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assumption (iii) we get |f;|(z) ~ |=|%°8%. Since w|g, is of order m we see
that g:|s,is of order m — )" deg f; + 1. The latter means that g, can be
written as g; = figl + ¢/, deggy <m—k+ 1L _

Indeed, as the highest order homogeneous part f; of f; is irreducible (for
p > 2) or has only simple zeroes (on So, = P} for p = 2) the highest order
homogeneous part g; of g; vanishes on ﬁ = 0. So, f; divides g, §s = &/s
and g; = xf; + gi1 with gy of smaller degree than deg g;. Then we apply the
same to g ete.

Hence,

w= (Hf;) [W+Zg£df;] + w’=zgil(nfj)dfi,
bES

' is of degree < m and the form 7+ ¥, gidf; has degree m — k.
If m = k — 1 then deg g; = 0, g; = c; =const. Because deg [[ f; 2 m+1
we have n = 0. Therefore w = M~ 1dH, where H =[] ff" is a Darboux first

integral and M =] ff i~ ig an integrating factor.
Ifm<k—1thenwefind g; =0and p=0. Thusw=0. n
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Averages of unitary representations
and weak mixing of random walks

by
MICHAEL LIN (Beer-Sheva) and RAINER WITTMANN {Gottingen)

Abstract. Let S be a locally compact (o-compact) group or semigroup, and let
T(t) be a continuous representation of & by contractions in a Banach space X. For a
reguiar probability 4 on S, we study the convergence of the powers of the p-average
Uz = [T(t)z du(t). Our main results for random walks en a group G are:

(1} The following are equivalent for an adapted regular probability on G: p is strictly
aperiodic; U™ converges weakly for every continuous usitary representation of G I is
weakly mixing for any ergodic group action in a probability space.

(i) If p is ergodic on G metrizable, and U™ converges strongly for every unitary
representation, then the random walk is weakly mixing: n =1 57, [{(u* + f, g} — 0 for
9 € Loo(G) and f € L1(G) with [ fdx = 0.

(iii) Let & be metrizable, and assume that it is nilpotent, or that it has equivalent
left and right uniform- structures. Then p is ergodic and strictly aperiodic if and only if
the random walk is weakly mixing.

(iv) Weak mixing is characterized by the asymptotic behaviour of p™ on UCB; ().

1. Introduction. Let & be a locally compact (o-compact) semigroup
(always assumed Hausdorff). For a regular probability 4 on S, the convolu-
tion operator p* f(t) = [ f(ts)du(s) is a Markov operator on C(S), which
is the average of the translation operators §,# f(t) = f(ts). When S =G isa
locally compact group with right Haar measure A, the regular representation
8 — 6, is continuous in LIp(G,A), 1 < p < oo, Cy(G) and UCB(G).

Let X be a Banach space, and let 7 : § — B{X) be a bounded operator
representation of § (ie., T(st) = T(s)T(t), and sup, [T(s}| < oo). The
representation is called comtinuous if ¢ — T(f)z is continuous for every
z € X, and weakly continuous if f(¢) = (z*, T'(¢)x} is continuous for » € X~
and 2 € X. For groups, this implies (strong) continuity [HRo, p. 340]. For a
regular probability 4 on S, the p-average U,z = [ T(t)z dp is defined in the
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strong operator topology for strongly continuous bounded representations.
If X is reflexive and the representation is Weakly continuous, then U, x is
defined in the weak operator topology by (z*,U,z) = [{a*, T'(t)x) du(t). It
is easily checked that Uyw = U0, with the convolution p * v deﬁncd by
pv(A) = [ [1a(ts)dp(t) dv(s). Note that U} = [T*(t)du(t) is always
defined in the weak-* topology of X*.

An important property for the study of the asymptotic behaviour of U}
is ergodicity of p (i.e., the only g € C(S) satisfying [ g(st) du(s) = g(#) a,re
the constant functlons)

For a group G, ergodicity means that 4 * ¢ = g is satisfied only by
constants {1(A) = u(A~') is the “reflection” of w), and is equivalent to
ergodicity of the random walk (i.e., [N~} E,‘;\;l pEx flly = 0 for f & Li(G)
with [ fdX\ = 0). There are two interesting problems in the study of the
asymptotic behaviour of random walks on groups:

1. The “complete mixing problem”: If 4 is an ergodic strictly aperiodic
probability (i.e., G is the smallest closed normal subgroup a coset of which
contains the support of u), is the random walk generated by i completely
mixing (Le., |[p™ * fll1 — 0 for [ fdA =0)?

2. The “concentration furniction problem”: If & is non-compact, and g
is adapted (the closed group generated by its support is @) and strictly
aperiedic, do we have [|u™ * f|leo — 0 for every f € Cy(G)?

The approach to the second problem in [DLo] was by studying the more
general “unitary representation problem”: If i is adapted and strictly aperi-
odic, does U} converge strongly for any continuous unitary representation?

All these problems have a positive solution if G is Abelian (see e.g. [L]),
or if @ is spread-out (i.e., u™ is not singular for some n)—see [G} and [DLs).

These problems were studied in [IWg], via the study of the convergence
properties of the iterates of the py-average of a bounded continuous represen-
tation of G {or, more generally, of a semigroup &). It was shown there that
if 4 x p is ergodic on 8 X §, then UJ converges strongly for any continuous
reprsentation of & by contractions in a Hilbert space. It follows from the
general theory of L-Markov operators that for a group @, ergodicity of
% p implies weak mizing of u (Le., n=1 30 [{u® * f, g)| — 0 for every
9 € Loo(Gy ) and f € Li(@, ) with [ fd) = 0), which is equivalent to
fpxg = ag € Ly with |a] = 1 holding only for & = 1 and g constant
(see [AaLWe]). Weak mixing implies ergodicity and strict aperiodicity of x
[LW3]. The “weak mixing problem” is whether the converse is true (though
the general answer to the complete mixing problem may be negative).

The purpose of this paper is to study the relationship between weak
mixing of i, ergodicity and strict aperiodicity of 4, and convergence of ur
for all continuous unitary representations. For u adapted, we cha,ra,ctenze
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in Section 2 weak convergence of all U, and study strong convergence. In
Section 3 we prove that a positive boiutlon to the unitary representation
problem implies a positive solution to the weak mixing problem (in metriz-
able groups), and apply this result to metrizable groups which are either
nilpotent, or have equivalent left and right uniform structures.

2. Convergence of U™ for unitary representations. In this section
we investigate the convergence of U for padapted and strictly aperiodic on
alocally compact o-compact group G when U, is obtained from a continuous
unitary representation in a Hilbert space {called for short, just a unitary
representation}.

In the Abelian case, 1 is necessarily completely mixing ([KeMa], [S]),
and U“(U — I} converges strongly to 0 for any hounded continuous rep-
resentation in a Banach space (see e.g. [L], where a semigroup extension is
also given). On the other hand, in the non-amenable case L is never ergodic
[A], so the non-commutative (non—compact) case requires a more careful
analysis (see e.g. [LW3]). It was proved in [DL;] that U} converges weakly,
and strongly if 4 is spread-out, for any isometric contmuous representations
of G in a wniformly convex Banach space (the weak convergence result was
extended to semigroups in [LWs]). Strong convergence for general u, under
the above hypothesis, was proved in [LW,] for groups in the class [SIN] (i.e.,
with equivalent left and right uniform structures [HRo, p. 22]). The concen-~
tration function problem for y irreducible (the closed semigroup generated
by its support is ) is treated in [HoM], and solved in [Wi).

Recall [DLy] that for p adapted with support S, p is strictly aperiodic if
and only if the closed subgroup generated by [ J7° (S7%8™ U §%§~") is G.

Weak mixing properties of Hilbert space contractions are given by the
Spectral Mixing Theorem [K, pp. 96-97]. An application to ergodic Markov
operators with invariant probability, in particular to U/, obtained from an
ergodic action of G by probability preserving transformations, yields the
equivalence of weak mixing to non-existence of unimodular eigenvalues dif-
ferent from 1.

THEOREM 2.1. Let u be an adapted probability on a locally compact o-
compoct group G. Then the following are equivalent:

(i) p is strictly aperiodic.
(ii) For every unitary representation of G, Uy converges weakly.
(iii) For every unitary representotion of G in a complex Hilbert space,
U, has no unimodular eigenvalues # 1.
(iv) U, is weakly mizing for any ergodic group action in a probability
space.
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Proof (i)={ii). We give a simpler proof than that of [DLs], using ideas
of [D].
Let T(t) be a unitary representation. Denote U, by U. Let
Hy={z e H|U"U"z =z =U"U""z for every n}.

By uniform convexity, if z € H;, then T(t)x = x for every

t € [ [supp(i" # u") Usupp(u” = )] = | (5755 U T 5.
=1 el

Since {t | T'(t)z = 2} is a closed subgroup, the strict aperiodicity yields
x € Hy & T{t)z = z, Vt € G. Hence Uz = z if (and only if) z € H,. For
x | Hy we have U™x — 0 weakly [F, p. 85]. Hence U™ is weakly convergent.

(il)=-(iii)=+(iv) is obvious.

(iv)=(i). Let H be the smallest closed normal subgroup a coset of which
contains §. By [DL4, Prop. 1.6}, G/ H is a monothetic Abelian group-—either
compact or Z. Assume H # (I, and let v be the canonical projection of ¢
onto G/H. Then ¢(S) = {p}, and p generates G/H [DLs).

Assume first that G/H is compact. Then ¢(t) is an ergodic action in
(G/H, Agu), and T'(t)f(z) = fp(t)e) is a unitary representation, con-
tinuous since ¢ is. Since ¢(s) = p for any s € S5, U, f(x) = f(pz). Since
G/H is Abelian and p # e, there exists a character x with x(p) 3¢ 1. Then
Uux = x(p)x, yielding a unimodular eigenvalue $ 1, contradicting (iv).

If G/H = 7Z, we denote by (t)* € Z the number corresponding to ¢(t).
Then @{s)* = p* = 1 for s € 5, and ¢ — ©(£)* is a continuous homomor-
phism of & onto Z. Let I' be the unit circle, and o an irrational rotation. For
f € Lo(I') define T(¢)f(2) = f(#a*™"). Then T(t) is a continuous unitary
representation of 7, induced by an ergodic action of G, and U, f(2) = f{az).
But f(z) = z is then an eigenfunction with eigenvalue « # 1, contradict-
ing (iv).

Hence H # G leads to a contradiction, and (i) holds.

Remarks. (1) If we know (ii) only for real Hilbert spaces, we deduce
from (i) the weak mixing condition (iv) and then obtain (i).

(2) It was shown in [DL;] that u x &; is adapted on G x Z if and only if
it is adapted and strictly aperiodic.

(3) Tf G is amenable, the conditions of the theorem are equivalent to

(v) For every bounded continuous representation of G in a Hillbert space,
U} converges weakly.

Clearly (v)=-(ii), and, in the amenable case, (ii)=>(v) using [P, p. 187],
[Ly, p. 83]. :

It is not known if (i) (or any of the other equivalent conditions) implies
strong convergence of U™ for every unitary representation (the “unitary
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representation problem”). It does if y is spread-out [DLsg|, or when G is in
the class [SIN] (cf. [LW)).

THEOREM 2.2. Let G be a o-compact metric group and let i be an adapted
probability on G. Then, Ul converges strongly for every unitary represento-

tion of G if and only if Uy converges strongly for every irreducible unitary
representation.

Proof. Since G is separable, for a given representation T(¢) and z € H
we know that clm{T(t)z : { € G} (where clmY is the closed subspace
generated by Y') is separable (and T-invariant). Hence we may assume 7
separable.

For an irreducible unitary representation Ty (t), let Uy, = [ Ty (£) du(t).
For the given representation T'(¢), the direct integral representation [Di, §8.5]
T(t) = [¢ T,(t) dF(v) yields

n D rrn
Ur= [ Ur, dF(y).
A

We restrict ourselves to clm | J,.q(I — T(t))H = (I —U,)H (the equality
because Uz = z < T(t)x = z for all £, since y is adapted). Hence U, has
no fixed points, so the irreducible trivial identity representation does not
appear in the direct integral representation. For T, non-identity irreducible,
U/, 4 has no fixed points, so our assumption is Uy — Ostrongly. Let 2 € H,
|zl = 1. Then & = f® z, dF () with z, € H.,, the Hilbert space in which
T, represents G, and ||z,|| = 1. Hence, if z has F'{v | 2, # 0} < co, then

Npal? = [ U212 dF(y) — 0

by our assumption and Lebesgue’s theorem. But the vectors z of this form
are dense in the Hilbert space.

Remark. We have adapted here the proof of Proposition 3.4 of [JRT]
(which is now a trivial corollary).

THEOREM 2.3. Let G be a o-compact locally compact group, and let 4 be
an edapted strictly aperiodic probability. If T(t) is a unitary representation
of G with limy, |7 # 0, then there exist o dense subgroup H and a sequence
{z;} with ||z;| = 1 such that |T'()x; — «4]| — O for every t € H.

Proof Denote U, by U.If |U*|| < 1, then lim,, |U™]| = lim,, ||T**| = 0.
Hence the given assumption is ||I/™]| = 1 for every n. Therefore for each n
there is ¢, with |ly.| =1 and [U™y,| > 1—1/n.

Let 2, = Umyay. Then

1—1/n < U yanll = U zn]| < [[2nl] < llyanll = 1.
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Hence ||z — 1. We also have
L= Uzl = U U yon|
> (U™ a0, y20) = 10y |? 2 (1 - 1/n)?

We now define x,, = 2,,/||2]- Since ||z, ]| — 1, we obtain |[U*"x,|| — 1
and [|[UMz,|| — 1. For k fixed and n > k we have |[Uz,|| £ |[UFz,]] €1

and [[U*"z, || < |U**an|| € 1, 80 limyosoo | UFen| = litywee U@, = L.
This is equivalent to
(%) lim (U U e, @) =1 = Lm (U0, 2,.),

n—=o0 n—s0a

which can be rewritten as
{x%) Hm (U ks b e ngiky /2% Tn) = L

Now, for any probability v, if (U, 2y, zn) — 1, then
f (1 —Re{T(t)zn, zn)] dv = 1 — Re{Upay, zn) — 0,

which yields Re{T'(f)an,%.) — 0 in v measure (the integrand is non-
negative), Hence (Uy&n,2,) ~— 1 implies the existence of {n;} such that
(T(t)n,, tn,) — 1 v-ae.

Let n = Yoo, 27Dk 5 u® 4 gk % 5%). By (#+) and the diagonal
process, we have a subsequence {n;} with (T'(t)x,,,z,,) — 1 n-a.e.

Let H = {t| || T(t)xn; — zn,|| — 0}. Then by the above, n{H) = 1, and
clearly H is a subgroup. The support of 5 is [Jg_, (S~FS*% U SkS~+) by its
definition, and is contained in H. Hence H contains the closed subgroup
generated by the support of , which is G by strict aperiodicity. We take
{zn; } for the claimed {z;}.

Remarks. (1) A special case of our theorem is Theorem 3.6 of [JRT]
(where “strict aperiodicity” has the stronger meaning “S is not contained
in a left coset of a closed subgroup of G”, which is equivalent to “@ is the
closed subgroup generated by 15,

(2} If G is metric, we can have a countable H in the theorem.

DEFINITION. An approzimate fived point for a representation 7' {in any
Banach space) is a sequence {z,} with |z,| = 1 and limg, e [7{t) 2, —
Tl =0 for every t € G. :

Remark. If T is o unitary representation which has an approzimate
fired point, then lim ||U%|| = 1. This has to be proved only if the repre-
sentation has no common fixed points, i.e., when M = (I — U)H. But an
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approximate fixed point {z,} satisfies -
I~ U)o = | [ lon = T)a] dit o)
< J llza = Tz dis(t) — 0

by Lebesgue’s theorem, Hence I — ¥ is not invertible, so IU*) = 1 for
every k.

The next two results, due to R. Howe (and used implicitly in [JRT]),
were communicated to us by J. Rosenblatt.

LEMMA 2.4. If T(t) is a faithful irreducible unitary representation of G,
and G has non-trivial center, then the representation has no approzimate
fized points.

Proof. Let t5 # e be in the center Z((@). Since the representation is
irreducible, T(#y) = .l by Schur’s lemma (see [HRo, 21.30]), and since the
representation s faithful, o # 1. If there is an approximate fixed point {2, },
then

[1—a]l=T(t)ozn — 2n| — O
yields a contradiction.

PROPOSITION 2.5. Let G be nilpotent. If T(t) is an irreducible unitary
representation, not identically I, then T'(t) has no approzimate fired points.

Proof Let G = {t € G | T(t) = I}- Then G’ is a closed normal
subgroup, G’ # G and Gy = G/C" is also nilpotent. If #; = t5 mod &, then
T(t1) = T(t2). Hence T1(t) = T(t) is well defined on G4, and is clearly
a faithful representation. Since T and T have the same range, T3 is also
frreducible. Any approximate fixed point for 7" is such for T3—but it cannot
exist, as is seen by applying the lemma to (71, which (being nilpotent) has
non-trivial center.

COROLLARY 2.8. Let u be an adapted probability on a nilpotent o-compact
locally compact group. If T(t) is a non-trivial irreducible unitary represen-
tation, then [n™" 350, UF|| = 0 as n — oo. If u is also strictly aperiodic,
then U] — 0,

Proof, Assume first that p is strictly aperiodic. We use Theorem 2.3,
and then apply Proposition 2.5 to the dense subgroup H, which is also
nilpotent,

[f we drop the strict aperiodicity, we note that » = (8. + 1) /2 is adapted
and strictly aperiodic since p is adapted. Hence (I — U, YH = (I - U,)H
implies |UM] ~ 0 if and only if ||[n™* 3_7_; U%]| ~ 0. The result is now
obtained by applying to U, the result for the strictly aperiodic case.
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CoroLLARY 2.7. Let @ be o nilpotent o-compact metric group. If 1 is
adapted and strictly aperiodic, then U]} converges strongly, for any unitory
representation.

Praoof The previous corollary proves the result for non-identity irre-
ducible representations. We now apply Theorem 2.2,

Remarks. (1) A nilpotent group need not be in [SIN], so the previous
result does not follow from [LW].

(2) The corollary generalizes Corollary 3.8 of [JRT].

(3) For the regular representation in La(G) we have ||u™||z = 1 for any u,
by amenability (using the existence of almost invariant vectors [Z]). Hence
norm convergence need not hold without irreducibility.

In some cases, we can improve Theorem 2.3. As an application, we shall
obtain uniform (operator-norm) convergence of U™ for a certain class of
non-amenable groups—those with Kazhdan’s property (T) (by [DGu], for u
adapted on any non-amenable group, ||p"||2 — 0).

The following lemma follows from the proof of [LW5, Theorem 2.11].

LemMA 2.8. Let u be o spread-out probability on G. Then fore > 0 there
exist a number N and a neighbourhood A of e such that for t7's € A and
n > N we have |T(E)U™ — T{(s)U™| < e.

THEOREM 2.9, Let u be an adapled strictly aperiodic spread-out probo-
bility on a locally compact o-compact group. Let T(t) be o unitary represen-
tation. If limn—.o |UZ| > O, then there emists {u;}, |jus|| = 1, such that
1T w; — u;|| — 0 as §j ~ co uniformly on compact sets.

Proof Let {y.} be as at the beginning of the proof of Theorem 2.3,
ie, [lys] = 1 and ||Umy,| > 1 — 1/n, and let z, = Ulyyy,. It is shown in
Theorem 2.3 that ||zn|| — 1, and 3, = 2,/||zu| has a subsequence {z.;}
such that [|T'(t)zn; ~ &n,|| — 0 for ¢ in a dense subgroup H. Let u; = @y,.

We will now show convergence for every ¢ € G, uniformly on compact
sets. Let C C & be a compact set. For € > 0, let N and 4 be obtained by
the previous lemma. Let 41 be a neighbourhood of e such that A7'A4, C A4,
and let {#;41}].; be a finite covering of C, with t; € C. There exist {s;}7_,
with §; € H and s; € 4,4, by density of H. Let ¢t € . Then ¢ € ¢,4, for
some i, and t71s; € AT A; © A, so for j > N we obtain

17y — ug|| < (| T(uy — T(ss)ugl + | T(si)us — ug]
=Tt y2n, — T(s:) U™ yan, |/ |20, + | T{0:)0; — us]
< 2e+ (| T(s)uy — wyll, '

which shows uniform convergence to zero, since there are finitely many ;.
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THEOREM 2.11. Let G be a locally compact o-compact group in the class
[SIN], let u be an adapted and strictly aperiodic probability, and let T(t)
be a unitary representation. If limy,_.g (UR] > O, then there exists {u;},
lusl| = 1, such that | T()u; — u;]| — 0 5s § — oo uniformly on compact
sets. :

Proof. Since ||U]| < 1, the assumption is |U"| = 1 for every n. By
the uniform boundedness principle, there exists £ € M with sup |nUmz||
= oo. Let ap = |[nU™zfl. Then limsup, . (ansi/an) < 1 for each i. If
limsup,, , {6nvi/an) < 1 for some 4, then > ohei Gkit; < oo for each 0 <
J <1, 80 a, — 0, a contradiction. Hence

limsup (n + )| U x| /(n||lUz|) =1  for each i > 1,
n—ros

so there exists an increasing subsequence {k;} with ||U/%+ig|/|U*z] >
1-1/i. Let y; = Uktz /|| 2| Then ||y;]| = 1 and [Uty;|| > 1—1/4. It follows
from the proof of Theorem 2.3 that for z, = U™y, we have ||z, — 1, and
Zn = Zn f|| 2, || has a subsequence u; = x,, with |T(t)u; — uy|| — 0 for ¢ in
a dense sugroup H.

In the proof of [LW,, Theorem 2.9}, it is shown that if & is in [SIN], then
for x € X and every & > 0, there is a neighbourhood A of e such that for
t™'s € Aand n > 1 we have |T(t)U"z — T(s)Uz|| < &.

The proof of the convergence [T°(¢)u; — u;|| ~ O uniformly on compact
sets is now as in the previous theorem.

Remark. The results of Theorems 2.3, 2.9 and 2.10 are valid if we
drop the strict aperiodicity, provided we replace [|UZ{| by |ln=" 320, UZ|.
See the proof of Corollary 2.6.

DEerINITION [Z]. A locally compact o-compact group has Kazhdan’s prop-
erty (T) if any unitary representation T, with ||T()y; — y;]| — 0 uniformly
on compacta for ||y;|| = 1, has a non-zero fixed point. A non-compact group
with Kazhdan’s property (T) is non-amenable [Z, p. 132].

CoroLLARY 2.11. Let G be a locally compact o-compact group having
Kazhdan’s property (1), and let p be adapted. Assume either that G is in
[SIN] or that u is spread-out. Then for every unitary representation of G,
NN U} — E|| — 0 (where E is the orthogonal projection. on the
common fized points). If u is also strictly aperiodic, then U] — E| — 0.

Proof Assume first that u is also strictly aperiodic. (J—E)H is invariant
for the representation, so we look at the representation in (I — EYH. Hence,
it is enough to assume F = 0. Now, if lim ||U™|| > 0, we deduce, from either
Theorem 2.10 or Theorem 2.9, and from property (T), that {T'(t)} has a
non-zero common fixed point—a contradiction. Now 1|U(T}% mH i — 0
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[lU* — E|| — 0 yields the result. When p is not strictly aperiodic, we obtain
the result as before, using v = (6. + u).

Remark. The convergence ||U} — E|| — 0 for G discrete with prop-
erty {T), under the stronger assumption that S~1§ generates G, is proved
in [JRT].

3. Ergodic theorems and weak mixing of random walks. Weak
mixing of a Markov operator on Ly is a strictly weaker notion than complete
mixing, and strictly between them we have ergodicity of the Cartesian square
[AalWe|. However, it is not clear if these notions are different for random
walks on groups (they coincide if 4 is spread-out [G], or if G is Abelian or
compact). It was proved in [LW3, Lemma 3.4] that if p is weakly mixing,
then it is ergodic and strictly aperiodic. The “weak mixing problem” is
whether the converse is true. Recall [A] that ergodic random walks cxist
only in amenable groups (and every amenable group has ergodic random
walks—cf. [R}, [KaV]).

In this section we deal with weak mixing, in the sense of [JL;] and [JLs],
of the average U, of a continuous representation of a semigroup &. The
subspace on which the limit behaviour should be studied is (T — U,)X, which
is a subspace of N = clm |J,. (I — T(#))X.

Ergodicity of y means that only constants satisfy [ g(st)du(s) = g(1)
with g bounded continuous, so it is well defined also for semigroups. It was
shown in [LWs] that ergodicity of 4 on S implies that for every bounded
continuous representation 7'(¢) in a Banach space X, we have

(31 T<T X =N,
(3.2)  Uiy* =y* & T*{t)y* = y* for every ¢ € S.

The proof in [LW;] shows that (3.1) and (3.2) also hold if only weak con-
tinuity of T(t} is assumed, provided that U,, defined now by (2", V) =
J{&*, T(¢)z) du(t), maps X into X, and not just into X**.

THEOREM 3.1. Let 8 be a locally compact Hausdorff semigroup with
countable base, and let p be an ergodic probability on §. Assume that for
every continuous representation of & by isometries in o Hilbert space, the
iterates Vi of the p-average converge strongly. Then for every bounded con-
tinuous representotion of S in o Banach space X, we have

(3.3) lim { sup ii](m*,Uﬁm)]}:O Yz e N.
k=1

L—+0Q s ff<1 n .

Froof. By passing to an equivalent norm, we may assume 1Tl <1
for ¢t € 8. We denote U, by U. Let 2y € N. Then |jn~! 3 ohei Ukzgj — 0.
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Assume there is z* € X* with limsupn=' Y F_, [{z*, U¥zg)| > 0. Let
Y = cIm{T(t)zq | £ € §). Since S is separable, ¥ is a separable closed sub-
space, invariant under each T'(¢). Thus, we may assume X to be separable.
Let B = {z* € X* | llz*|| < 1}. Then B is a compact metric space in the
w-topology. By our assumption, limsupn™! Sov_, [(zg, UFzg)] = o > 0 for
some zj; € B.

Define R(t) on C(B) by (R(t)f){z*) = f(T*(t)z*). Since T*(t) is w*-
continuous, R(t}f € C(B), and | R(?)] < 1. Clearly R(t) is a representation
of §. We show that it is weakly continuous: Let m & C/(B*) be a probability.
If ¢, — tp, then T*(¢,)z* — T*(tp)x* for every 2* € B, by w*-continuity of
i— T (¢)z*. Hence

(m:R(tn).ﬂ = _f f(T*(tﬂ)a:*) dm(a:*)
— f F(T* (o)™ Ydm{z™) = {m, R(£) [
for f € C(B) by Lebesgue’s theorem.

Let f € C(B). For z* € B fixed, f(T*(¢t)z*) is continuous on S, by
wr-continuity of ¢ — T*(¢)z*, so the integral

Vi) = [ AT du(t) = [ R(E)f(a")dp(t)

is well defined. Since each T*(2) is continuous on B, if % — z* we obtain

Vi) = [ (T @)e}) dut) — [ F(T*(8)z") dult) = V(")
by Lebesgue’s theorem (for (8, 1)), and since B is metrizable, V f € C(B).
Now, every x € X defines f, € C(B) by fz(z*) = {z*,z). We then have

fua(z*) = (z*, Uz) = [ (2", T(t)z) du(t)
= [ (T e, ) dult) = V fa(z").

Hence fym, = V™ f, forany z € X.

Let m € C(B)* be an invariant probability for V, ie., V*m = m. By
ergodicity of u, we obtain B*(¢)m = m for every t € §. Hence H(%) is also
(extendable to) an isometry of Ly(B,m). For f € C(B) we have [ |R(t,)f —
R(t)f|? dm — 0 when ¢, — t, by Lebesgue’s theorem (pointwise convergence
of the integrand follows from weak continuity of R(t)). Hence R(?) is a
strongly continuous representation of & by isometries in Lo{m), and the
p-average [ R(t) du(t) is V. By the property of g in the theorem, V™ is
strongly convergent in La(m). For fu, we have |[n™! 30 V¥ foillow) — 0,
hence also in Ly(m), 80 |V faullpaimy — 0. Hence [ (V™o ldm — 0 for
every V-invariant probability 1.

Let limnj"lzz'il (x5, Ukzg)| = a. Let m be a weak-+ limit point, in
C(B)*, of n; ' 3 pl, V**6;0. Then m is invariant for V. Since B is metriz-
able, C(B) is separable, so there is a subsequence (still denoted by {n;})
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with {m, f} = lim;, nj"l Sonl, VEf(zh) for every f € C(B). Moreover, for
i > 1 we have

(s [VEfl) = Tim 5 S (VHV £ ()
‘ b p=1
1 1y 1 iz
> limsup — VR F(2h) = limsup — Y |[VF£|(zh).
sup gl (@) = lim sup = ; 5

Hence
] l n_r, 1 7]._-,‘
(mz |V‘Lf-'L‘uF> Z lim E Z ‘kamol(ma) = H;fn 7'—1;" Z |<3«"37 Ukmfl)l = 0,
k=1 k=1
contradicting [ |[V"f,|dm — 0 obtained before. It follows that
nt Y et [{&*, Ukl — 0 for every z* € B. The uniformity on B (in
{3.8)) follows from [JL;] (see also [K]).

Remarks. (1) The assumption of a countable base is used for charac-
terizing continuity in terms of convergence over sequences. The theorem can
be applied to a locally compact group (if and) only if the group is metriz-
able g-compact, since the existence of a countable base at the identity is
equivalent to metrizability [HRo, 8.3].

(2) The theorem shows that a positive solution to the “unitary represen-
tation problem” will imply that for metrizable groups, u is weakly mixing
if and only if it is ergodic and strictly aperiodic.

(3) The theorem will be of value {for semigroups) even if there is a
positive solution to the complete mixing problem.

COROLLARY 3.2. Let 8 be as in the theorem, and let i be o probability
such that px p is ergodic. Then for every bounded continuous representation
wn & Banach space, (3.3) holds.

Proof Clearly u is ergodic, and p satisfies the assumption of the theo-
rem by [LWs].

Remark. For any Markov operator, ergodicity of its Cartesian square
implies weak mixing [AalLWe]. Since this can happen with an invertible
transformation preserving a o-finite measure, in general there will be no
La-norm convergence, unlike what we obtain for random walks on groups
by [LW3]. For an ergodic Markov operator with finite invariant measure,
La-norm convergence is equivalent to complete mixing, Thus, ergodicity of
f X p seems to be a strong condition for random walks on groups, and it is
not known if it is implied by weak mixing {or even by the strong convergence
of Uy for every unitary representation).
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THEOREM 3.3. Let G be ¢ metrizable locally compact o-compact group.
Assume that G is in [SIN] or that G is nilpotent. Then the following are
equivalent for a probability u:

(i) p is ergodic and strictly aperiodic.
(ii) w is ergodic, and for every unitary representation, Ul is strongly
convergent.

(iii) For every bounded continuous representation in a Banach space,
(3.3) holds.

(iv) w is weakly mizing.

Proof. (it)=>(iii) by Theorem 3.1.

(iii}=+(iv). We defined N = clm Uiea( — T(£))X (without requiring
ergodicity). When we take the canonical representation by right translations
in Ly (G}, (3.3) yields exactly weak mixing, since N = {f € L1(G): [ fdX =
0} (see [LWq]).

(iv)=-(1) is proved in [LWy).

(i}=>(ii) is proved in [LW,] for G in [SIN], and in the previous section
for & nilpotent.

Remarks. (1) A positive solution to the complete mixing problem will
make the previcous theorern obsolete.

{2) The previous proof shows that (ii)=>(iii)=(iv)=(i) in eny metrizable
group.

{3) If p is symmetric, the conditions in the theorem are equivalent in any
metrizable group, since (i)=>(ii) is satisfied {DL3).

(4) By [HRo, 8.18 and 4.14(g)], G metrizable is in [SIN] if and only if it
has a two-sided invariant metric.

We now show that the last two conditions in the previous theorem are
always equivalent, and characterize weak mixing by properties of the regular
representation (by right translations) in UCB;{G).

Let v be a signed measure on a locally compact group G. Then v = f{t)
= [ f(ts)dv(s) defines an operator on varions function spaces (as in the
introduction), with norm at most |v| (the total variation of the signed
measure ).

LeMMA 3.4, Let {v,} be a sequence of signed measures on a locally com-
pact o-compact group G with sup,, |va|| < oo, If f is right uniformly con-
tinuous and bounded, then {v, = f} is equicontinuous.

Proof. Since f is right uniformly continuous, for any & > 0 there exists
a neighbourhood V; of the unit e such that

sl e Ve [f(s) - ()] < &
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Hence if ss'~! € V., then (st)(s't)"! = 5’71 € ¥, and |f{st) ~ f(s't)| < &
for any t € G. Integrating over ¢ with the measure v, we obtain
s8' 7 € Ve = fun = f(8) = v x f(8)] £ ellwn

and the assertion follows. In fact, we have shown that the sequence {v,, * f}
is even right uniformly equicontinuous.

THEOREM 3.5. Let ' be o locally compact o-compact group. Then the
following are equivalent for a probabilily
(i) For every bounded continuous representation in ¢ Banach space,
(3.3) holds.
(ii) (3.3) holds for the regular representation of G' by right translations
in UCB{G).
(iii) For everyt € G and f € UCB{G) we have

S 2SSl (=« N =0

k=1

(iv) g s weakly mizing.

Proof We trivially have (i)=-(ii)=>(iii), and (i)=(iv). We first prove
{iil)=(i).

Let T be a bounded continuous representation of G in a Banach space X.
Fix y € X and 2* € X*, and define f(s) = {z*, T(s)y). Then f € UCB,{(G)
by continuity of the representation, and we have
(W= 8ex f)le) = [ F(rtydu(r) = [ (27, T(rt)y) du*(r) = (=", UFT (t)y).

Using the above also for ¢ = e, we obtain

Tt OO

> UE = T = 23 b« (= b )] — 0.
k=1 k=1

By continuity, we obtain limy, oo n™ 350 [{(&*,Ukz)| = 0 for 2 € N and
g* € X*. The uniformity in (3.3) now follows from [JL;].

(iv}=(iii) follows by applying the following propesition to v, = w -
B &, for each ¢ € G.

PROPOSITION 3.6. The following properties are equivalent for a bounded

sequence of signed measures on a locally compact group G-

(M) lim © i e #h(e) =0 (he UCBI(Q)),
b=1

n—oe n

() lim EZU h@)i * F@)\da)| =0 (he Lo, Fe L),

n—de M,
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Proof. The proof of (i)=(ii) is similar to that of (iii)=>(i) in the previous
theorem.

_ To show the converse implication, we assuyme that (if) holds. Let g be
a bounded right uniformly continuous function. By Lemma 3.4, for £ > 0
there exists a neighbourhood V of the unit element e of & such that seV
implies |y, * g(s) — fin, * g(e)] < & for any n € N. Thus, if fr € L with
Sfuvdh=1and {fi >0} CU, then

finx g(e) = [ fu(itn+9) d/\’ Se (neN).
On the other hand, by (ii), we have

n

711Ln;o%2’f Forljin * g) d)\lznlin;oég‘f glvp * fr)dA| = 0.

k=1

Hence we obtain

: I~
lim sup ;Zmn *g(e)| <e.

n—oo i=1
Making £ > 0 arbitrarily small, we obtain

n-—0c 7,

lim 23" #(e)| =0 (g € UCB(G).

Now, if h € UCB;(@), then g(s) = h(s~1) is right uniformly continucus and
vy * hie) = fin * g(e), so (ii) follows from the above.

Remark. Condition (ii) of the theorem can be formulated for a Markov
operator F on a locally compact o-compact metric space by

n

: 1 * k = *
Jim = ; [(:c_ ,PYI~P)f)|=0 YfeUCB, Y&* € UCB*.
In a compact metric space K, this becomes

] ]_ T k
i = ; [PE(I-P)f(t) =0 Vfe C(K), VteK,
and implies complete mixing in L of any ergodic invariant probability. Thus,
we expect that the converse of Theorem 3.1 is true (at least for groups, even
il there is a negative answer to the unitary representation problem).

THBEOREM 3.7. Let G be o locally compact o-compact group. Then the
following are equivalent for a probability u:

(i) For every bounded continuous representation in o Banach space,

(34} Uly" = ay” with |a| = 1= T"(t)y" = y* for every t € G.
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(ii} The only functions g € UCB,.(G) satisfying ji* g = ag with |a| =1
are the constants.

(iii) The only functions g € C(G) satisfying i+ g = ag with |a| = 1 are
the constants.

(iv) p ts weakly mizing.

Proof. (iv)=-(iii} because even in L, only constants satisfy the squa-
tion when y is weakly mixing (since for any contraction U in a Banach space,
(3.3) implies that U* has no unimodular eigenvalues different from 1).

(1i)=+(ii) is clear.

(ii)=>(i). Let T(t) be a bounded continuous representation in the Banach
space X, and let y* € X~ satisfy Ujy* = ay” with || = 1. For z € X define
g(t) = (T*(t"*)y*, ). By continuity of the representation, g € UCB,.(G).
Since T*(¢) is an anti-representation in X *, we have

prgls) = [T (7 ™)y, 2) die) = [ (T (), T(s™ ")) dpa(t)
= {Uy" T(s™M)z) = aly*, T(s ")z} = ag(s).

By (ii), g is constant. Since this is so for every z € X, we have T*()y* = y*
for every t € G,

(1)=(iv). We apply (3.4) to the regular representation by right transla-
tions in 1, (G), and obtain (iv) from the general weak mixing theorem for
Markov operators proved in [AaLWe].

Remarks. (1) The regular representation by right translations is con-
tinuous in UC'B,(G) if and only if G has equivalent left and right uniform
structures (ie., G € [SIN]). :

(2) For a general contraction U/ on a Banach space, (3.3) may fail even
if U* has no unimodular eigenvalues # 1 [JLq].

THEOREM 3.8. Let § be a locally compact Hausdorff semigroup with
countable base, and let u be an ergodic probability. Then the Jollowing are
equivalent:

(i) For every continuous representation of § by isometries in a Hilbert
space, (3.3) holds.

(ii) For every bounded continuous representation in a compler Banach
space, Uy has no unimodular eigenvalues # 1,

(iii) For every bounded continuous representation in o reflerive Banach
space, (3.3) holds.

(iv) For every bounded continuous representation in o Banach space X
in which every bounded sequence has a weakly Cauchy subsequence, (3.3)
holds.

(v) For every bounded continuous representation in a Banach space such
that {Umx} is weakly conditionally compact for every z € X, (3.3) holds.
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Proof. Clearly (iv)=(iii)=(i).

(1)=(iv). Let zo N, and proceed as in the proof of Theorem 3.1 to
construct V. Since HN—l ZQ’___I Uky;o“ — 0, we have “N*l EkN=1 Vk_fmu H —
0in C(B), and hence in La(m) for any V-invariant probability m. Applying
(3.3) to V we obtain N=12N (W £, BY| — 0 for every h € La(m), so
for some subsequence, Vhif, — 0 weakly in Ls(m). Since U*zy has a
subsequence {n;} which is weakly Cauchy, we have g(e*) = lm V™ fo (%)
well defined, and Borel measurable. Since V™ foy — 0 weakly in Ly(m),
g =0 m-a.e. Hence |V"f, | - 0 m-a.e., so [[V™ fzsllz — 0. Now we can use
the remainder of the proof of Theorem 3.1.

()=>{ii). Let Uzg = aup with o] = 1, & # 1. Then 2y € N. For any
subsequence {a®} there is a convergent subsequence {a™}, so the proof of
(i)=(iv) above applies.

(ii)=(1). Let T(t) be a representation of S by contractions in a complex
Hilbert space. Then its p-average U has no unimodular eigenvalues different
from 1, so by the well-known “weak mixing theorem” [K, p. 96], U satisfies
{3.3). The complex case yields the real case.

{v)=>(i) is obvious, and (i)=(v) is proved like (i)=>(iv).

Remark. A (separable) Banach space satisfies the hypothesis in (iv) if
and only if it does not contain an isomorphic copy of I; (see [Ros| for the
real case, [Do] for the complex case). In particular, (iv) applies to spaces
with separable duals.

COROLLARY 3.9. Let u be an ergodic probability on a locally compact
o-compact metrizable group G. Then the conditions of the previous theorem
are all equivalent to strict aperiodicity of u (and its equivalent conditions in
Theorem 2.1).

Proof. Since p is ergodic, it is adapted. Theorem 3.8(ji) implies Theorem
2.1(ili), and Theorem 2.1(ii) implies Theorem 3.8(i).

Remark. We do not know if also for u ergodic on a semigroup, the
conditions of Theorem 3.8 imply the weak convergence of U/ . for any repre-
sentation by contractions on a Hilbert space. A sufficient condition for this

property is given in [LW].
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