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On reduction of two-parameter prediction problems
by

J. FRIEDRICH, L. KLOTZ and M. RIEDEL (Leipzig)

Abstract. We present a general method for the extension of results about linear
prediction for g-variate weakly stationary processes on a separable locally compact abelian
group Ga (whose dual is a Polish space) with known values of the processes on a separable
subset S C Gy to results for weakly stationary processes on (1 x G with observed values
on Gy x S2. In particular, the method is applied to obtain new proofs of some well-known
resuits of Ze Pei Jiang.

1. Introduction. Consider a multivariate weakly stationary stochastic
process X on a locally compact abelian group G with values in a Cartesian
power of a Hilbert space . Central problems in prediction theory are the
search for methods to determine the orthogonal projection of a value of the
process onto the closed matrix linear span Ws of the values of the process on
the set §' C & as well as to find criteria for the S-regularity and S-singularity
of the process, where S denotes a certain family of subsets of G. The values
of the process on § {resp. on the sets of S) may be interpreted as observed
values of the process.

If & is the group Z or R of integers or reals, resp., and if the subset 5 is
the set of negative numbers in @, the above mentioned problems are known
as extrapolation problems of Kolmogorov. If S is an interval (—a,a), we
have Krein's extrapolation problem. If § is the exterior of a finite interval
(—a,a) C G, we have an interpolation problem. If the system S comprises
all sety (—o0,a) C @, a € G, then S-regularity and S-singularity coincide
with the usnal notions of regularity and singularity. These specializations
were extensively discussed in the literature.

It is natural to search generalizations of the corresponding results for
the following situation: Suppose that the process X is defined on the group
G =Gy xZ or G = G xR, where S or the sets from S have the form
S =Gy %8, 8 CZ%Zor S C R Inthis case &; denotes an arbitrary
locally compact abelian group. Papers dealing with such problems are [4] and
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[5], see also [6] and [7]. These papers treat generalizations of Kolmogorov’s
extrapolation problem in the cases Gy = Z and Gy = R.

Here we present a general method for the extengion of results about
linear prediction for a g¢-variate weakly stationary process on a separable
locally compact abelian group Go whose dual group is a Polish space to
appropriate results for processes on the group = &y x Gy, where ¢y is an
arbitrary locally compact abelian group. We write g1, g2, and g = (g1, g2) for
the generic element of Gy, @a, and the direct product G = G %X G, resp.
Similarly, the dual groups are denoted by Iy, Ih, and I'. It is well known
that I' = I't x I3 in a natural way, The action of the character v € I" on
g € G is denoted by [v, g] and we use similar notations for the other groups.
In particular, if v = (y1,v2) and g = (g1, g2), we have [y, g] = [v1, g1][v2, g2]-
Thus, throughout the paper, G; will denote an arbitrary locally compact
abelian group and Gs a separable locally compact abelian group whose dual
group I% is a Polish space, that is, a topological space whose topology is
metrizable, such that I is separable and complete.

The main tools are direct integrals of Hilbert spaces. For the reader’s
convenience we state some appropriate results in the second section. Let
Vg be the image of the space spanned by the values oi the process under
Kolmogorov’s isomorphism. We obtain

VG=f H(v) paldm)
A

as a direct integral of Hilbert spaces. The Hilbert spaces H(vy), v € IN,
are spaces of square-integrable functions on I',. We choose a non-negative
o-finite measure u on I' such that all entries of the spectral measure of the
process X are absolutely continuous w.r.t. . The measure u; appearing in
the direct integral is the marginal measure of y, i.e. it is given by p;(A;) =
1(A1 % Iy) for all Borel subsets A, C I.

The use of direct integral seems to be artificial, but it has the advantage
that the appropriate theory yields immediately the measurability of some
objects, for which measurability is essential and not obvious.

Qur results allow us to reduce questions for the process X, e.g. S-
regularity, to corresponding questions in the “smaller” spaces H(v,). Thus
the above mentioned results of Ze Pei Jiang are plain from ours and we
get them in a much more general setting. Since the way in which the spe-
cial results are deduced from our results is obvious, we will state only some
applications in the last section.

2. Direct integral Hilbert spaces. For the reader’s convenience, we
collect some facts about direct integral Hilbert spaces. Suppose that (2,B,v)
is a positive measure space. We assume that we are given Hilbert spaces
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H(w) for each w € 2 with inner product {,-),, and norm | - .. The
collection (H(w))uen is referred to as a field of Hilbert spaces. A system
z = (2(w))wen, z(w) € H(w), is called a vector field on 2. Let £ denote
the vector space of all such vector fields. The field of Hilbert spaces is called
measurable if there is a linear subspace £ C £ with the following properties:

(i) For each 2 € £, the mapping 2 3w — ||z{w)l. is measurable.
(ii) If the mapping 2 3w — (z{w), y(w))w is measurable for all z € L
and some y & C, then y € L.
(iif) There is a countable system {zy,zs,...} C £ such that the system
{1 (w), w2(w), ...} is total in H (w) for all w.

The vector fields belonging to £ are called measurable. The countable
system of vector fields in (jii) is called a fundamental sysiem of measurable
vector fields. A meagurable vector field z is called square-integrable w.r.t.
vif f.rz lz{w Hw v(dw) < 0o. One introduces a semi-scalar product {(z,y) :=
Jotz(w), y(w))e »(dw) on the linear space of all square-integrable vector
fields. The corresponding quotient space H can be shown to be a Hilbert
space (cf. [2], Prop. I1.1.5). The Hilbert space H is said to be the direct
wntegral of the Hilbert spaces H(w), w € 2, and it is denoted by

H= [®H(w)v(dw)
2

LeMma 1 ([2], Prop. IL1.9). Suppose that (H(w))wen 18 a measurable
field of complezr Hilbert spaces and thet we have closed subspaces K(w) of
H{w) for all w € 2. Let P{w) denote the corresponding orthogonal pro-
Jjections. Let K be the linear space of all measurable vector fields © with
z{w) € K(w) for all w € £2. Then the following conditions are equivalent:

(1) The field (K{(w))wen is measurable w.r.t. the system of vector fields
{{z(w))wen & L z(w) € K()}.
(i) There is a countable system {x1, %2, ...} of measurable vector fields
such that {a (w), za(w),...} is total in K(w) for all w € 0.
(iii) For each measurable vector field z, the field (P(w)z(w))wen s mea-
suradle.

Congider a measurable field (H(w))wen of Hilbert spaces. A field
(T{w))wern of bounded linear operators T'(w} € B(H(w)) is said to be mea-
surable if the vector field (T(w)z{w))uepn is measurable for each measurable
vector field z. If esssup ||T(w)]|| is fnite, then the vector field (T'(w))uwen is
called essentially bounded. Tn this case, the vector field (T'(w)z(w))weq is
square-integrable for each square-integrable vector field z, and

(1) T:Hyz— (T{wzw)wer € H
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defines a bounded operator 7" in H with ||T|| = esssup ||T(w)||. Two such
fields of operators define the same operator in H if and only if they ceincide
v-a.e. ([2], Prop. I1.2.2 and Corollary). A bounded operator T defined by
(1) is called decomposable and we write

T::fEBTw v(dw

LemMa 2 ([2], Prop. 1L2.3). If T} = [o T
comnposable operators, then

Yvldw), § = 1,2, are de-

M+ Ty = [T (W) + Bw))v(dw), AeC,
2

T, = f Ty (w)Th(w) v(dw) and TP = f@Tl v(dw).

If almost all operators T'(w) are multiples of the identity I(w) in H(w),
ie. f T = f ﬁ; p(w)I(w) v(dw) for some bounded measurable function ¢
on {2, then T is called diagonakzable. The next property of direct integral
operators is essential for the following.

PrOPOSITION 3 ([2], Theorem I11.2.1). A bounded linear operator T' in the
direct integral H = |, ;'; H(w)v(dw) that commutes with all diegonalizable
operators is decomposable.

Finally, we quote the following fact for sequences of decomposable oper-
ators from [2] (Prop. 11.2.4).

PROPOSITION 4. Consider decomposable operators Tp, = fg T (w) v{dw)
form=12,... and T = ngT(w) v(dw).

(1) If T conwerges strongly to T, then there is o subsequence Ty, such
that Ty, (w) converges strongly to T(w) v-a.e,

(i1) If Tn{w) converges strongly to T(w) v-a.e. and if sup, | Ty || s finite,
then Tp, converges strongly to T.

3. Weakly stationary processes. First we recall some facts about

g-variate weakly stationary processes on locally compact abelian groups (cf.
also [9]).

For a positive integer g, let M, and M denote the sets of all ¢ x ¢-
matrices with complex and complex rat1onal entries, respectively.
A g-variate weakly stationary process X on G is a mapping X : G — HY,

where H denotes a complex Hilbert space Wlth inner product {-, -}, having
the following properties:

(rat)
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(i) The Mg-valued correlation function

Gx G 3 (g,h) = (X(9)5 X(R)))] 1mn = K (g, B)
depends on the difference g—h only. Accordingly, we write & {g— h) instead
of K (g, h).
(i) The function K is continuous o G.

The correlation function K has an integral representation

K(g)= [ gl Fldv), g€,
r
with a regular non-negative hermitian M ,-valued Borel measure F, the
so-called spectral measure of the process X.

Tor a subset § C G, we write Wy for the closed M-linear hull of all
X(g), g € §. In particular, W := Wg is the space spanned by all values of
the process.

According to Kolmogorov’s isomorphism theorem,

Vi X{g) — [ 9llq
defines an isometric M,-linear mapping from W onto the space L2(F) of
square-integrable (w.r.t. F') M -valued functions on I'. Here I, denotes the
¢ X g-unit matrix.

DEerINITION. Fix a system S of subsets of G. The process X is called

S-regular if NgcgWs = {0}. It is called S-singular if Wg = W for all
§e8.

The notions of S-regularity and S-singularity as well as the problem
of finding the gramian-orthogonal projection of an elsment from {X(g) :
g € G} onto some Wy play an important role in the theory of linear pre-
diction of stationary processes. Using Kolmogorov's isomorphisim theorem,
these problems are usually transferred to L?(F). Let Vg 1= VWs denote the
closed M ,-linear hull of all M-valued functions [-, gil,, g € S, in L3(F).
Then the following assertion holds.

LiMma 5. The process X is S-regqular (resp. S-singular) if and only if
Nges Vs = {0} (resp. Vs = L*(F} for all S € S).

The gramian-orthogonal projection Y, ¢ of X(g) on the subspace Wy is
Vi@, g, where &, 5 denotes the gramien-orthogonal projection of [, g]I,
on Vg in L*(F).

‘We note that the gramian-orthogonal projection coincides with the usual
orthogonal projection.

Suppose that S is a system of subsets of G5 and that the family S of
subsets of (7 is given by
(2) 5:= {Gl % 85 : 52 S Sg}.
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It is the aim of this paper to show that for a system of the special
form (2), the investigation of S-regularity, S-singularity, or of the gramian-
orthogonal projection onto Ws, § € 8, reduces to the corresponding ques-
tions for the system Ss.

4. Decomposition of processes. Consider a non-negative finite regu-
Jar Borel measure i on I’ such that all entries of F are absolutely continuous
w.r.t. . Let F := dF/du denote the matrix of the Radon-Nikodym deriva-
tives of the entries of F'. Hence we can express the matrix-valued inner
product of &, ¥ € L*(F) as

(@, %)r f@ P()* uld).

Note that L2(F) is a Hilbert space w.r.t. the scalar product (&, %) ¢, &,V €
L2(F). Here 7 denotes the trace of a matrix. For more information on Lz(F)
we refer the reader to [10]. Let B; be the g-algebra of Borel subsets of I'y,
7 =1,2, and let uy denote the marginal meagure of w on I, Le. w1 (A1) =
u(Ay x Ib), Ay € B;. Since I is a Polish space, there exists a function
w11 X By 3 (41, Az) — w(y, A2} € [0, 00) with the following properties
(cf. [3], Theorem and Corollary 2 of Section 21.2):

(i) For each Ay € Bs, the function v, — w(y, Az) is Bi-measurable,

(ii) for py-a.a. v € I the function Ay — w(y1, Asz) is a non-negative
finite Borel measure on [T,

(i) for Ay € By and As € By we have u( A xAy) = IAIW(’YL Ag) pg (dy ).

For ¢ € L®(u1), let M, denote the operator of multiplication by i in
LAF). Mo =1,0], g1 € G, we write M,, instead of M,,.

LeMMA 6. The von Neumann algebra {M, : ¢ € L>(u1)} is generated
by {M,, : g1 € Gh}.

Proof Otherwise we could find some @,% € L2(F) and ¢ € L™ (u1)
such that (M, &, W)p =0, g1 € Gy, and (M, ¥)p # 0. Since

0= (M, ®,0)r = [ 71,01 8(7)F(7)¥ ()" pldr)

= [ @] [ B, ) F (1)@ (1, 72)" wls, dya) i (dn)
Iy Iy

for ¢y € Gy, and since the Fourier transform is one-to-one, the measure

AMdm) = [ S(mn,92) Flyr, v2) (v, 72)" wimn, dys) pa(dm)
I
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has to be zero. Hence
(M,® W)
= [ on) [ Sn, 1) F (1,70 (11, 72)" wl, dra) pa(dr) = 0
FI Fg
contrary to our assumption, which proves the assertion.

Consider a separable subset Sy € G5 and § := G5 x Ss.

LeMMA 7. The orthogonal projection P in L2(F) on the subspace Vs
commutes with all operators M, ¢ € L>{u).

Proof. Since the subspace Vg is invariant w.r.t. all operators My, , g1 €
G1, P commutes with all M,,. Hence the assertion follows from Lemma 6.

For v & I we deﬁne a non—negative hermitian A ,-valued measure .,
E (4y) = fAz (71, 712) w(v1, dvya), where Ay runs through all Borel

subset.s of I'y. Let H{v1) := L2(Fy,) and H == [ , H () pal{dr), the direct
integral of these Hilbert spaces with the fundamental system of measurable

vector fields {[-,g2]A i g € D, A € qut)}, where D is a countable dense
subset of 5. We define a linear mapping i on L?(F') assigning to & & L2(F)
the vector field i® = (P(y1,-))y,en,-

LemMa 8. The mapping 1 is an isomeiric M,-linear mapping from
L2(F) onto H. In particular, it is correctly defined, i.e. for different repre-
sentatives of the class of @ the images coincide uy-a.e.

Proof. The Mg-linearity is obvious. Since

f S(v ()" al )

=f [f45(71,"/2)}_(’71(&)@(’)’1,“/2)*w("flad'm)}ﬂl(d’h)
I Iy :

= [ 180n, )3, waldn),
Iy

the mapping i is a correctly defined isometry from L?(F) into H. To prove
that it is onto, we consider a vector field ((v1, ), er, orthogonal to iL2(F).
Then, in particular,

S ol [ e, 020 F (1, 92)2 (s, 1) wim, dve) pa(dm) = 0
I I

for all g1 € Gy, g2 € Gla. Since the Fourier transform is one-to-one, it follows
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that

[ 120 9217 (31, 12)8 (11, 72) i, drye) =

Iy
for all go € Go and wi-a.a. y; € I7. This implies ¥{yy,-) = 0 in H(yy) for
idi-a.a. ) € 1. Hence % =0 in H, which completes the proof.

According to Lemma 8, we may (and do) identify H and L2(F).

Then the multiplication operators M,, @ € L™ (u1), are diagonalizable
and according to Lemma 7 and Proposition 3 the orthogonal projection P
on Vg is decomposable:

P= [P(n)uildn)

I

Let V5, 5, denote the closed M ,-linear span of all functions |-, gz]1,, g2 € 5o,
in H(v,), and Q(v1) the corresponding orthoprojection.

LEMMA 9. P = f_ﬁ? Q1) pa{dm).

Proof. Let Dy denote a countable dense subset of Sy. All (constant)
vector fields (}, g2]A)y.er. 92 € Do, A € Mérat), are measurable and con-

stitute a countable set. Moreover, the vectors [, ga]4, g2 € Du, A € M),
considered as elements of H(v;) are total in V,, g,. According to Lemima 1,
(V%sz),\,le ry is a measurable field of subspaces and @ := [ m @m) paldm)
is correctly defined. According to Lemma 2, @ is an orthoprojection in
H = L2(F). Obviously, QH is a subspace of Vg. Suppose now that there is
some @ € PH = Vg orthogenal to @H. Then

0= [ [y onllve, g2l F(NB()* ldy)

I
= [ g1l [ [re g2l F (o) @, o) v, doye) g ()
n Iy '

for all g1 € G, go € Sy. Using a similar argument to that in Lemma 8 one
concludes that & = 0 in H, which completes the proof.

Lemmas 8 and 9 yield immediately the following assertion for processes
on G = Gy x Gy, where 7y is separable and I'; is a Polish space. Recall that
§ =Gy x Sy, §3 C G5 separahle.

PRrROPOSITION 10. The gramian-orthogonal projection of an element X(g),
g €G, g=(g1,2), on the space Wg is V> jﬁi Q) (L, gol Iy) pua (dry).

- It S is a countable systefn of the form (2), where all 53 are assumed

to be separable, then the following results concerning S-singularity and S-
regularity can be derived.
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PROPOSITION 11. The process X is S-singular if and only if for u-a.a.
e Fl)
V‘Tl,sz = H(')’l) ¥5; € Ss.
Proof The assertion follows imediately from Lemmas 9 and 5.

PROPOSITION 12. The process X is S-regular if and only if (g, c5, V.52
= {0} for p1-a.e. v € I1.

Proof If K; and K, are two subspaces of a Hilbert space K, and P; and
P, the corresponding orthogonal projections, then the orthogonal projection
on K1 NK, is the strong limit of the sequence of operators ((Py P2}*)ien. To-
g:ather with Lemma 2 and Proposition 4, we deduce that the orthoprejection
P on (geg Vs is decomposable, i.e.

P= f (1) p{dr),

where P(y1) is the orthoprOJectlon in H{71) on (g,es, Vv:.5,- Lemma 5
now yields our assertion.

5. Applications. We illustrate the results of the preceding section by
three examples. We use the notation » < A if the measure v is absolutely
continuous w.r.t. the measure A. As a preliminary we prove the following
lemma:

LeMMA 13. Let p(A; x Ag) fA (71, Az) pr(dy1) for all Ay € By,
As € By and let v be some Borel measure on I's. Then w(vy,-) =< v(-) for
p1-a.a. v € I of and only if i < iy @ v. In this case
(3) dg  _ dw(n,)

d(p @ v) dv(-)

Proof Let Nyj € By be such that j;(N1,1) = 0 and w(vyy,-) < () for

v € It \ Ny1. Further, let A € B:= B; ® B3 and assume that (1 ® y)(A)
= 0. It follows that

H1 B v-a.e.

@ S 1a@) mev)an) = [ v(4y,) pldn) =0,
r n
where I denotes the indicator function of A and A, := {y2 € Iy :

(71, 72) € A}. Relation (4) implies the existence of a set Ny » € By such that
/M(NI,Q) =0 and V(Ar“) =0 for all " € Fl \N]_’g. Set, N]_ = N1,1 U Nl,g.
Then we have g3 (Ny) == 0 and w(y1, 4, ) =0forallyn € I \ V1. But then

1(A) = f fIA(’YlM/z) ('rl,d'yz),ul(d’}'1)=fW(%,A%)m(d’m =0,
nre I

hence p < iy @ v.
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Conversely, let ¢ < g1 ® v. Note that u is a o-finite measure. Conse-
quently, the Radon-Nikodym derivative dy/d{i1 @ v} exists; we will denote
it by g. For Ay € I, Ag € T, we get

J [ oty vldre) m(dn) = [ wlv, Az)m(dn).
Az Ag Ay

j.L(A]_ ® AQ

Thus, there exists a set Na, € By such that pu1(Na,) = 0 and

win, Az) = [ glyr,m) v(dys) for all i € I\ Na,.
Ay

Since I is a Polish space, there exists a sequence {A }

C By gener-
ating By, Let Ny := Uj=1NAu). We obtain pu1{N1) = 0 and wly, Az) =
2

fdz g(m1,v2) w(dys) for all v, € I\ Ny and all Az € Bs, hence w(vyy,-) < v()
and the relation (3) is established.

5.1. We generalize some results of [4]. Let G5 = R and let m denote the
Lebesgue measure on R. Consider the system Ss := {{—o0,t] : t € R} and a
univariate (i.e. g = 1) weakly stationary process X on G := (' xR. Since the
system S may be replaced by the countable system {G x (—oo,n] : n € Z},
Propositions 11 and 12 may be applied. The spectral measure I is a non-
negative finite (scalar) measure. We choose p = F and hence F = 1. For
11 € I, set p,, (Ag) = fﬂ (71,dv2), A2 € B. Let p} and p* be the
absolutely continuous parts of iy a0d powor.t, m and g ®m, resp. Lemma 12
implies that u,, < m for gy-a.a. v, € I if and only if u < u1 ® m and

oy p

E*n'; = W M1 ® m-a.e.
Using Proposition 11 and the known criteria for Sy-singularity of processes
on R (cf. e.g. {11], pp. 161-162) we immediately see that X is S-singular if
and only if

14497 o L , midy:) = —c0  p-a.e.
J @) g e ) mid) a
(cf. [4], Theorem 3.5).
From Lemma 13, Proposition 12 and known results about Sy-regularity

of processes on R (cf. e.g. [11], p. 161) it follows that X is S-regular if and
only if ¢t < 1 @ m and

a

- du
1443 Hog —28 - -
]!{ (14 7;) " log o ® )(’Yl,’yg)m(d’}'g) > —00  pi-a.e.

(cf. [4], Theorems 3.2 and 3.3).

icm

Two-parameter prediction problems 157

5.2. Let G be a discrete abelian group with counting measure m and
put Sy = {G2\ {g2} : g2 € G2}. In ([8], Theorem 4.6) and ([9], Theorem
5.3) some results on Sy-singularity and So-regularity, resp., of multivariate
processes on (2 were proved. Suppose now additionally that G is countable
and note that in this case Iy is a Polish space. From the cited theorems
we can derive results on So-singularity and Sg-regularity of multivariate
processes on Gy X G5, The argument is simitar to that in 5.1. In the case
of a univariate process X on G x G; the result reads as follows. Suppose
that the measures ui, u*, u,,,v1 € 11, are defined similarly to 5.1. Then X
is S-singular if and only if

. -1
I{(ﬂfg—m)(%m) m{dy) =00 p-ae.

It is S-regular if and only if 12 < p; ® m and

du -1
1:[ (m(’n,’m)) m(d‘yg) < 00 fti-aue.

5.3. From Proposition 10 it follows that for & € L2(F) the prediction
error ||@ — PP|| is equal to

12— Pl = ([ 11803, - Pl Y, ) -
I

Using the well known formulas for the prediction error in Kolmogorov’s
extrapolation problem for univariate processes on Z or R, we immediately
obtain prediction error formulas of the appropriate problem for univariate
processes on Gy X Z or (71 x R. For example, we can get Theorem 4.5 of {1].
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Banach space properties of strongly tight uniform algebras
by

SCOTT F. SACCONE (Providence, R.1.}

Abstract. We use the work of J. Bourgain to show that some uniform algebras of
analytic functions have certain Banach space properties. If X is a Banach space, we say X
is strong if X and X™ have the Dunford-Pettis property, X Las the Pelezyfiski property,
and X* is weakly sequentially complete. Bourgain has shown that the ball-algebras and
the polydisk-algebras are strong Banach spaces. Using Bourgain's methods, Cima and
Timoney have shown that if K is a compact planar set and 4 is R(K) or A(K), then A
and A* have the Dunford-Pettis property. Prior to the work of Bourgain, it was shown
independently by Wojtaszczyk and Delbaen that R(K) and A(K) have the Pelezyriski
property for special classes of sets K. We show that if A is R(K) or A(K), where K
is‘)arbi’crary, or if 4 is A(D) where D is a strictly pseudoconvex domain with smooth
(" boundary in C", then A is a strong Banach space. More generally, if A is a uniform
algebra on a compact space K, we say A is strongly tight if the Hankel-type operator
Sy 1 A — C/A defined by f— fg+ A is compact for every g € C(K). Cole and Gamelin
have shown that R(K) and A(K) are strongly tight when K is arbitrary, and their ideas
can be used to show A(D) is strongly tight for the domains I considered above. We show
strongly tight uniform algebras are strong Banach spaces.

Introduction. Let X and Y be Banach spaces. f 7 : X — Y is a
bounded linear operator, we say T is completely continuous (or is a Dunford—
Pettis operator) if T takes weakly null sequences in X to nerm null sequences
inY. We say X has the Dunford-Peitis property if every weakly compact
operator I' : X — ¥ is completely continuous. It may be shown that this is
equivalent to saying weakly null sequences in X tend to zero uniformly en
weakly compact subsets of X*. It follows easily from the latter characteri-
zation that X has the Dunford-Pettis property whenever X ™ does.

Let {z.} be a sequence in X. We say {z,} is a weakly unconditionally
Cauchy {w.u.C.) series if Y oo |x*(an)] < oo for every z* € X*, and a
bounded linear operator T : X — Y is an wnconditionally converging op-
erator if T takes w.u.C. series to series that converge unconditionally in
norm. This is equivalent to saying 7 is never an isomorphic embedding
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