of ¢ remains bounded.

Lemma. 2 is a slightly stronger version of Proposition 5 in [20]. The proof
given by Stein in [20] can be used here with little modification. Our next
lemma is a variation of Lemma 3.2 of [13] whose proof can be given by using
essentially the same argument as presented in [13]. We omit the details.

LeMMa 3. Let W € C°(R"), ¢ € CF°. Letk be o positive integer. Assume
that

(10) N D)< B<M
|et|=FK

for = € supp(yp). Let
V = {z € R™: dist(z, supp(y)) < B}.

Assume also that |DP¥(z)| < A for all |8 =k +1 and z € V. Then there
exists a constent C which depends only on A, M and p such that

| f Az
RT\

foree [0,1].

iy <ox (5 iewtar)

v |a|=k

LEMMA 4. Let F : (—=1/2,1/2)"T — R be C? and satisfy

(i) F(OJ 0) =10,
(i) [8F(0,0)/8t > m > 0,
(iii) |9%TPF(=,t)/0z%0t°] < M,

for (z,t) € (—1/2,1/2)" and 1 < |a| + 8 < 2, where ¢ € R, ¢t € R.
Then there are constants h, d, with 0 < d < h < 1, ond o function g :
(—d,d)™ - (—h, h) such that for each z € (—d,d)" we have F{z, g{z)) = 0
and |F(z,8)| = (m/2)|t — g(z)| for {z,t) € (~d,d)™ x (—h,h), where the
constants d and b depend on M and m only.

Lemma 4 is a quantitative version of the implicit function theorem and

can be proved by using the usual proof of the 1mp11c1t function theorem (see,
for instance, [19]).
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3. Boundedness on L?(R™). We now prove Theorem 1. Let P be a
non-negative C° radial fanction which satisfies

supp() € {1/2 < |2f <2} and Z Y2 Pz)=1 forz#£0.

J=—oa

I*nsi we prove the case a > 0. Let ;(z) = ¢(2772) and n(z) = 1 —
E | W), For § =10,1,, , define T} by T; f = f * (2;, where
(11) Qn( ) = €% T’)K( In(z),
{12) (o) = PO K (g a)(z) forj=1,2,...
Clearly we have Tf Tyf+ Z? L 75 Since n(x) = 1 for |z] < 1, we may
further decompose (25 as

(2) = K(@)X i<y () + K@) - Lxgai<iy(z)
+ Eng(w)K(m)W(x)X{]m\zl}(33)-

By (3) and (6) we find that

SIE@|e* —1jdz < C [ g7 dz < C,
at] <1 |z|<1
and
[ €@ K@p@)de<C [ |zl Tz < C
[w]2) 12w <4
Thus we have proved that [{Tof||z» < Cpl|flle-
For j = 1, let T F(€) = m;(£) F(€), where
my(€) = [ @K (2p(277) da
R'ﬂ'
= f ei’[‘ﬁ(zjm)—zjg'ﬂZj”K@jm)@b(m) dix.
B
Lt ga)r=2 ~I9[(20 2) + 27 - ], IF |a| =2, then D*¢(z)=27C~2(D*E)(2 z).
Thus by (4), for J‘/.Z < |=| < 2 we have
N7 [Dg(w)| = 21 S {(DYF)(2a)| 2 0PI a* 7 2 O
R [ee]=2
For [} £ 2 and |a| = 3, by (3) we have
D ¢(w)| < CHE|(DE)(@x)| < C.

Invoking Lemwa 2, we obtain |m;]e < €277 a/2 whicl implies that | T ||2,2
< (27942 By the uniform boundedness of |[Ty||1,; and interpolation we
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have “Tg“p,p S O2—ju./;0” for j = 1727"-) 1< P < 2 and l/p+ 1/].7’ =1.
Thus we have proved that for 1 < p < 2,

1Tlpp < D1 Tllpe < C.
jz0
Finally, by using duality, we obtain the boundedness for 7" on L? when p > 2.

The proof for the case a < 0 is similar. We let f(z) = 1 — j;l_co i (2)
and write

-1
O K () = fn(z) + Z 02;(z),
Jj=—o0
where the (2; are given by (12) with § < —1 and Qy(z) = &) K (2)7(z).
We have
1F # ollp < CLflps If # Byl < C2If]p G < -1

Since a < 0, we obtain

—1 )
175l < C(1+ 32 279%) £l < Ol ]

j=—o0

The proof of Theorem 1 is now complete,

By inspecting the proof of Theorem 1, it is clear that the following the-
orexn holds.

THEOREM 3. Let & be a real-valued funciion satisfying

> \DB(x)| 2 Cla|*,

fal=k
and
|Do®(z)| < Clz|*1el for |a| =0 and k + 1,
for some fited k > 2 and a # 0. Let K be a Calderén-Zygmund kernel and

2z) = e®@ K (). Then the operator Tf = p.v. 2+ f is bounded on L for
1<p<eo.

A special case which is worth noting is when K{(z) is an odd and homo-
geneous Calderén~Zygmund kernel and $(z) is even and homogeneous of
degree a with a # 1. An application of the method of rotation ([22]) would
reduce the operator T to one with phase function [2|* (¢ € R) and yield
the LP (1 < p < o) boundedness of T'. In this case, there is no need to
impose any smoothness conditions on &|gn-1. However, such a method is
not applicable to problems concerning endpoint estimates.

We now present an example for the case when a = 0. Let z € R? and

&(z) = oo/ |z| € C=(R*\{0}).
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Then we have

[D®(e)] < Cla|™l® for o] <3, > D) = |22
lo]=2

Let K(x) = z3/|z|?. Then K is C°° away from the origin, homogeneous of
degree ~2 and satisfies

[ K(z'ydo(z') = 0.
z'g8’!
Let 2(z) = e K (), 2 n(z) = 2(2)x{:<|z| <31 (z). We find that
(i} 2 € C=(R*\{0}),
(ii} £2 is homogeneous of degree —2.

Since

w
[ Im@(z')do(a’) =2 [ sin(sin6)sinddd > 0,
st 0
we see that lime .o x— oo 2, v does not exist (in the sense of distributions).
This example shows that Theorem 1 cannot hold when a = 0.

4. Boundedness on H!(R"). By a standard procedure which uses the
atomic decomposition (Lemma 1) and the Riesz transform characterization
of B!, the proof of Theorem 2 can be reduced to the proof of the following
proposition (see, for instance, [13]).

PRrROPOSITION 1. Let T be gwen as in Theorem 2. If b(x) is a (1,00)
atom then {|Th|, < C.

Proof Let b(z) be a (1,00} atom which is supported in a cube Q@ C R™.
Let 2y be the center of @, and § be its sidelength. Set a(z) = 6™b(zg + 6x).
It is easy to see that a{z) is a (1, 00) atom with support contained in Qg =
(~1/2,1/2)" and satisfies [|allo < 1, [, a(z) dz = 0. Let Ks(z) = 6" K (6z)
and

T f(z) =pv. [ 0Ky (z — ) f(y) dy.
"
Hence we have (Th)(zo + 8x) = 6 "(Tsa)(x), which leads to ||Th||z: =
| Tsalz:. To prove our propesition, it suffices to show that
(13) [Tsafy < C,

for some constant €' which is independent of & > 0. We observe that the
function K satisfies (6) and (7) with a constant A that is independent
of §. For the sake of simplicity, we shall denote K5 by K.
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First we consider the case a > 1. By Theorem 1 we have ||Ts||z2,z2 =
”THLH,LZ _<_ C. Thus

[ (Tsa)(z)| de < O Tsall2 < C.
|z <4

Choose b = max{4,6-% =1} hence b*18% > 1. To estimate the integral

f4<\w|<b Tsa(z)} dz, we may assume b > 4, hence 6°716" = 1. We have
[ ma)e)ide< [ [ 10278 — PO K (2~ yla(y)|dy do
4<2|<h 45 <b Qs
+ [ | [ K@=y dy|de =1 + .

4<]z|<b Qo

Because the Calderén-Zygmund operator is bounded from H Lto L', we
have

I < O”ﬂ.“Hl <C.
By the mean value theorem and (3), we also have
L<C [ 662 2| Mz < C.
|zl <b
Next we estimate f\m|>b |(Tsa) ()| dz. Let ¢ & C§P(R™) such that ¢(z) =1

if 1 < |z] € 2and %(z) =01if |z| < 3/4 or |z| > 3. Let @ C Qg be a cube
with diam(Q) = d > 0, which will be chosen later. Define SQ by

Sf)f( (2 i f o1 (b 51; y) dy.

‘We shall first obtain an estimate for the L%norm of each operator ;. Let

Li(®,9) = xo(@)xoly) [ &P -FE—y2 (9=7 )

Rfl
= 2y (a)xqly) [ P bxm PRty gy,
Rﬂ
Then
(S2 82 f(z) = [ Li(z.9)fly) dy.
R"]

We fix 7 such that 2/ > b. Then 5 > 2. Define
Hs(x,y,2) = (216) 961 [d(27 62 — 6y)

By (3) and (4), we find

(14) VHs(z,y,2)| £ Cd,

— $(27 6z — bz)).
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and
(15) > IDSHs(z,y,2)| < C,
|| =2

for w,y € @, z € supp(¥), where C is a constant independent of § and 7.
Invoking Lemma 3, we get (by letting & = 1, and d be small if necessary)

L@y € 2xo(exe IR [ V. Hs(e,y,2)| " d
1/25]=]<4

For fixed z,

J 1L, y)l dy

i1l

<@ Tx(e) [ [ VaHs(my. )| dy de.

1/252|54 Q
For fixed = € Q and 2z € {1/2 < |z| <4}, by (4) there are u,v € {1,...,n}
such that
e

dx,, 0,
Let € = 1/6, h{y) = (278)*=26 D, #(276z — by) — D, B(276z — 6z)]. Then
clearly hi{z) = 0, {{8h/dy,)(z)| = Cq, ané |D*A(y)] < C) for 1 < |a| < 2,
y € (I, where Cy and Cy are constants independent of §. By Lemma 4, if we
choose d = diam{Q) to be sufficiently small, then for y € z + (2d)Q¢ = Q.

|R(w)] = (Co/2) |y ~ 9{5")],

where ' = (Y1,.+ -, Yu=1:Yut1,- -+, Yn), 80d g(y') may depend on z and =.
Therefore we have

(2762 — bz)| > C|276|*2.

—1/2

[ VHs(z,y,2)| 7 dy < f t—u z,Y,7) dy< [ W) dy
Q=

ﬁc’f(flyu

Iy —a'|<2d yn—wu|S£2d

— gy M2 dyu) dy' < C.

This implies that

(16) sup f |L; (z, )| dy < C29°[(278)2 18] 72/,
E g

In a similar manner, we have

(17) sup | Ly (z, )| dz < C2PM[(296)> 18] M8,
Y '™
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From (16) and (17), we now obtain
(18) 182l z2. 22 < CP™2((276)" 76712,

Write Qp = Uﬁ:l Qum , where @, C Qo (1 £ m < N) are disjoint cubes
with diam(@..) < d. By (18), we have

[Da@)de s [ [|K(z—y) - Kiz)lla(y)|dyd=

fzmi>b lz}>b Q
£ lel| et tagy) dy| de
2 zb 2l g|alg2 T Qo

<C+ Z f || ="

Vzboligle|goIt?

N
<O+ Z Z Zdjn/zHS;'?mCLHLZ(Rn)

=127 >p

N
<C+C Y Y [setet

m=121>h
< C(l + [5aba—1]—1/12> < C.

N
3 (52a) (m)\ du

This finishes the proof of Proposition 1 in the case when a > 1.

Finally, we prove the case ¢ < 1, a # (0. First we assume that b =
§2/(1-e) 5 4 Since @ < 1, we have

[ 1Ta(z)de < | | [ Ktz —y)a(y) dy| de

|z]>b o[>t B”
b [ 1) ) K o~ ya(y) dy do
|z]>bQo
<O+ [ 8" ol dz <.
jzl>b

By mimicking the proof for the case ¢ > 1, we find

[ Te@ldz<C+o S 20-a/125ai12
4<|z|<h 429 Kb

<0 +Cb(1—a.)/126~o./12 < C,

Oscillatory singular integrals 115

since 1 —a > 0. If §2/(1~9) < 4 then the estimate is even simpler:

[ 1Tsa(z)dz<C+C [ 6l6x)* |z da

jz| >4 |z|z4
< C(1L+ /-l < c
The proof of Theorem 2 is thus complete.
We have the following extension of Theorem 2.

THEOREM 4. Let @ be a real-valued function satisfying
> 1D%@(x)| 2 Clz|* ",

[o|=F
and
|D*®(z)| < Clz|*~1*l for o] = 0,1 and k+ 1,
for some fized k > 2, a # 0,1. Let K be a Calderdn—-Zygmund kernel and

Q(z) = e'* @ K (z). Then the operator Tf = p.v. 2+ [ extends to a bounded
operator on H'(R™).

Remark. Theorems 1-4 remain valid if L? and H* spaces are replaced
by weighted L? and H' spaces with weights in 4, (p > 1) and A;, respec-
tively. We omit the details.
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On algebraic solutions of algebraic Pfaff equations
by

HENRYK ZOLADEK (Warszawa)

Absgtract. We give a new proof of Jouanclou’s theorem about non-existence of alge-
Draic solutions to the system & = 2%, = 2°, £ = y°. We also present some generalizations
of the results of Darboux and Jonanolou about algebraic Pfaff forms with algebraic solu-
tions.

Introduction. In [5] Jonanolou studied the Pfaff equations with poly-
nomial coeflicients. One of his main results states that the subset Z,, of the
set V,y, of Pfaff equations of degree m > 2 on Pé consisting of equations
without algebraic solutions is dense in V,, in the usual topology (see [5, p.
158]). (Lins-Neto in [6] proved that Z,, is also open.) To show this he needs
an example of a Pfaff equation without algebraic solutions and he chooses

(1) (2™ — y™Yda -+ (™ — 2™y + (27 Yy — 2™ )dz = 0,

where m > 2 is an integer. The whole Chapter 4 of [5] is devoted to the
proof of nen-algebraicity of the solutions of {1).

Below we present a new proof of this result based on the author’s orig-
inai generalization (Theorem 3 helow) of a classical theorem of Darboux
(Theoremn 2 below) proved in the preprint [8).

Another generalization of the Darboux theorem, to higher dimensions,
was given in [5] by Jouanolou (Theorem 4 below). In Theorem 5 below we
present our generalization of Theorem 4. Our approach is different from the
ore developed by Darboux and Jouanolou. We are more interested in cases
of fow algebraic solutions of a Pfaff equation but in generic position whereas
they consider situations with many but arbitrary solutions.

We treat Theorems 3 and 5 as the main results of this paper because
the methods developed in them seem to be useful in applications (e.g. in the
center-focus problem or in the problem of integrability).

The origin of the present work comes from the question of J.-M. Strelcyn
at the seminar on dynamical systems in Warsaw in 1992. He stated the
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