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Banach space properties of strongly tight uniform algebras
by

SCOTT F. SACCONE (Providence, R.1.}

Abstract. We use the work of J. Bourgain to show that some uniform algebras of
analytic functions have certain Banach space properties. If X is a Banach space, we say X
is strong if X and X™ have the Dunford-Pettis property, X Las the Pelezyfiski property,
and X* is weakly sequentially complete. Bourgain has shown that the ball-algebras and
the polydisk-algebras are strong Banach spaces. Using Bourgain's methods, Cima and
Timoney have shown that if K is a compact planar set and 4 is R(K) or A(K), then A
and A* have the Dunford-Pettis property. Prior to the work of Bourgain, it was shown
independently by Wojtaszczyk and Delbaen that R(K) and A(K) have the Pelezyriski
property for special classes of sets K. We show that if A is R(K) or A(K), where K
is‘)arbi’crary, or if 4 is A(D) where D is a strictly pseudoconvex domain with smooth
(" boundary in C", then A is a strong Banach space. More generally, if A is a uniform
algebra on a compact space K, we say A is strongly tight if the Hankel-type operator
Sy 1 A — C/A defined by f— fg+ A is compact for every g € C(K). Cole and Gamelin
have shown that R(K) and A(K) are strongly tight when K is arbitrary, and their ideas
can be used to show A(D) is strongly tight for the domains I considered above. We show
strongly tight uniform algebras are strong Banach spaces.

Introduction. Let X and Y be Banach spaces. f 7 : X — Y is a
bounded linear operator, we say T is completely continuous (or is a Dunford—
Pettis operator) if T takes weakly null sequences in X to nerm null sequences
inY. We say X has the Dunford-Peitis property if every weakly compact
operator I' : X — ¥ is completely continuous. It may be shown that this is
equivalent to saying weakly null sequences in X tend to zero uniformly en
weakly compact subsets of X*. It follows easily from the latter characteri-
zation that X has the Dunford-Pettis property whenever X ™ does.

Let {z.} be a sequence in X. We say {z,} is a weakly unconditionally
Cauchy {w.u.C.) series if Y oo |x*(an)] < oo for every z* € X*, and a
bounded linear operator T : X — Y is an wnconditionally converging op-
erator if T takes w.u.C. series to series that converge unconditionally in
norm. This is equivalent to saying 7 is never an isomorphic embedding
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when restricted to an isomorphic copy of ¢¢ in X (see [1]). For example,
completely continuous operators are unconditionally converging operators
since the unit vector basis in cg is weakly null. We say X has the Pelczydski
property, or property “V”, if every unconditionally converging operator on
X is weakly compact. This is equivalent to saying X has the following prop-
erty: if N C X* is a bounded subset such that every w..C. series {x,}
tends to zero uniformly on N (i.e., imy o0 SUPvep (2% (2 )| = 0), then N
is relatively weakly compact.

We say {z,} is a weak Cauchy sequence if limy, 0 () exists for all
z* in X*, and that X is weakly sequentially complete if every weak Cauchy
sequence is weakly convergent. It is not difficult to show that X* is weakly
sequentially complete whenever X has the Pelczyiiski property (sce Lemma 1
of this paper). The converse of this statement is false. In [5], J. Bourgain and
F. Delbaen construct a Banach space X such that X* is isomorphic to 1} and
X contains no copy of ¢p. Since any space with the Pelezyiski property that
fails to contain ¢y is reflexive, X cannot have the Petczyniski property. See
J. Diestel’s survey paper [14] for more information on the Dunford-Pettis
and Pelezynski properties.

It was shown in Grothendieck’s paper [19] that C(K) spaces have the
Dunford-Pettis property. Apparently, many uniform algebras of analytic
funetions enjoy this property as well. Chaumat showed the disk algebra
has the Dunford-Pettis property in [6], and Bourgain did the the same
for H> in [4]. Bourgain also showed in [3] that the ball-algebras and the
polydisk-algebras all share this property. Using the methods in [3], Cima
and Timoney found in [7] that R(K) and A{K) have the Dunford-Pettis
property for every compact set K C C (see Section 7 for the definitions).

Petczynski introduced his property “V” in [26], where it was shown that
every C(K) space has this property. It was shown independently by Kisliakov
in [23] and by Delbaen in [12] that the disk algebra has the Pelczyniski
property. Wojtaszczylk and Delbaen showed in [29] and [13], respectively,
that, for K ¢ C, all P(K) spaces and some R(K) and A(K) spaces have
the Pelczyfiski property. Finally, Bourgain proved in [2] that the Petczynslki
property is enjoyed by the ball-algebras and the polydisk-algebras.

In {3], Bourgain considered the operator Sy : 4 — C(K)/A defined by
f +— fg+A where A is o uniform algebra on K, and g € C(K). It was shown
that if (5,)"* is completely continuous for all g, then A* has the Dunford -
Pettis property. This i3 actually a weaker form of what was proved, since
something more sophisticated must be done to prove the polydisk-algebras
have the Dunford-Pettis property. Cima and Timoney noted in their paper
[7] that the set Ap of all g such that (S;)** is completely continuous is
a uniform algebra containing A, and used this observation to show that
Ap = C(K) when A is R(K) or A(K). They also noted that the only
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property needed was the fact that R(K) and A(K) are “T-invariant”. T-
invariant planar algebras are defined in Section 7. Using different methods,
it was shown earlier by Cole and Gamelin in [8] that when A is a T-invariant
planar algebra, S, and hence (S,)** is compact for all g € C(K).

In [8], Cole and Gamelin studied uniform algebras which have the prop-
erty that S, is weakly compact for every g in C{K). Uniform algebras with
this property were called tight uniform algebras. We say A is strongly tight
if 5y is compact for all g. Although they were only concerned with tight
uniform algebras, many of the algebras Cole and Gamelin considered, such
as the T-invariant algebras, were shown to be strongly tight. For example,
let D be a bounded domain in C*, and let A(D) be the uniform algebra
of continnous functions on D that are analytic in D. It was noted in [8]
that if D is a smoothly bounded strictly pseudoconvex domain, then A(D)
is strongly tight. The idea involved estimates on the diagonal of Henkin’s
reproducing kernel. Cole and Gamelin also found that for arbitrary domains
D, the solvability of the 8-problem is closely related to the property of A(D)
being tight.

We show the ideas in [§] concerning the d-problem can also be used to
show certain uniform algebras are strongly tight. Using Kerzman’s estimates
on solutions of the d-problem, we show in Theorem 7 that A{D) is strongly
tight when D is a strictly pseudoconvex domain with smooth C* houndary
in some Stein manifold. When D is a domain in €", we may assume the
boundary is C?.

It follows immediately from the results of Bourgain on the Dunford-
Pettis property that if A is a strongly tight uniform algebra, then A* has
the Dunford-Pettis property. We demonstrate that there is also a connection
hetween strong tightness and Bourgain’s work on the Pelczyfiski property.
To show certain spaces have the Pelczyfiski property, Bourgain introduced
the following concept in [2): if X is a closed subspace of C(K), X is said
to be a mich subspace if there exists a probability measure m on K with the
property that if {f,} is a bounded sequence in X such that [|f.!dm — 0,
then ||f,g -+ X|| — 0 for all g in C(K). Bourgain shows that X has the
Pelezyhiski property whenever X is a rich subspace.

Using Bourgain’s work, we show in Theorem 4 that if A4 is a strongly
tight uniform algebra on X, then A has the Pelczyfiski property. If Ais
strongly tight on a metrizable space K, we show A is a rich subspace.

The strongly tight property is also related to G. M. Henkin’s work on
the non-isomorphism of the ball-algebras and the polydisk-algebras. The
idea in Henkin’s work that we are interested in is the property of a Banach
space being a separable distortion of an L'-space (see Section 1). Henkin
uses the concept of an analytic measure (see Section 6) to show the dual of
the ball-algebra is a separable distortion of an Ilspace. It is not difficult
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to deduce from Henkin’s proof that the ball-algebras are strongly tight. As
a corollary to Theorem 4, we give a simple proof that the dual of a strongly
tight uniform algebra on a metrizable space is a separable distortion on an
L!-space. Later, in Section 6, we discuss the relationship between the tight
property and Henkin’s analytic measures.

We alse study a weaker version of Bourgain’s property. We say X is
strongly rich if it rich in the above sense, and weakly rich if the norm con-
vergence in C/X is replaced with weak convergence (see Section § for the
full definition). We say m is a weakly or strongly rich measure if X is weakly
or strongly rich with respect to the measure m. When A is a strongly tight
uniform algebra, it is easy to see that any weakly rich measure is a strongly
rich measure.

We show that for any uniform algebra A, the property of being weakly
rich is equivalent to some ideas from pointwise bounded approximation the-
ory and band theory. f m € M(X), let m, + m, be the Lebesgue decon-
position of m with respect to % 4., the band generated by A+. We show
in Proposition 6 that m is weakly rich if and only if the natural projection
H>®(P4:) — H"(m,) is injective (see Section 1 for the relevant defini-
tions). For example, a theorem by A. M. Davie (see [L1] or [10]) asserts that
when A is a T-invariant uniformn algebra in the plane, and m = Ag = planar
measure restricted to the non-peak points of A, the natural projection is a
homecmorphism hetween the weak-star topologies and is an isometry. This
is enough to show Ag is a weakly rich measure. Since A i3 strongly tight,
this implies Ag is strongly rich. However, the power of Davie's theorem is
not necessary here, Showing Ag is weakly rich involves some simple calcula-
tions with the Cauchy transform, and use of basic properties of T-invariant
algebras.

Section 1 reviews some ideas from band theory.

Section 2 contains some results of Bourgain on the Dunford-Pettis prop-
erty, and discusses the concept of a Bourgain algebra.

In Section 3, we study weakly and strongly rich measures, and their
relations to Bourgain’s work on the Pelezydski property. '

In Section 4, we study tight and strongly tight uniform algebras, and
prove in Theorem 4 that strongly sight uniform algebras have the Pelczyiiski
property. As a coroliary to Theorem 4, we show that when the underlying
space is metrizable, the dual of a strongly tight uniform algebra is & separable
distortion of an L*-space.

In Section 5, we explore the connections between the weakly rich property
and some idsas from pointwise hounded approximation theory.

Section 6 contains some miscellaneous ideas relating tightness to Henkin’s
analytic measures.
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In Section 7, we study T-invariant planar uniform algebras, and show in
Theorem 5 that they have the Petcaynski property. This proves R(K) and
A(K) have the Pelczynski property for every compact planar set K, which
is one of our main results.

In Section 8, we study the uniform algebra A(D) and show in Theorem 7
that A(D) has the Dunford-Pettis and Petczynski properties when D is
strictly pseudoconvex with sufficiently smooth boundary. This is another of
our main results.

1. Band theory. Let K be a compact Hausdorff space, and let M (K)
equal C'{K)*, the space of regular, finite, complex Borel measures on K. If
@ C M(K), we say % is a band of measures if % is a closed subspace of
M(K) and has the property that when p € %, v € M(K), and v < p, then
v € %. The Lebesgue decomposition theorem says that if p € M(K) then
4 can be uniquely written as pu = o + p1, where p, € # and p, is singular
to every element of 2. If # is a band, the complementary band 58’ of & is
the collection of measures singular to every measure in . It follows that
M(K) = Bap #. It is a well-known fact that if 4 is a band, then there
exists a measure space (2, ¥, 0) such that & & L(o).

If & is a band, we define L°°(9) to be the space of uniformly bounded
families of functions F = {F,},¢cz where F, € L=(v) and F,, = F, a.e. [dV]
whenever v < y. The norm in L>(%) is given by | F|l = sup, cg | Follp= )
The pairing {v, F} = [ F,, dvforv € # and F € L*(%) defines an isometric
isomorphism between L>(Z) and £*. If E is a subset of L™(#), and
E, = {G,| G € E} for u € B, it is not difficult to show that F is in
the weak-star closure of F if and only if F), is in the weale-star closure of
E, for every p € 9. If A is a uniform algebra on K, we define H*{%)
to be the weak-star closure of A in L=(48). If p € M(K), H*(u) is the
weak-star closure of A in L°°(u). If 4 € 44, there is a natural projection
H> (%) — H*{p) defined by F — F,.

It is easy to see that the intersection of an arbitrary collection of bands
is a band. If .5 is an arbitrary subset of M(K), we define the band generated
by % to be the smallest band containing .. If A is a uniform algebra on
K, we define %41 to be the band generated by the measures in Al and
44 to be the band complement to %4 . Since A* = M(K)/A" it follows
from the Lebesgue decomposition with respect to % 4. that

z@A,L e o0 =]
A* = e @ Sy and AY = HO(B 40 ) G L°(Far ),

where the above isomorphisms are isometries. For more information on band
theory, see [8] or [10].

If X is a Banach space, we say X is a separable distortion of an L'-space
if there exists a separable Banach space Y and a measure space ({2, X, 0}
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such that X is isomorphic to Y @p L (o). It foliows from the above that when
A is a uniform algebra and 4. /A is separable, then A* is a separable
distortion of an Ll-space. Many of the examples of uniform algebras we
consider in this paper are shown to have the property that BaL At i
separable. The separable distortion property was an idea used in Henkin’s
work in [20] (also, see [27]) to prove some non-isomerphism results on the
ball-algebras and polydisk-algebras. More precisely, it is shown, without
considering 4 4 -, that the duals of the ball-algebras are separable distortions
of I'-spaces, but the duals of the polydisk-algebras are not isomorphic to
separable distortions of L'-spaces in dimensions greater than one.

2. Bourgain algebras. Let K be a. compact topological space, and let X
be a closed subspace of C(K). If g € C(K), let Sy : X — C/X bethe Hankel-
type operator f — gf + X. We may identify the subspace X+ of C** with
X** by standard duality theory. Note that (S,)** : X** — C™*/X™* is the
operator ** ~s gz** + X**, where gz** iz the action of the second adjoint
of the multiplication operator on &**. Let X; and Xp be the sets of those
g € C(K) such that S, and (S,)**, respectively, are completely continuous.
These sets, called the Bourgein algebras of X, were first defined by Cima
and Timoney in [7], where it was shown that X) and Xy are uniformly
closed subalgebras of C'(K).

The next result follows from the work of Bowrgain in [3].

PROPOSITION L. Suppose X 4s a closed subspace of C(K).

(a) If Xp = C(K), and {z}} is o bounded sequence in X* that fails o
tend to zero on some weakly compact set in X**, then {mn} fails to tend to
zero uniformly on some w.u.C. series in X .

(b) If X, = C(K), then the same conclusion holds if we reploce X**
with X.

The above results are connected to the Dunford-Pettis property by the
following well-known lemma.

LEMMA 1. Suppose X is a Banach space, and N C X* is a bounded sci
with the property that every sequence in N has o weok Couchy subsequence.
Then every w.u.C. series in X tends to zero uniformly on N.

Proof. Given a w.u.C. series {z,,} in X, define an operator T : X* — ]!
by T(z*) = {z*(21))72,. Since I* has the Schur property, T(N) is relatively
norm compact, and hence totally bounded. It then follows that given any
g > 0, there exists an integer J such that 3 ¢- ; |z*(zi)| < e for all z* € N,
which proves the result. =
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By applying the proposition, and using the lemma where N is a weakly

compact subset of X*, Bourgain’s results may now be stated in the following
WY

THEOREM 1 (Bourgain, [3]). Let K be a compact space and let X be o
closed subspace of C(K). Then X}, = C(K) implies X has the Dunford-
Pettis property, and Xp = C(K) implies X* has the Dunford-Pettis prop-
erty.

Thc s 1051111;5 were used by Bourgaa,in to show cermin ‘5]):1(6‘5 c)f analytic

C ima and Tlmoney mtroduccd thc mlgebra‘s X g and Xg in [7], cmcl usc,d bhe
connection with Bourgain’s work to show certain planar uniform algebras
have dual spaces with the Dunford-Pettis property.

3. Rich subspaces. Let K be compact, and let X be a closed subspace
of C(K). We say X i3 a weokly (resp. strongly) rich subspace if there exists
a measure m € M(K) with the following property: whenever {fp} is a
bounded sequence in X such that [|f,|d|m| — 0, we have

S!J(.fn-) = fn,g + X = 0
respectively

1Sy (Fdll = N fag + X[ — 0

for every g € C. In this case we say m is a weakly (resp. strongly) rich
measure for X, If A is a uniform algebra on K which is a weakly or strongly
rich subspace, we will say A is a weakly or strongly rich uniform algebre on
K, respectively.

The following proposition shows that when dealing with uniform alge-
brag, in order to demonstrate a measure is weakly or strongly rich, it suffices
only to look at a certain “part” of the measure.

ProrosiTioN 2. Let A be a uniform algebra on a compact space K. Let
m e M(K), and let mq+m, be the Lebesque decomposition of m with respect
to A 4u., the bund generated by the measures in Ax. Then m is weakly (resp.
stromgly) rieh if and only if ™y, s weakly (resp. strongly) rich.

Proof. Clearly if m., is strongly or weakly rich, then m is strongly or
weakly rich, respectively,

Assumne m, is not strongly rich. We may then find functions {f,} < 4
with ||fn]] £ M for some M and a g € C such that [|f,]|dlm.| — 0 and
lgfm + All 2 € > 0 for all n = 1. Choose {un} C A* so that ||pn| = 1 and
[ gfndun = /2. Let vy = |mo| + 3 (Jpn]/2™) and py = |[myl, s0 v1 L v,

Cram. There exist functions {gn} C A with |gn|l < 1 such that gn — 1
a.e. (1] and gy — 0 a.e. (1]
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To prove the claim, let v = v1 — . A direct computation shows that
v + A+ = |jv||. Hence, |v||a+ = [[v[|, so we may find {hn} C A with
||l < 150 that [ hndy — ||v]l. Let G be a weak-star accumulation point of
{hn}in L(), 50 |Gl < 1 and [ Gdy = ||v||. It follows that G == d|v|/dv,
so G =1ae [»n] and G = —1 a.e. [va]. Since G is a weak accumulation
point of {h,} in L'(v), after taking convex combinations and passing to a
subsequence if necessary, we may assume h,, — G pointwise a.e. [v]. Letting
gn = (hy + 1)/2 proves the claim.

We may now pass to a subsequence {gr, } so that | [ gi, g/n diin] 2 €/4
for n > 1, and Moo [ [gr, fuldima] = IMyiso [ |9k, ful dims| = 0. 1t
now follows that [|gr,, fag+Al 2 e/4,limy—ee [ |95, fal dim| = 0, gu, o € A,
and ||gg, full < M, so m is not strongly rich.

We have now shown that m, is strongly rich if m is strongly rich. We
can use the same proof for the weak case. =

In this paper, we consider a uniform algebra A, and attempt to show that
A has certain properties. Many of the properties we study involve showing
that another uniform algebra, arising from A, is all continuous functions.
The property of being weakly or strongly rich is no exception. Given a
measure m € M({K), and a closed subspace X of C(K), define (X, m)wr
and {X,m)s, to be the sets of those g € C(K) such that

Sg(fn) =frgt+X 0 and ”Sg(fn)H = ”fng +XH —0

respectively, whenever {f,} is a bounded sequence in X such that

f | ] d|m| — 0.

PROPOSITION 3. Let X be a closed subspace of C(K). Then (X, m)qur
and (X, m)sr are closed subalgebras of C(K) with X containing (X, m)ar.

Proof. It is easy to see that (X, m}y, and (X, m)s are closed. Now,
suppose g,h € (X, m),r, and {f,,} is a bounded sequence in X such that
Slfaldim| — 0. Then we may find j, € X and k, € C(K) with
|knll — 0 and gfy, + jn = ky. Since {j,} is bounded and [ |j.|d|m| — 0,
we may similarly write hj, + }‘n = E,L, 80 ghfn ~ ju = bk, — En. Thercfore,
lghfn + Xi| — 0, and so gh € (X, m)s.. Hence, (X,m), is an algehra.
Since weakly null sequences in X are those bounded sequences tending to
zero pointwise on K, S, is completely continuous whenever g € (X, m)4p.
In other words, (X, m)s € X,

Let g,h € (X, M)y, and assume that gh & (X, m)w, 50 we may find
a bounded sequence {f,} in X with [|f.|d|m|— 0, and a u € X+ such
that | [ ghfrdu| > & for some £ > 0 and for all n. After multiplying by
constants of modulus 1, we may assume [ ghf, du > . Since gf, +X 5 0,

we may find functions F,, convex combinations of functions from {fx}72,,,
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such that [|gF, + X|| — 0. Hence, {F,} is bounded in X, [hgF,dup = ¢,
and

J 1Faldim| < sup [ 1fuldiml,

so [ |Fy.|dlm| — 0. Now, since {|gF,, + X|| — 0, there exist functions j, € X
and k, € C(K) with ||ky| ~ 0 such that gF, + j, = ky. Since {j,} i&
bounded and [ |7,]dm| — 0, it follows that hj, +X = 0, so f hj, dp — 0.
Since hgFy, + hjn = hky, and jhk,|| — 0, we have [hgF.dp — D, a
contradiction. Hence, (X, m),,, I8 an algebra. =

By definition, {X, m)w, or (X, m)., equal C{K) if and ounly if X is weakly
or strongly rich, respectively. Hence, to exhibit richness, it suffices to con-
sider enough functions to generate C'(K) as a Banach algebra. Note that if
A is a uniform algebra, then (A,m)w, and (A4, m)s are uniform algebras
containing A. Note also that it now follows from Theorem 1 that X has the
Dunford-Pettis property when X is a strongly rich subspace. Morcover, we
have the following.

THEOREM 2 (Bourgain, [2]). Let K be a compact space and let X be o
closed subspace of C(K). If X is a strongly rich subspace, then X has the
Peleayriski property end X* 45 weakly sequentially complete.

The following technical result, which is not diffienlt to deduce from the
proof of Theorem 2 (see Proposition 1 in [2}), will also be used.

THEOREM 2/ (Bourgain, [2]). Let K be a compact space, and let X be
a closed subspace of C(K). Suppose that for every g € C(K) there exists
a probability measure my'w:ith the property that when {f.} is ¢ bounded
sequence in X and

f ‘f’ﬂ,l dmg — U,
then

| frg + X — 0.

Then X has the Pelczyriski property, and X* 4s weakly sequenttally com-
plete.

The notion of a rich subspace first appeared in Bourgain’s paper [2]
(also, see [30]), where it was shown that certain spaces of analytic and
swooth fuuctions have the Pelezynski property. Recall that the weak se-
quential completeness of X* follows from the Pelezyiski property.

Let A be a uniform algebra, and consider the space % 4. /AL, In many of
the examples we consider in this paper, we show that % 4. /A is separable.
The significance of A having this property is noted in Section 1, and we now
show this has applications to the weakly rich property.
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PROPOSITION 4. Let A be o uniform algebra on a compact space K. If

B /A" is separable, then there exists a weakly rich measure Jor A.

Proof. Let {v,+ A"} be a norm dense sequence in B4 /A, and define

a measure m by
(2]
"= E v
2 T2

Then, if {f,} is a bounded sequence in A, and [ fuldm — 0, it follows
that [ fndv — 0 for every v € .. Hence, ifg e, and g € AL, then
[ fagdp — 0. Since the dual of C/A is A%, this implies fng+ A = 0 in
C/fA. m

4. Tight uniform algebras. Although many of the ideas and results in
this section and the sections that follow can be applied to closed subspaces
of C(K), we now consider only uniform algebras.

Let A be a uniform algebra on a compact space K. We say A is tight
(vesp. strongly tight) on K if for every g € C(K), the operator S, defined in
Section 2 is weakly compact (resp. compact). Let A., and Agg be the sets of
those g € C'(K) such that 5, is weakly compact and compact, respectively.
Then A is tight or strongly tight if and only if 4.y or Aga equal C(K),
respectively.

The notion of tightness was introduced in [8], where it was shown that
A is a closed subalgebra of C(K). The same is true of Agg. To see that
Acg is closed, note that the map C — L({A, C/A) given by g — S, satisfies
[1S;]] < |igll and is therefore a bounded linear operator. Since the compact
operators are closed, Acg is closed (similarly for A, ). To see that Agg is
an algebra, let g,h € Agg, and let {f,,} be a bounded sequence in A. After
passing to a subsequence we may find j, € A and &, € C'(K) with ||k, — 0
such that g f, — H -+ j, = k,, for some H € C(K), and similarly after another
subsequence hj, — H + G = kn, 50 ghfy — (hH ~ fI) G = Ry ~ En, and
ghfs + A — (R — ff) + A. Hence, gh € Agg. Therefore, A., and Age
are uniform algebras containing A4 with Agcg € A, Heunce, to show 4 is
tight or strongly tight, it suffices to consider enough functions to generate
C{K} as a Banach algebra.

If A is a uniform algebra on K, it is not difficult to show that A**+C'(K)
is a closed subspace of C{K)*". In [8], Cele and Gamelin prove the following
theorem, which illustrates the central application of tight uniform algebras.

THEOREM 3 [Cole-Gamelin, [8]). Let K be a compact space, and let A
be o uniform algebra on K. Then the following are equivalent:

(a) A is o tight uniform algebra on K.
(b) 4™ 4+ C(K) 15 a (closed) subalgebra of C{K)*.
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The following is an analog of a result in [8] or tight uniform algebras.

PROPOSITION 5. Suppose A s a uniform algebra on K ond F is a closed
subset of K with the property that A|p is closed in C(E). If A is strongly
tight on K, then A|g is strongly tight on E.

Proof. Let g € C'(E), and let § be any extension of g to C'(K'). Suppose
{fn|z} is & bounded sequence in A|gz. By the open mapping theorem, we
may asswme {f,} 13 a bounded sequence in A, Since A is strongly tight on
I, we may find an h € C(K) such that, after passing to a subsequence,
Tf + A =25 b+ A, We may therefore find functions j, € A, kn € C(K),
with [|ky.|| - 0, such that §f, — h + §, = k. Restricting to E, we have
gfulp = e+ dnle = kg, and it follows that

1OTI,

gfnle+ Alg —— hlg + Algs.
Hence, the operator
Sy : Alg — C(E)/Alp

is compact. =

We would now like to make some remarks on the relationships between
tightness and the other properties we have considered so far. If 5, is compact,
then (5,)** is compact and therefore completely continuous. Hence Agg C
Ap for any uniform algebra A. Therefore, if A is strongly tight, it follows
from Theorem 1 that A* has the Dunford-Pettis property. On the other
hand, if 4 has the Dunford-Pettis property, then weakly compact operators
from A are completely continuous, so A,y & Ay. Similarly, if A** has the
Dunford-Pettis property, then 4., C Ap. Recall that completely continuous
operators are unconditionally converging operators. Therefore, if A has the
Peteeyriski property, then completely continuous operators on A are weakly
compact, which implies A, € A,,. Now, since (4, m). C Ap for any measure
m, it follows from Theorem 2 that any strongly rich uniform algebra is tight.

As we noted above, the fact that A* has the Dunford-Pettis property
when A is a strougly tight uniform algebra follows immediately from Bour-
gain’s result in Theorew 1. We will now show that Bourgain’s work on the
Pelenyriski property can be applied Lo these algebras as well.

TUROREM 4. Let A be a uniform algebra on a compact space K. If A is
strongly tight, then A and A* have the Dunford- Petlis property, A has the
Pelezyrisks property, and A* is weakly sequentially complete, In particular,
if I is metrizable, then A is a strongly rich uniform algebro.

Proof. Assume A is strongly tight on K. It follows immediately from
Theorem 1 and the remarks above that A*, and hence 4, has the Dunford--
Petlis property.
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CLAIM. If B is o separable subspace of C(K), then there emists a prob-
ability measure m with the property that when { fn} 45 a bounded sequence
in A such that [|fn|dm — 0, then | fog + All — 0 for every g in B.

The fact that 4 has the Pelczyfiski property, which implies A* is weakly
sequentially complete, now follows from Thecrem 2.

Proof of the Claim. We may write
:@A..L
AL
Note that S, the adjoint of Sy, maps A" into A* and satisfies Sr(A*) C
By [AL. Let M C By /AT be defined by

M =35 85(AY).

geB

Ar PBn yA¢.

If g € C(K), then S; is compact, which implies S;(AL) is separable. There-
fore, since B is separable, M is separable. Let {,, + A} be a dense subset
of M, and define

Qo
m=Y.
et g |27

If {f,} is a bounded sequence in A, and [|fn|dm — 0, then [ fndv —0

whenever v+A+ € M. In particular,if 4 € A-andg € B, then [ fr,gdu — 0.

Hence, Sy(fn) = fug+ A = 0 in C/A. Since S, is compact, {|fng + A| — 0,
proving the claim.

When K is metrizable, we can take B = C(K), and m will be a strongly
rich measure.

It is not difficult to show that in general,

BafAt=5 | 85;(4%).
geC(K)

The above proof, along with the notes in Section 1, now yields the following.

COROLLARY. If A is strongly tight and K is metrizable, then @B 4. /At
is separable, and A* is a separable distortion of an L'-space.

When A is the ball-algebra, this recovers G. M, Henkin’s result in [20]
(also, see [27]) that A* is a separable distortion of an L'-space. Henkin’s
proof involved the concept of an analytic measure, but it is not difficult to
see from Henkin’s proof that the ball-algebras are strongly tight. The fact

that the ball-algebras are strongly tight will also follow from Theorem 7 in
this paper.
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5. The Davie property. Let 4 be a uniform algebra on K. If m €
M(K), let m, + my be the Lebesgue decomposition of m with respect to
% 41, the band generated by the annihilating measures. Let H** (% 4. ) and
H>(m,) denote the weal-star closure of A in L°(%4.) and L>®(m,) re-
spectively. We will now show the weakly rich property is equivalent to some
ideas from pointwise bounded approximation theory.

PROPOSITION 6. Let A be a unsform algebra on o compact space K, and
let n be an element of M(K). Then the following are equivalent.

(a) The notural projection H™(H#,.) — H™(m,) is one-to-one.

(b} If {fu} is o bounded sequence in A such that [|fn|dlm|— 0, then
Fu = 0 dn Lo°(n) for every p € AL,

(¢) m is o weakly rich measure for A.

Furthermore, if the above hold, and K is metrizoble, then %41 /A™ is sep-
arable and A* is a separable distortion of an L' -space.

The above ideas are related to Davie’s work in [11] (see also [10}) where
it was shown that if A = R(K) for a compact planar set K, and Aq is
planar measure restricted to the non-peak points of A, then the natural
projection is an isometry between H (4% . ) and H*(Ap), and a weak-star
homeomorphism. This can be shown (see [10]) to be equivalent to saying that
when f € H*(\g), there exists a sequence {f,,} in A with || fnll < ||f|| such
that f, — f pointwise a.e. [Ag]. The following lemma is elementary.

LemMA 2. If {f,} s o bounded segquence in A, then the following are
equivalent.

(a) fu S5 0 in L) for all g€ AL,

(b) fug+A 50 for all g € C(K).

Proof of Proposition 6. Toshow (a) implies (b), we suppose { f,. }
i a bounded sequence in A such that [ |f.| d|m| — 0. Then [ [f,|d|m,

— 0,

50 fn ¥ 0 in L™{m,). Let u & A+, and assume [, fails to tend to zero
weal-star in L), After passing to a subsequence, we may assume () is
uot in the weak-star closure of {f,} in L2 (). Let F be a weal-star cluster
point of {f,} in FF*(98,.). Then F, s a weak-star cluster point of {f,} in
L {(my,), which implies F,, == 0. Since the natural projection is one-to-one,
B, = 0. Siuce I/, is a weak-star cluster point of {f,,} in L (), this implies
0 is in the weak-star closure of {f,,} in L®(u), a contradiction. Hence, (a)
lmplies (b).

Now, (b) implies (c) follows from the lemmma, so assume m is weakly rich.
Proposition 2 implies m, is weakly rich. Let ¥ € H®(#4.), and suppose
qu = 0.
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Crami. F, =0 for every p € % 4.

Proof Suppose there exists some p € %41 with F, # 0. Since every
measure in &4 is absolutely continuous with respect to some measure in
AL (see [10], V.17.11)}, we may assume iz € AL, Since A™ is isometrically
isomorphic to H®(B 1) @ L°(F4 1), we may find a net {fo} in 4 with
I £2ll < IF|| such that fo ™ F in H>(B4). Then fo, = 0 in L>=(my),
and fo = F, in L*{u). Let v = [mq| + |p]- Then f, = @ in L*(v) for a
G € L*(v) such that G = F, a.e. [y}, and G = 0 a.e. [m,]. Since f, Lo
in L'(v), we may find a sequence {f,} in A, each f, a convex combination
of the functions in {f,}, such that [ |f, — Gidy — 0. Then |f] < [|#]

norm

and [ |fu|djma} — 0,50 fy “ 0in L% (). Also, since f,, —— in L'{p),
G =0 in L*(u), a contradiction, which proves the claim.
We have now shown the natural projection is one-to-one, proving that
(c) implies {a).
The natural projection described above is the adjoint of the injection
Ll (ma) -@A_L
— .
Ll(m,)nAL Al
If K is metrizable, then L'(m,) is separable, and so L'/L! 1 A+ is separa-
ble. If the projection Is injective, then the injection has dense range, which

implies @ 4. /AL is separable. The fact that A* is a separable distortion of
an L'-space now follows frem the material in Section 1.

Combining Propositions 4 and 6, we have the following.
COROLLARY. If K is metrizable, then the following are equivalent.

(a) There ewists o weakly rich measure for A.
(b) Bys /At is separable.

6. Analytic measures. Let 4 be a uniform algebra on K, and let §
be any subset of K. We say a bounded sequence {f,,} in A is an §-Monlel
sequence if fn(z) — 0 for every z € S. A measure p € M(K) is called an
S-analytic measure if f frdp — 0 whenever {f,} is an S-Montel sequence
in A. Let AM (A, S) denote the set of all S-analytic measures. Tt is easily scen
that AM(A, S) is a closed subspace of M{K) containing A+ and all complex
representing measures of points in S. Let Ay () be the set of all g € C'(K)
with the property that gdu € AM(A,S) whenever p € AM(A,S). Since
AMI(A,S) is closed, Ay (S9) is closed, and is a uniform algebra containing A.
The following proposition is elementary,

PROPOSITION 7. Let A be a uniform algebra on K, and let § be a subset
of K. Then the following are equivalent.
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(a) Au(S) = C(K).

(b) AM(A,8) is a band.

(¢) If p € AM(A,S), and {f,} is an S-Montel sequence in A, then
f’n E" 0 in Lm(,u,).

The notion of an analytic measure originated in Henkin's work in [20],
a version of which is in [27]. When A = A(B,,), and § is the open ball, it is
shown in [27] that AM (A, ) is a band, and that AM (4, §)/A* is separable.
It now foliows that A* is a separable distortion of an L'-space. One of the
main results in Henldn’s work is that the dual of A(T™) is not isomorphic
to a separable distortion of an L'-space when m is greater than 1, s0 A(B,,)
is not isomorphic to A(T™). It will follow from Proposition 8 below that,
for the ball-algebras, in order to show AM (A, S) is a band, it suffices to
demonstrate that A(B,,) is tight on B,,. It is not difficult to extract the fact
that A(B,,) is strongly tight from the proof in [27).

115 C K, we say A has property (Ps) if the following holds: if {f.} is a
bounded sequence in 4, and g € C(K), and f,(z) — g(z) for every z lying
in 5, then g € A, For example A{D), the uniform algebra of continuous
fanctions on D that are analytic in D, has property (Pp) for any open
bounded domain D in C%.

PROPOSITION 8. Suppose A is a uniform algebre on K, and S is o subset
of K such thal A has property (Pg). Then Aoy C Ag(S). In particular, if
A is tight, then AM(A,S) s a band.

Proof. Assume A has property (Pg), and let g € A.,. Suppose g &
Ag (9). Then there exists a g in AM(A, ), an S-Montel sequence {f,} in
A, and some ¢ > 0 such that, after passing to a subsequence and multiplying
the {f,} by constants of modulus 1 if necessary, [ fogdp = € for n =
1,2,3,... Since S, is weakly compact, after taking convex combinations we
may assunmie frg + A4 ——— h + A for some h € C(K). Let §, € A and
ky, € C(K) with {|ky| — 0 such that f,g — h + jn = kn. Note that this
implies the sequence {7, } is bounded in A. Since {f,} is §-Montel, j,, ~ A
pointwise on Y, which implies by property (Pg) that i € A, and so {4, —h}
i+ an S-Montel sequence. This implies [ fi,g dp — 0, a contradiction. =

It now follows that AM(A(D), D) is a band whenever A(D) is tight
on ),

7. T-invariant uniform algebras. Let K be a compact subset of C,
and define P(K) and R(K) to be the closure in C(K) of the polynomials
on K and the rational functions on K with poles off K, respectively. Define
A{K) to be the continuous functions on K that are analytic in the interior
of K.
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Let g € CHC), and let K € C be compact. For f € C(K), let f =0 off
K, and define, for z € K,
1
T = H@e0) + L [f R
Then T, : C(K) — C(K) is a bounded linear operator. We say a uniform
algebra A on K is T-invariant if A contains R(K) and A is invariant under
T, for all g € CH(Q). For example, R(K) and A(K) are T-invariant for any
compact K. For more information on T-invariant planar algebras, see 8],
[10], or [18].
The following is essentially Theorem 6.5 of [8].

Vf(w) da dy(w).

PROPOSITION 9. If A is T-invariant on K, then A is a strongly tight
umniform algebra on K.

Proof. Let g € C!, and let V, : A — C(K) be the operator defined
by (T, )z} = (fg)(z) + (V,f)(2). It is shown in [8] that V| is a compact
operator. It now follows from the commutative diagram

v, s,
O(fc§/—q_~_+\c(K) /A

that S, is compact. Hence, Cf € Agg, which implies Aeg = C(K) since
Ao is a uniform algebra. m

COROLLARY. P{K) s strongly tight on K.

froof Let i be the polynomial convex hull of K. By Proposition 9,
R(E) is strongly tight on K. Since R(K) = P(K), and P(K)|x = P(K),
the corollary follows from Proposition 5. m

Theorem 4 and Proposition 9 now yield the following.

THEOREM 5. Let K be o compact subset of C, and let A be a T-invariant
uniform algebra on K. Then A and A* have the Dunford-Peltis property,
A has the Pelczyriski property, and A* is weakly sequentiolly complete.

If A is T-invariant and ¢} is the set of non-peak points of A, then Theorein
13 of [17] implies that A has property (Pg) (the proof, by B. Cole, uses
Davie’s theorem). It now follows from Proposition 8 that AM(A, Q) is a
band.

Note that Theorem 4 telis us that strongly rich measures exist for A.
Consider the measure Ag, the restriction of planar measure to @. Then
Ag € Bar (see [10]), and Davie's theorem (see [11] or [10]) says that the
natural projection H*®(#,1) — H™{Ag) is an isometry onto H>(Ag)
and is a weak-star homeomorphism. In particular, it is one-tc-one, so by
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Proposition 6, Ag is weakly rich. We do not, however, need the power of
Davie’s theorem to show that Ag is a weakly rich measure for a T-invariant
algebra.

If j4 is a compactly supported measure in C, let i be the Cauchy trans-
form of u, and define
d\#l w)
Jw — 2] ’

g0 t.lmt E,, hag full planar measure in C. Tt is We]l known (see [18]) that if
fi= 10 a.c. [dedy] then u is the zero measure.

__Lemma 3. Suppose A is T-invariant on K, p € A+, and f € A. Then
/d,u fE a.c. [daedy).

Eﬂ={ eC

Proof. Since A contains R(K), fdu{z) = f(2)fi(z) = 0 whenever z €
CNK.Ifz € E,NK, and f extends to be analytic in a neighborhood of z,
then (f(-) — f(2))/((-) — z) € A (see [10}), so

f f,(i))_:i_(f_) du{w) =0,

which implies fdu(z) = F(2)H(2). If f € A is arbitrary, and z € E, N K,
then f may be approximated unifornly by {f.} € A such that f, extends
to be analytic in a neighborhood of  for all n (again, see [10}), so TEEL(Z) =
f(2)i(z). Hence, Fdu = f7i a.e. [dedy) for all f € A.

It is not difficult to show, using Lemina 3, that when x4 € A, and =z is
a peak point of A in E,, then f(z) = 0.

Prorosrrion 10, If A is T-invariant on K, then Ao ts o strongly rich
measure for A.

Proof. We will first show Ag has the property of Proposition 6(b}, which
implies A¢ is weakly rich. Suppose {f,.} is a bounded sequence in A, and
[1faldAg =+ 0. Let p € A, and suppose fr, fails to tend to zero Wea.l<~btar
in Lo (u), Then, after passing to a subsequence, we may assume f,, — h
in L™ (u) for some non-zero h € L™(u), and f,, — 0 pointwise a.e. [d.z dy)
in &,

Now, for any z € E,, fmf(z) — hdp(z). If 2z € C K, then fﬁu(z) =0,
%0 hdu(z) = 0. Tf z € B, N (K ~ Q), then z is a peak point for 4, so by the
rernarks above, fﬁp(z) = (), and hence m(z) = (). Since fﬁi‘;ﬁi: Full e
[dzdy], and f, — 0 pointwise a.e. [dzdy] in @, it follows that hdy = 0 a.e,
[dedy] in Q. Hence, f:cm. = () a.e. [dady] in C, so hdy is the zero measure,
contradicting the assumption that b # 0 in L% (u).
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Hence, Ag is a weakly rich measure for A. Since A is strongly tight, Ag
is strongly rich. =

8. Strictly pseudoconvex domains. In [8], it was shown that for
domains D in C", the property of A(D) being tight is closely related to the
solvability of a certain d-problem. This idea can be carried to domains on
manifolds.

We say an open, bounded domain D < C" is sirictly pseudoconver with
smooth, C% boundary if there exists a neighborhood U of 8D and a C*
function A : U — R such that

(a) DNU ={z €U | Mz) <0}
(b) A is strictly plurisubharmonic. Le.,

02 _
Z '8—‘“(2)#1:#_1' >0

- zié?zj

IS

forz € U and p e C™
(¢) VA(z) # 0 for z € 8D.

Since property (b) is invariant under holomorphic changes of coordinates,
we can use the same definition when D is a relatively compact domaiu in a
complex manifold M.

We say M is a Stein manifold if there exists a C°° function w: M — R
such that

(a) @ is strictly plurisubharmonic.
(b) {z € M | ¢(z) < ¢} is compact in M for all c € R.

Let D be a relatively compact demain in a complex manifold, and let
K1) (D) be the space of bounded, ', H-closed (0,1)-forms in D. We may
define a norm |+ || on Kf7 (D) by taking a finite covering of D with
coordinate charts. Any two norms defined this way will be eguivalent and
make K7 ,,{D) into a normed linear space.

ProrosiTioN 11. Let M be o compler manifold, and let D be an open,
relatively compact domain in M. Let A = A(D) be the uniform algebra of
continuous functions on D that are analytic in D. Assume there emisis o
weakly compact {resp. compact) linear operator R : If("(‘]'"l)(D) wr C(D) with
the property that 9 o R = id. Then AM(A,D) is o band, and A is a tight
(resp. stromgly tight), weakly (resp. strongly) rich uniform algebra on D.

Proof. It g € C®(D), define T, : A — KgZ,,(D) by T,(f) = 3(fg) =
f0g, s0 |7, < |8g||- Then the diagram

Strongly tight uniform algebras 177

Sy

A C(D)y/A

ok

K (D)~ (D)
commutes, which implies §; is weakly compact (resp. compact). Therefore,
C=(D) C A (resp. Agg).

Siunce Apg and A are uniform algebras, it follows that A is tight (resp.
strongly tight) on D.

Since A clearly has property (Pp), it follows [rom Proposition 8 that
AM (A, D) is a band. Now, let {2,} be a dense sequence in D, and define

o0 .
éTL

n=1

m ==

where §,, is the point mass at z,.
CLAIM. ' is weakly rich.

Suppose {fy,} is a bounded sequence in A, and [ |f,|dm — 0. Then {fn}
is a D-Montel sequence. If g € C and s € A*, then gdp € AM(A, D), which
implies [ fugdu — 0. This implies S4(fn) = fug+ A4 2 0 in C/A, proving
the claim.

When A is strongly tight, S, is compact. Therefore, the weak convergence
above can be replaced with norm convergence. Thus, m will be strongly rich
in this case. m

The following is implieit in {22].

THrorEM 6 (Kerzman, [22]). Let D be an open, relatively compact,
strictly pseudoconvex domain with smooth, C* boundary in some Stein man-
ifold. Then there exists a compact operator R having the property mentioned
in Promosition 11.

I follows {rowm Theorem V.2.7 in [28] that, in Kerzman’s theorem, when
D is a domainin C", we need only assume I has a ¢ boundary. Combining,
these resulis with Proposition 11 and Theorews 4, we bave the following.

TUROREM 7. Let D be as n Kerzman's theorem, where we need only
assume a (' boundary when 1) 4s o domain in C*, and let A = A(D).
Then AM(A, DY is o band, and ‘A is o strongly tight, strongly rich uniform
algebra, on D. Henee, A and A* have the Dunford-Peltis property, A has
the Petceyniski property, and A* is weakly sequentially complete,

It is voted in [9] that even when we are working on a Stein manifold,
Kerzman’s results are still valid when we only assume the boundary is C*.
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We have exhibited some strongly rich measures for A(D) for the domains
D considered in Proposition 11. It also follows from work done in [9] that
for these domains, if m is the surface-area measure on @D induced by some
Kaechler metric, then m is a weakly rich measure. Since A(D) is strongly
tight, m is a strongly rich measure.

Tt is shown in [27] (based on the work of Henkin in [20]) that when m is
greater than one, the dual of the polydisc algebra A(T™) is not isomorphic
to a separable distortion of an L'-space. It may also be shown directly that
when 4 = A(T™), and m > 1, B, /AL is not separable. It now follows
from Proposition 6 that 4(T"™) can never be weakly rich when m is greater
than one.

It was shown in [21] that AM (A, D) is a band for C*-smoothly bounded
strictly psendoconvex domains in C". The sane result was extended to do-
mains on manifolds in [9], where, as in our paper, the results of Kerzman
are applied. Part of the method in [9] is to observe from Kerzman's work
that the operator R has a continuous extension K (2011)(D) — L*(v) where v
is the volume measure on D. Qur method of showing AM (A, D) is a band
only requires R to exist and to be weakly compact.

Some examples of domains in C™ which satisfy the assumptions of Propo-
sition 11 with a compact operator but are not strictly psendoconvex are
given in [8] and {25].

We have recently received a preprint by 3. Li and B. Russo [24], where
they have apparently shown that if D is a strictly pseudoconvex domain in
C™ with smooth boundary, or D is pseudoconvex in C? of finite type, then
A(D} and A(D)* have the Dunford-Pettis property. More precisely, they
show A(D)p = C{D).
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The Cauchy problem and self-similar solutions
for a nonlinear parabolic equation
by

PIOTR BILER (Wrocltaw)

Abstract. The existence of solutions to the Cauchy problem for a nonlinear parabolic
equation describing the gravitational interaction of particles is studied under minimal
regularity assumptions on the initial conditions. Self-similar solutions are constructed for
some homogeneous initial data.

1. Introduction. Our aim in this paper is to construct local and global-
in-time solutions to the Cauchy problem for the parabolic equation

(1) w = Au+ V- (uV),
in R™ x R*, where the coeffcient Vi is determined from wu via the potential
(2) w = By *u,

E, being the fundamental solution of the Lapla(;ian in R™. Since Ap = u,
the equation (1) can be rewritten as a parabolic equation with a nonlocal
coefficient Ve

(11 w = Au+u? + Vu - V.

The physical interpretations of the equation (1) with an initial (nonneg-
ative) condition
(3) w(z,0) = uy(x)
come {rom nonequilibrium statistical mechanics. In particular, (1)-(3) is
an evolution version of the Chandrasekhar equation for the gravitational
equilibrivm of polytropic stars. Here u is the density of particles in R"™
interacting with themsclves throngh the gravitational potential ¢. Another
motivation for studying the above system is presented in the intreduction
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