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A necessary and sufficient condition for
the existence of a father wavelet

by

GUSTAF GRIPENBERG (Helsinki)

Abstract. It is proved that if {2_m/2¢(2_7’“- — k)}m kez is an orthonormal basis in
L*(R;C), then the mother wavelet 1 is ohtained from a multiresolution generated by a
father wavelet if and only if 35,2, 3.cz [W(2P (o + ) > 0ae.

1. Introeduction. The question studied in this paper is the following: If
we suppose that ¥ is an orthonormal mother wavelet, that is, 2™/ (27
— k) ez (where o denotes a generic argument) is an orthonormal basis
in L*(R; C), when is it true that ¢ is obtained from an orthonormal multi-
resolution generated by a father wavelet ¢7

By an orthonormal multiresolution generated by p we mean a pair
({VinYmez, ) that satisfies the following properties:

(1) ¢ € LR;C) and Vy, is, for each m € Z, the closed subspace of
L2(R; C) spanned by {p(27™e — k)}rez, '

(2) Vm C Vm—la m &€ Za

(3) im0 Vin=LAR; C), i.e. limip—— o P f=F for every feL*(R;C),
where P, is the orthogonal projection of L2(R;C) onto Vi,

(4)  {p{® — k)}rez is an orthonormal basis in V5.

The definition of a multiresolution (or a muléiresolution enalysis as it is
also called) is often given in slightly different forms (but with exactly the
same content) (see e.g., (3], [6], [8], [11], and [12}).

From a multiresolution cne obtains an orthonormal mother wavelet that
generates an orthonormal basis in L2(R;C) as follows. By (2) and (4) we
have
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208 G. Gripenberg
(5) =2 alk)p(2e - k),
keZ

where the filter « is given by
olk) = f w(n)p(2e —k)dz, keZ
R

Having found the filter o we can obtain an orthonormal mother wavelet 4
from the multiresolution by

(6) Y =2 Blk)p(2e ~ k),

hed

where

Bk = (-1)'a(l—k), keZ

For more details, see [3], [6], [8], {11], and [12].

The question of when an orthonormal mother wavelet is associated with
a multiresolution is a natural one, and a partial answer is given in [9] and
[10], where it is shown that this is the case if v has compact support and
15 Hélder continuous. Another result, announced in [1], is that it suffcey
to assume that o;’; is continuous and decays sufficiently rapidly at infinity.
Here we shall extend these results and prove that a necessary and sufficient
assurmption on 1 is that

o0

SN WGP EN >0 ae

p=1kcZ

Here the Fourier transform ) is defined by ¢ = Jre @ () dt (so that
the factor 2r will in this paper appear in the argument of the exponent
function only). As a corollary we deduce that a sufficient assumption is that
the Lebesgue measure of the set {w ¢ R | @(m) = 0} is zero, which, of
course, is the case when v has compact support, or, more generally, if ¢
decays e.g. exponentially (cf. [7]). Another corollary desls with the case,
considered in [1], where 1 is continuous and SUP L[>« |$ (w)] € L* (RT3 R).

2. Statement of results. First we state a well-known characterization

in terms of Fourier transforms of when a function ¥ is an orthonormal
mother wavelet.

TaEorREM 1. Let ¢ € L*(B;C) be such that /2wy = 1. Then

{27/ 2270 — k)i mez} is an orthonormal basis in L3R, C) if and only if

icm
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(7) Yoeralf=1 ae,
meZ
and
e T .
(8) Z@(QT’-)?Z(QP@ +k) =0 a.e. for all odd integers k.
p=0

This result can be found at least in [7, p. 230] and [8, p- 29], and the
sufficiency part is given in more general form (that is, as & state.ment abogt
frame bounds) in [5, Thm. 2.9]. For completeness, and begause in {5} a?tj hm
[7] an additional technical assumption on % is used, we give a proot ol this
theorem below.

THEOREM 2. Let ¢ € L2(R;C) be an orthonormal mother wavelet, ze
{27™/24(27 e — k) }rmez 15 an orthonormal basis in Lz(R; (C) Then 1 is
obtained {in the sense of (6)) from o multiresolution satisfying (1)-(4) if
and only if

[s <]

9) S B+ >0  ae

p=1 kel

In this case it is nctually irue that

(10) izi{b‘(zp(.+ ME=1 ae

p=1lkeZ

In the proof of the sufficiency of (9) the re}.:ation (8) Wil} be of crulcm.]lonn;
portance, whereas (7) is of surprisingly little direct use. Using a resx; *ila. ou
quasianalyticity that can be found e.g. in 12, p. 406], we get the fo _owmg
result that, of course, is applicable to wavelets with compact support.

COROLLARY 3. Let o € L2(R;C) be an orthonormal mother wavelet, i.e.
£27"m/295(2" ™0 — k) }i,mez 45 an orthonormal basis in LQ(R; C) Then 1 is
obtained (in the sense of (6)) from a multiresolution satisfying .(1)—{4) if
the measure of the set {w e R | ¢(w) = 0} is zero, in particular, if

log }O (2)] dt)'dr = o,

T!d)(t)ldmoo and [ 772
! 1

ar

w1l -1 R
[ w@ldt < oo and [

oo ) —00

tog f (2| dt)’ dr = oo,

The following corollary is essentially the same as the result in [1].
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COROLLARY 4. Let ¥ € L2(R;C) be an orthonormal mother wavelet, i.e.
{27M2h(27 ™8 — k)}imez i an orthonormal basis in L?(R; C). Then 1 is
obtained (in the sense of (8)) from a multiresolution satisfying (1)-(4) if

(11) % € C(R; C),
and
(12) £up |$(w)] € LA(RTR).

If 4 has compact support, then it follows, as shown in [9] and [10], that
¢ has compact support as well. In general, one can show that ¢ and o
have similar smoothness and decay properties, but this question will not be
studied here.

An example (taken from [8]) of an orthonormal mother wavelet that is
not generated by a multiresolution is the function ¢ with Fourier trans-
form

“:b\ = X.a)7 27 T X7 8,7 T X[1247,18/7) -
It is easy to check that the conditions (7) and (8) are satisfied but that

Z > l(2P (e + k)2 in (2/7,3/7) and in (4/7,5/7).

p=1 k&%

3. Proof of Theorem 1. We use the notation 9, = 2-™/2¢(2""e—k)
and note that P, j = 27/ 2g=12m2 ke fomg),

According-to a standard result in Hilbert space theory, a set {g;};er is
an orthonormal basis in H if and only if ||g;]|z = 1 for every j € I and
lz|i% = Zjeﬂl(f,gg)ﬂl for every f € H. Thus the set ok tmpez i

an orthonormal basis for L?(R;C) if and only if for each f € L*(R;C) we
have

(13) 13 emy = D HF i),

meZ
hEZ

where (s, ®) denotes the inner product in L?(R; C).

Let f € L*(R; C) be such that f is bounded and vanishes outside a com-
pact set in RY {0}. First we let m € Z be arbitrary, and we use Plancherel’s
theorem, a change of variables, and the fact that the Fourler transform is
an isometry from L?(T;C) to £2(Z; C) (where T denotes R/Z, i.e., functions
defined on T are periodic functions on R with period 1) to get
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S HE Vi) 2 hZIIQ"‘/zf (22 b Fom Y

kEZ keZ R

=27 Y| [ &2 o)) dof

kEZ R

o Y[ J e T P + 0T+ )

kEEZ 0 JEZ

—2—mf|§:f 27w + )bl + )
JER
1

=277 [ YT w + D) (w + 1) dw

¢ jeZ

l D ——
+27m [3 Femw+ i) FRem e + )
0 ji,j2€2
J1#ie
X {w + j1)P(w + o) dw

=2"" [1f27"w)|*(w)|* dw
R

2

2
}clw

1
+2mm [0S fem™(w+ )T (w + g+ 4))
0 4.j.cZ
F#0
X P(w + J)P(w + fu + 5) duw,

xf ) Pl(2mw)? du

£ [ Fama T s R )
JEE
j#0

Thus we get

(14) DN Wl = [ Fw)P D [$(27w) P dw

MmEL kEZ R mez

+32m f ST flemw) flammw + )Y Wi (w + 5) dw.
R

Now we use the fact that every nonzero integer j can be written in the form
§ = 2Pk, where p is a nonnegative integer and &k an odd integer. Provided
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the use of Fubini’s theorem can be justified (which we will check later) we
therefore get

(15) 327 [N Flammw) 2w + 5)w)P(w + §) dw
cZ R jeZ
j#O

= Z f ZZQ‘”’f (27 ™w) F(2- 7 (w + k27))P(w) D (w + k2P) dw

keZ R meZp=0
& odd

=>J ZZWW (27" ¥Pw) f2mm+p(w + k)

keZ R meZp=0
kodd

X P(2P) D2 (w + k) do

= > [ e famm(w + k) Z P(PW)H(2P(w + k) dw

ReZ R mEL
kocd

m

To see that we may apply Fubini’s theorem above we first invoke Cauchy’s
inequality three times and perform two changes of variables to get

o [ S e ) FT w + k)

kEZ R meg&

X Y (2P| [ (28 (w + k)| du
p=0
< Y [ Y rmfere)feTmw + k)
kEE R mgZ
kodd
X ) 1/2 = 1/2
< (Yo EraR) (3B + E)E) T dw
p=0 p=0
< 3 (f > 2 fe W) F T W + k) \ZW’ 2Pw)|2(lw)/
kkfﬁ R meZ
(f Y a1 F2T™ (w + k) i (27 (w + k) [zdw) v

R mEZ

=2 (J Z2'm1f<2"%mf(2-m(w+k>)|z|a(2pw)12dw)l”

ke B mcE =0
kodd . p
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([ 3 2R - Bl S et a)

R meZ p=0

- ~ o —~ /
SONDY 2 Bl | F2 e+ WIS (R dw)

i.fcoeézd k. meL p==0
X ( o [ S emfemw - kI th(mn dw)
keEZ B mEZ p=0
k odd
=3 [ Samfemw)ife e + )Y 19w dw.
CEE R meZ »=0

In fact, by the same argument we have for a symmetrical set I C Z and
arbitrary set J C Z,

0 3 [ 3 emiermw)fe™Mw + k)

kel R mel
X D P2 (w + k) de
p=0
<3 [ el w + B D 192w dw.
ket B mel p=0

It is clear that
I f27 (e + 2D =0
when 27™[k] > diam(supp(f)), where supp( F) denotes the support of 7

(i.e. the smallest closed set such that f 0 outside it). Moreover, if f (w) =0
when |w| < & or jw| > 8, then there are, for each w 7 0, at most |logs (B/ )

+ 1] numbers m such that F(2=™w) # 0. Thus
a7 S Y e mFE W) F(2T M w + k)

keZ meZ
kodd

< 1 1fee g diomn(supp( )
x |logs (sup [supp( 7)) — loga(inf jsupp(FH)) + 1,
where |£2] is the set {Jw| | w € £2}. Since we also have

(18) f Z| H(2Pw) |2dw—22 Pf W) dw = 2,

R p=0 p=0
we get from (16) our desired conclusion: that
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Y [ S e mw)If e w + R))

keZ R meZ
kodd
oo

X 3 [H{2Pw)|[(27 (w + k)| dw < oo,
p=0

If we assume that {7) and (8) hold, we conclude from (14) and (15) that
(13} holds for all f € L*{R;C) with bounded Fourier transform supported
in a compact set in R\ {0}, This is a dense set, and therefore we deduce
from Fatou’s lemma that [|fl|7:m = Lopez i P kd[* for every f €
L3(R; C). In particular, the set {1,k }in,kez I8 orthonormal. But then from
our restricted version of (13) we sce that f = Em‘,ﬂez( Jr o k) m,s for a
dense set of functions f and this gives the desired conclusion.

Assume next that {tm k }m sez i8 an orthonormal basis in L*(R; ). We
let wo # 0 be arbitrary and choose f = f5, where f5 = 671/2x(, wors) and
0 < 8 < |wo|. We see immediately that if | F5(2~™w)||fs(27™ (w + k)| # 0,
then 2~ ™|k| < § and |w| > 2™ min{|wo!, |wo + 6|}, which shows that

11m 3N W) FeT M w+ k) =0, weR
keZ meZ
kodd
If we now use (13)-(18) and the dominated convergence theorem, then we
see that
L«Jo-!—b

hm f Z (2 ™w

wo meh

w)fdw = 1,

and we obtain (7).

To get (8) we choose an arbitrary number wy & Z, an odd integer kq,
and an arbitrary complex number « with |o] = 1 and take f = f5 to be
such that

F5 = 67 X wowors) T 08 Xt ko o kot 65
where § > 0 is so small that

(19)  if wy,wo € {wo,wo+ §) or wi,we € (wy + ko,wo + ko + &), then
Wi #2(.02.

It is easy to see that

k=xks R

> [ B ) ) DR (2P (w + k) dw
=0

-(3 TS e B+ ko)) ).

L p—ﬂ

icm
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In view of (7) and (13)~(15) it therefore suffices to show that

(20) lm 30 [ 37 2R )27 w + b))

h=tko R meZ\{0}

o3 B EFPw + K d = O,
p=0

and

@) Im > [ Yok WiE T W+ k)

keZ\{xtho} B mcZ
kodd

o0
x 3 (2P0} [$(2° (w + k)| dw = 0.

p=0
In order to establish (20) we observe that if § < |kol/2 and k = *ko,
then 27™|k| & [lko| — & [kol -+ 5] when m # 0, and this implies that
|Fs(2™w)|| f5(2~™(w + k)| # 0 only in the case where [27™k| < &, that
is, only when both 2 ™w and 2™ (w + k) belong to either (wg,wo + 8) or
(wo + ko,wo + ko + 6). For each fixed w this can, by (19), happen for at
most 2 values of m, and since 2~™ < § we see that it will not happen if & is

sufficiently small because we have either

2™ w| > min{|wol, jwo + 8], lwo + Kol, lwo + ko + 6]} >0 or

(22) .
|75(27™w)| = 0.

Hence

@) S Y BT TR 4 weR

k=Lko meZ\{0}
and
. - (2~
(24) B 30 > 27l
k=itko meZ\{0}
Combining (16), (18), (23) and (24) with the dominated convergence theo-
rem we obtain (20).

In order to establish (21) we again note that by (19) there are, for each w,
at most 2 values for m such that |f5(2~ mw)llfa (27™(w + &))| # 0. Thus we
have to count for how many values of k this will be the case. One possibility
is that 2-™|k| < & and there are at most §2™** such odd integers. Another
possibility is that 2=™|k| € [{ko| — &, |ko| + 6] and we see that there are at
most §2™+2 odd integers k for which this holds. But note that in both of
these cases we must have 2™§ > 1; for the second case we invoke the facts

W)|| Fs(2™™ (w + k)| = weR.



&
216 G. Gripenberg Im“

that both & and ky are odd and |k| % |ko|. Thus we deduce that
(25) S 3 e GETm)| R w k) S 12, weR,

KEZN{thko} mEE
kaodd

and by (22) that

26 lm > L rTERTWIEC TR =0, vek
keZ\{xko} MmEZ
kodd

We can again combine (16), (18), (25), and (26) with the dominated con-
vergence theorem and (21) follows.
Thus the proof is complete. m

4. Proof of Theorem 2. The necessity of (9) is easy to establish, be-
cause if 9 is obtained from a multiresolution generated by , then [Z(e)|? =

P} [ih(2Pe)|? (see [8, p. 31]) and the orthonormality of the functions
{o(s — k)} ez is equivalent to the fact that 3, .. [B(e + k)* = 1 ae,
5o we get (10), hence (9), immediately.

For the converse we start with some auxiliary results. Again we use the
notation Yoy = g—m/ 2(27™ e — k). We denote by Wy, the closed subspace
of L?(R;C) spanned by {%mk}rez and by Qn, the orthogonal projection
onto Wo,. Let V,, EB“?% +1 W; and let P, be the orthogonal projection
onto V. If 7, s € R, 18 the translation operator 7.f = f(e — 5), then a
straightforward calculation shows that

(27) TompQmToamp = Qr, m, pE Z.
Since P, =1 -3 70 Q; we conclude that
(28) Tgmp P T_gmp = P, m, p € Z.
Next we prove an auxiliary result.
LEMMA 5. Let f € L3(R; C). Then
i sup P (e f )| 22y = 0.

Proof. Let € > 0 be arbitrary. There exists a step function

T
= Zcix[&«:,ﬁi]

=1
such that

(29) If = glizam) < &/3.
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It is easy to see that there exists a number n, such thatif m > land s € R,
then

My
(30) Teg = Y CrnXamkptdn,2mkatBa] T s

n=1

where, for 1 <n < n.,

|Cy| < max |cz\ kp€Z,
1<i<

31

( ) 0<%Bn<An§BnS2m: |Bn_An|S max |bi_ai|!
1<i<i,

and

(32) 1Pl 2wy < /3.

Since P, 23 — 41 @ and the functions ;5 are orthonormal, it follows
from (28), Cauchy’s inequality, and from the fact that the intervals {2 —JA,,

2-7 B,] are disjoint when j > m by (31), that for each n = 1,2,..., 7,
(33) || Bl CaXiombt Am 2w+ Bl H B2 ()
= HPm(CﬂX[An,Bn])”iz(R)

i Z‘f CnX[An,Bn](t)’l,bj’k(t) dt]z

j=m+1kEZ R

<1OPHB = A Y Y2 flw 279t~ k)2 dt

j=m+1 keZ

27iB,

NGRS S DR /I

j=m+lkeZg-i 4,

1
= |Cal*|Bn — Aniz f Xug';m+1[2*iA,l,2"iBn](t)W}(t — k)|? dt.
KEZ O

Since ¥ € L2(R;C) there exists a number § > 0 such that if £ C [0,1]
satisfles m(E) < 6, then

&2

Z f [t — k) dt < 9|Cn[? maxi<igi, b — ailnd”
keZ E

Now

00 -
U 794,277 Bal) = 277Bn - 4ul,
j=m-1
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and we conclude from (31) and (33) that if 27™ maxy<i<, b —a:| < &, then

oy
”P'm ( Z O’”'X[2m’v‘n+Anszmkn‘i‘Bn}) |
=1

Together with (29), (30), (32), and the fact that an orthogonal projection is
a contraction, this completes the proof of Lemma 5. w

9

Lam — 3

Next we show that
27’!‘1

(34) Pof = Z 2~m Z ToQun(Tep ),

=1

7 € L*(R;C).

Let j > 1 be some integer. By (28) we know that

25
Pof =270 mPy(rpf),

p=1

and it follows from the fact that Py = Zf;m:l @m + Pj that

Pof = z 277 Z To@u(r—pf) +277 Z L5 (T-p ).

p=1

By _(27) we know that for each m between 1 and j we have

2 2m
Z T Q@m(Tpf) = 2177 Z Qm (751,
p=1 p=1

and when we combine this result with the fact that Lemma 5 implies that

”2—j ZZijPJ(
p=1

<2 JZ”P (T—sf) 22

p=1
< sup [|Bi(mpf)llramy — 0 as g — oo,
pEL
we conclude that (34} holds.
We proceed to take the Fourier transform of both sides of (34} and first
we consider the term 7,Qn(7—pf). Using Plancherel’s theorem and the fact
that ¥m , = 2m/2e‘i2“2mk‘ﬁ;(2m-), we get

ToQu(rpf) =3 27 (f £+ PP(ET — B de Jab(2 e —27"p — k)

kel

=3 ([ 7w

me zﬁw(p-i-zmk)wdw)?/)(z—m
keZ R

*—27"p - k).

icm
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Thus

oo 2™

POf ZZZ( f }'\ 12; 2mw 2r(p+2" k)w d&)) —i2w{p+27 k) ’l;[;(zm.)

m=1p=1kcZ
If we combine this result with the fact that

f Flwyp

Qmw i27 (p+2™ k)w dw

; _—
= f Z Flw + §)d(2m(w + §))et2rie+2mhe g,

0 jeZ

then, since every 1nteger can be written in a unique way as p + 2mk where

keZandp=1,. , we obtain
Bof =Y G2me) Y Fla+ip@m(s+1)).
me=1 Je&

An immediate consequence is that if f € Vg, i.e., Pof = f, then

(85) S 1f(e+ R Z1Zf{-+kw(2m( crR) e

keZ m=1 kgZ

For each p > 1 we have 2-7(277e) € W, C V; and it follows from (35)
and Cauchy’s inequality that

o0

(36) S IBERe+RE= 30| Y b +.k))v,b(2m(o+k))] ae.

ke me=1 kCcZ
< STIBEP e+ BN Y. DT+ K)IF ae, p2 L
kKEZ m=1 keZ

In order to simplify the arguments involving sets of measure zerc we
change the values of % to 0 on a set with measure 0 so that (8) and (36)
hold everywhere. For each p > 1 let

Ep—{wGR‘kZEZW (2(w + K)) > 0},

It is clear that w € E, if and only if w + 1 € Ej. Moreover, an equivalent
formulation of assumption (9) is that

(37) m(R\ G Ep) =0
p=1
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If w € E, then we conclude from (36) that

STS REMw k)P 21

m=1kec?Z
and therefore, by (37), this inequality holds for almost every w. But because
1]l Lagmy = 1 it follows that
1

(38) YT

0 m=lkeZ

and therefore we see that (10) holds. The conclusion we draw from this is
that the application of Cauchy’s inequality in (36) (almost) always gives an
equality and it follows that for each p > 1 and m > 1 there exists a function
¢m,p Such that

(2™ (w + k)P dw = 1,

Emp(w + 1) = empw),
(39) -~ ~ we By, myp21,

P(2Mw) = Cm p(wi(2Pw),
where we have, if necessary, subtracted a set of measure 0 from. each E,
(and redefined % so that the original definition of By still holds).

Now we proceed to construct the function ¢, or rather its Fourier trans-
form. We write
— |$(.)|8i2wu7(-)—i7r(-+l)

and we observe that Lhe function ¥ is not determined by this equation at
the points where w vanishes, Similarly we write

§= B, G = [a(e)e A,

where

(40) s = (S Berep)
p=1L

(a1) B2e) =Bl2)3(s)  ae.,

and ¢ is to be determined. Note that (41} puts no restrictions on & at the
points where & vanishes and also that since @ must be a square summable
sequence, & should be periodic with period 1.

Now ¢ and o must be chogen in such a way that we get (6), or after
taking Fourier transforms,

(42) B(20) = e TG 2)(e)  ae.

The absolute values of @ and & are fixed by (40) and (41), so first we
must check that

(43) (e +1)| = [&(s)]  ae,
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and that
(44) B(20)] = |&(s +1/2)[|B(0)]  ace.

Let w € |72, E, be such that 15(w)| > 0 (so that (41) determines |&(w)])

and let ¢ > 1 be such that 1,’[;(2‘10.:) > 0. Then w € E, and by (39) for each
k € Z we have

|B(w + ) = [@(2%(w + B> D lepo(w)?,
p:l

1320w + k)2 = [$(2%w + B))* D lepglw)]®.
pz?

This shows that if |G(w + k)] > 0, then |@(w + k)| = |[a(w)] by (41) and for
the points where |@(w + k)| = 0 we can choose |&G(w + k)| = |&(w)|. Thus we
have established (43).

Let w be such that w + 1/2 and 2w are in | J;2, B, and that (8) holds
for the argument 2w. Thus w is arbitrary except for a set of measure 0.
There must then exist an integer k so that E "t,/) (2P(w + 1/2 + k))|? =

|#(w +1/2 + k)[?> > 0. This implies by (43) that

Yoo (2P (2w + 2k + 1))
S0 o (2r (2w + 2k + 1))

and in order to establish (44) we must show that

G +1/2) =

45) D) S (2P (2w + 2k + 1))

p=0

(2P (2w + 26+ 1) D h(2P2w) .

Mg

p=1 p=0
From (8) and (39) we obtain
oo
D(2w)P(2w + 2k + 1) = —p(292u)P(22(2w + 2k + 1)) D _ lep,o(2w)]%,
p=L

where g > 1 is such that 2w € Fj, and then again by (39), we get

B(2w) 2% (2w + 2k + 1) ZW}(Z” 2w+2k+1))\2z|$(2pzw)12.

p=1 p=l

Now we obtain (45) by adding terms to both sides, and (44) is established.
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Since (10) implies that >, .z |B(e + k)|? =1 a.e., from a standard argu-
ment that uses (43) we get

(46) 1= |p(2e + k)

kel
= 5 [@(e +2m/2)*|@(e + 2m/2)
mEL
+ > (e + (2m + 1)/2)]*|8(e + (2m + 1)/2)
mezL
= @) S [B(e +m)? +|&(e+ 1/2)]? D |B(s + 1/2 + m)[*

meEZ meZ
= l&(e)2 + |@(e + 1/  ae.

We will get (42) from (44) once we have shown that
(47) U(2e) = —A(e+1/2) + Ple)mod 1 a.e
The restrictions we have on A and @ are that
(18) Aoy =A{e+1)mod1 ae,

Ale) = B(2¢) — P(@)mod 1 ae.

For each p > 1 let

Fp = {w | $(2* T w)d(2w) # 0},
and define the function B, first in U;f’_,,l Fy, by
(49) B(w) =0 (2P w) —

p—1
F(2w)modl, we F\|JF,
q=1

We claim that

[sa)
=Blw+k/2) ifwwtk/ze|]F, ke,
p=1
and once this result is established we can extend the definition of B to R by

(50) B(w)

Blw) = Blw +k/2) if w - L7/2 € Upey oy k€ Z,
0 otherwise,
so that
(51) B(s+1/2) = Bls).

In order to establish (50) we assume that w € F}, and w + k/2 € F, and

first we consider the case where k is even. We conclude that w € Ey and
therefore by (39) that

B2+ w + B/D)B(2 1) =

er11 () PH(2(w + £/2))(2w).
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Now we know that ¢,41,1(w) # 0 for both r = p and r = ¢, and therefore we
can deduce that we can take p = ¢ and it is easy to see that (50) holds in
this case. Next we consider the case where k is odd. We note that 2w € Ey
and it follows from (8) and (39) that

P(2w)(2w + k) + (chﬂzw )2 )b wphlar (2w + k) =

r=1

and since 3 oo e, 1(2w)|? > 0 we again see that we can take r = p = ¢ and
that (50} holds.

By (7), for almost all points w there is an integer m so that {5(2?‘)) # 0,
and starting from this value we can define ¥{w) at the points where ¥{w) = 0
by
(52) V{4w) = ¥(2w) + B{w) mod 1.

We only have to prove the consistency of this definition, that is, we must
show that if (2Mw) # 0 and $(2™w) # 0 for some w and m < M, then
M-2

Z B(2w) mod 1.

j=m-—1

F(2Muw) - F(2Mw) =

If M = m + 1, this is the definition (49) and otherwise we may assume
that 1’[(27') =0 for j = m+1,...,M — 1. Thus we have to prove that
B(2/w) = 0 when j = m, ..., M — 2. Let j be one of these inftegers; Without
loss of generality, assume that j = 0. Hence 1?;(201) 0 but P(w) #

so that, by (44), we must have oz(w +1/2) = 0 (for almost every w) and
hence also |&(w)| = 1 by (46). The fact that &(w + 1/2) = 0 implies that
if for some k we have 9(2w + 2k + 1) # 0 then D(2P(2w + 2k + 1)) = 0
for every p > 1. On the other hand, the fact that |@(w)| = 1 implies that
for all k we have ¢ (2w + 2k) = 0. Combining these two results we see that

w ¢ o2, Fy + (k/2)Z, and therefore B(w) = 0, and this was what we had
to prove.
Now B can be written as a Fourier series
B = ZEiZWZk.E(Zk),
kEZ

where we have used the fact that (51) implies that B(k) = 0 for odd k. Next
we shall solve for 4 the equation
(63) A(o)+A(o+1/2) —A(20—|—1/2} :B(-).
It is easy to see that we get a solution by taking

A= Zeisz'Z(k),

kEZ
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where
AGk+1) =0, AQK) = L(-1)*A®) + B(2K), ke Z.
We conclude that A(0) = B(0) and that when p is odd and n > 1 we have
A(2rp) =Y 27" B(2p).
j=1
Thus it follows from Cauchy’s inequality that

A )2 < 2 " B(2Ip) P,

j=1

SIS AP Y IBE)f

n=1podd n=1podd

and hence

This implies that the function A is well defined, at least almost everywhere.
Now the function A is periodic with period 1 (in fact, 1/2), and this implies
by (43) that

{b4) (e +1) =di(e) ae.

We define & by (47) and it follows from (52) and (53) that we get the
second equation in (48). This result combined with the definitions of || and
|&] implies (41).

Now the rest of the proof is straightforward. The orthonormality of the
functions {w(e — k)}rez is a consequence of (10) and (40) (see [8, p. 28]).
Since & € L3([0, 1];C) satisfies (54) we see that o is a square integrable se-
quence that satisfies (5) by (41), and (2) follows. Since we obtain (6) by (44)
and (47), we conclude that ¢ is obtained from a multiresolution; note that
(3) is a consequence of the assumption that {27™/2y(27™e — k) }j mez is an
orthonormal basis in L#(R; C). This completes the proof of Theorem 2. w

5. Proof of Corollary 4. Let

o= Y1 +r)
p=lkeZ
From (36) we conclude that for almost every w € R we have either
(55) ow)=0 or ow)2>1

If we can prove that the series defining o converges uniformly on every
interval [§,1 — &}, where & € (0,1/2), then we conclude from (11) that &
is continuous on this interval. By letting § | 0 we conclude from (38) and

(55) that o cannot vanish on (0,1) and this gives (9) since ¢ is a periodic
function.
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In order to establish the uniform convergence of the series we let
= sup [¢(w)l?
lw|2e
and by (12) we know that 7 € L*(RT;R). We observe that

(56)  [$2(w + ) < n(2P(6 + min{jhl, [k + 1)),

welf1-6, keZ p=1,
where & € (0,1/2). The fact that n is nonincreasing and integrable implies
that

oo o9 oo 1 28 oo 27 (8+k)
Zzn(zp(aw))gz@wg [nwd+> 272 | n(t)dt)

p=1 k=0 =1 0 k=1 22 (6+k—1)

=]

| =

< f n(t) dt < oc.
0

Combined with (56}, this gives the desired uniform convergence of the series
defining o, and the proof is complete. m
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Pointwise ergodic theorems in Lorentz spaces L{p, q)
for null preserving transformations

by

RYOTARO SATO (Okayama)

Abstract. Let (X, F, 1) be a finite measure space and 7 a null preserving transforma-
tion on {X,F, u). Functions in Lorentz spaces L{p, ¢) associated with the measure p are
considered for pointwise ergodic theorems. Necessary and sufficient conditions are given
in order that for any £ in L(p,q) the ergodic average n™> -t fori(x) converges almost
everywhere to a funetion f* in L{p1,q1), where (p,q) and {(p1,q1) are assumed to be in
the set {(r,s):r=s=1, orl<r < ooandl<s oo, or r =s = oo} Results due to
C. Ryll-Nardzewski, §. Gladysz, and I Assani and J. Wo§ are generalized and unified.

1. Introduction and results. Let (X, F, i) be a finite measure space
and 7 a null preserving transformation on (X, F,p) (ie., 77'F C F and
u{7*A) = 0 whenever u(A) = 0). We define an operator T' by putting

Tf=for.
T is said to satisfy the pointwise ergodic theorem from L(p, q) to Lipy, ) if
for any f in L(p, g} the ergodic average

1 n—1
= T
Ma(T)f =~ g f
converges a.e. to a function f* in L{p1,q1), where L(p,g) and L{pi,q1) are
the Larentz spaces associated with the measure p. Throughout this paper
we shall assume that (p,¢) and (p1,q1) are in the set

{(r,s)ir=s=1 orl<r<ooandl s oo or T =§ =00}

The basic properties of Lorentz spaces L(p, g) are explained in Hunt [5]. In
particular, the following are used in the argument below.

(I) f € L(p, q) if and only if || f|| 54 < 0o, where

g = { SIS0 > a0 a7
P8 supymo t({IF] > 81)HF (g = o).
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