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Sets in the ranges of nonlinear accretive operators
in Banach spaces

by

ATHANASSIOS G. XKARTSATOS (Tampa, Fla.)

Abstract. Let X be a real Banach space and G C X open and bounded. Assume
that one of the following conditions is satisfied:

(i) X* is uniformly convex and 7' : & — X is demicontivuons and accretive;
(i) T: G — X is contimmous and accretive;
(i) T: X D D(T) —» X is m-accretive and G C D{T).

Asgume, further, that M C X is pathwise connected and such that M NTG # § and
MNT(8G) = 0. Then M C TG. If, moreover, Case (i} or {ii) holds and T is of type (51),
or Case (iii) holds and T is of type (S2), then M € T'G. Various results of Morales, Reich
and Torrején, and the author are improved and/or extended.

1. Introduction and preliminaries. In what follows, the symbol X
stands for a real Banach space with norm | - || and (normalized) duality
mapping J. In what follows, “continuous” means “strongly continuous” and
the symbol “—” (“—") means strong (weak) convergence. The symbol R
(R4) stands for the set (~oc,c0) ([0,00)) and the symbols 00,int D, D
denote the strong boundary, interior and closure of the set I, respectively.
An operator T : X D D(T) — Y, with ¥ another Banach space, is bounded
if it maps bounded subsets of D(T) onto bounded sets. It is compact if it
is continuous and maps bounded subsets of D(T") onto relatively compact
sets. It is called demicomtinuous if it is strong-weak continuous on D(T7).

An operator T : X D D(T) — 2% is accretive if for every z,y € D(T)
there exists § € J(x —y) such that

(%) {u-270 20 for évery ueTx, veTy.

An accretive operator 7' is strongly accretive if 0 in the right-hand side of
(%) is replaced by ez — y||?, where o > 0 is a fixed constant. An accretive
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262 A. G. Kartsatos

operator T" is called m~aceretive if B(T + AI}) = X for every A > 0, where I
denotes the identity operator on X.

We denote by B;(0) the open ball of X with center at zero and radius
r > 0. For an m-accretive operator I', the resolvents Jy : X — D(T) of T'
are defined by Jy = (I+AT)"! for all A € (0,00). The Yosida approzimants
T\ : X — X of T are defined by T = (/AT — Ji).

Some of the main properties of J, and T} are given below:

1 |Jae — Iyl £z —yll for all 2,y € X.

2. | ax — || = ATl € Ainf{|y| : y € Tz} for all & € D(T).

3. T is mraccretive on X and [|Thaz —Thyl| < (2/A)||z—yl| for all A > ¢
and z,y € X.

4 TyxeThyeforal z e X.

For facts involving accretive operators, and other related concepts, the
reader is referred to Barbu [1], Browder [2], Cioranescu [3] and Lakshmikan-
tham and Leela [19].

The main purpose of this paper is to give some results involving the
existence of certain sets in the range of an accretive operator. These sets are
either balls, or more general connected sets. This paper is a continuation of
a series of papers on the subject by a good number of authors. A central
role in this work is played by the Leray-Schauder condition:

Tz 3wz —2o),  (12) € (—00,0) x (8GN D(TY)),

where & is a fixed open, bounded set and zy € G D(T) is fixed. Tt turns
out that this condition is sufficient, and often necessary, in various settings,
for the existence of a zero of an accretive, or m-accretive, operator. The
reader is referred to the papers by Gatica and Kirk [5], [6], and Kirk and
Schoneberg {17] for applications of the Leray-Schauder condition in the
study of pseudo-contractive mappings. We also cite the paper [16] of Kirk
for such considerations involving nonexpansive mappings. The author gave
in [8] a series of results involving ranges of m-accretive operators in Banach
spaces X with X uniformly convex. These results have seen a good number
of extensions by various authors. For example, Kirk and Schéneberg gave
the first extensions in [18]. They were followed by Reich and Torrején [24],
Torrején [25] and Morales [20]. Demicontinuous accretive mappings were
studied by the author in [9]. These results were extended, for example, by
Morales in {21] and [22].

It is our intention here to give a general result, Proposition 1, that allows
a pathwise connected set M to lie in the range of an accretive operator
T. We then use this result to obtain a result, Theorem 3, where a ball
lies in the range of the accretive operator T. Various results in the above-
mentioned papers are extended and/or improved. For a study of maximal

icm

Ranges of nonlinear aceretive operators 263

monectone operators in connection with the Leray-Schauder condition, the
reader is referred to the author’s paper [14]. A survey article on compact
perturbations and compact resolvents of accretive operators can be found
in {12]. Applications of these results include the controllability of nonlinear
evolutions with pre-assigned responses in Banach spaces (I7], [18]), as well
as the construction of methods of lines for noulinear functional evolution
equations in Banach spaces [13].

2. Main results. A mapping T': X D D(T) — X is called ¢-ezpansive
on M < X if

Tz — Tyl 2 ¢(/[= ~ ylI),

where ¢ : R — Ry is a strictly increasing function, depending on M, with
$(0) = 0. T' is called ¢-ezpansive if it is ¢-expansive on D(T). T is called
locally ¢-expansive on an open set @ C D{T") if every point ¢ € @ has
a neighborhood M = M(zp) ¢ Q such that T is ¢-expansive on M. The
function ¢ here depends on the neighborhood M (zq) of 2g.

An operator T : X D D(T) — 2% is of type (S}) if for every bounded
sequence {z,} C D(T") with y, — y, for some sequence of terms y, € Ty,
we have y € R(T). We say that T is of type (S1) ot zero if y = 0 in
the previous definition. We say that T' is of fype (S2) if for every bounded
sequence {z,} C D(T") with y, — y, for some sequence of terms y, € Tz,
there is ¢ € X such that z, — = and y € Tz. T is of fype (S2) at zerc if
y == 0 in the previous definition. :

It is easy to see that every single-valued, demicontinuous and ¢-expansive
(hence strongly accretive) operator on a closed set is of type (S3). Every m-
accretive and ¢-expansive (hence strongly accretive) operator is also of type
(82) because it is a closed operator (its graph is a closed subset of X x X).
In addition, every m-accretive operator is of type (5)) provided that X is
a (BCC) space, i.e., every nenempty, bounded, closed and convex subset of
X has the fixed point property for nonexpansive self-mappings (cf. Reich
and Torrején [24]). A real Banach space is called a (BUC') space if its closed
unit ball hay the fixed point property for nonexpansive self-mappings.

The following lemima is Theorem 1.8 in Torrejdén’s paper [25].

LemMa A. Let X be a (BUC) space and let T : X D D(T) — 2% be
m-accretive. Then the following statements are equivalent:
(i) 0 € R(TY;
(i) there exist r > 0 and zo € D(T") such that for every x € 8B (20) N
D(T) there exists j € J(z — zq) such that

(1,/y >0 for everyy € T'z;

z,y € M ND(T),
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(i) there exist r > 0 and zo € D(T) such that
Te ¥ ulz—-y), (1Y) € (—00,0) x (8B, (w0) N D(T)) x By(zo).

If (ii) or (iii) holds, then 0 € T{B.(zo) N D(T)).
A variant to Condition (iii) of Lemma A is Condition (jjj) below, which
will be needed in Theorem 1.

(jii} there exists v > 0 and zg € D(T) such that
TCCEH[,L(E—.’EQ), (p,,m) € (—O0,0)X (aBr(mU)ﬂD(T))'

LeMMA 1. Let T : X > D(T) — 2% be m-accretive and of type (S1) at
zero. Then

(i) Conditions (1), (ii) of Lemma A and (jij) are equivalent. If, more-
over, T is of type (S2) at zero and (i) or (jjj) helds, then 0 &
T(Br(wo) N D(T));

(ii) Condition (i) of Lemma A and the following two conditions are
equivalent:

(iia) there exists an open, bounded G C X and g € GN.D(T) such
that for every = € 8G' N D{T') there exists j € J(z — o) such
that

{y,7) 20  foreveryy € Tx;

(iib) there ezists an open, bounded G C X and xo € GND(T) such
that

T % ple — o),  (me) € (—00,0) x (G N D(T)).

If, moreover, T is of type (S2) at zero and (iia) or (iib) holds, then 0 €
T{Gn D).

Proof. Since (jij) is obviously implied by (ii}) by Lemma A, assume
that (jij) is true. Then g(¢) = (tT + I)" xp maps [0,00) — D(T) and is
continuous on [0,cc). As such, it enters the ball B,.(zg) at t = 0. Assume
that it leaves the ball at some point ¢ > 0. Let @y = g(¢). Then [jz] = r
and, for some y; € Ty, tye + ¢ = zp. It follows that gy = (—1/t)(zy — y),
which is a contradiction to (jjj). It follows that g(t) € B,.{xy) for all t € R.,..
This says that for every ¢ € Ry theve exists 2; € By (zg) such that

tTws + oy D xo.

Let {t,} C R. with t, — oo as n — oo and ¢, > 0 for all n. Then, for
X = o4, and some y, € Tz,

Yo = (~1/tn)(wn —20) — 0 asn — co.

Since T is of type (S1), we have 0 € R(T). If, moreover, T is of type (S3)
at zero, then z, — (some) x € B,.(zp) with 0 € Tz. Thus, 0 € T(B,(z¢) N
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D(T')). In the second part of the lemma we easily see that (i)=(iia)=(iib).
The fact that (iib)=(i) follows as above by replacing B.(z) by G. =

We apply Lemma A to obtain the following range theorem for m-acere-
tive operators. For a set A C X, we set |A] = inf{||z] : z € A}.

THEOREM 1. Assume that T : X > D(T) — 2% is m-accretive and of
type (S1). Assume, further, that there exist ¢ > 0 and x¢ € D(T) such that
Ty < q<|Ta|, =€dB.(zo)N D(T).

Then B, (0) € R(T). If, moreover, T is of type (Sa), then B,(0) C T(B,(zp)
n.D(T)).

Proof. There is no loss of generality if we assume that zo = 0. If this is
not true, we consider instead the operator T defined by T'z = T{z +zq), z €
D(T), where D(T) = D(T) — q. In this case we should also replace the ball
By(xy) by the ball B.(0).

Now, let Tyz = Tz — v, where v is a fixed point in Big_jr(oy)y/2(0)-
Taking into consideration the proof of the Lemma in Morales’ paper [20},
we see easily that (iib) holds, with 7% in place of T. Thus, by Lemma 1,
we have By |rwy)/2(0) C© R(T). If, in addition, T' is of type (S9), then

Biy—jrq)y72(0) € T(B:(z) N D(T)). Actually,
Bg-irm/2(0) € T(Br(z0) 0 D(T))
because y € T(B,(0) N D(T)) implies |jy|| = ¢ > (¢ — [T'(0)])/2.
Now, we continue the proof of the first part of the theorem, i.e., we only
assume that T is of type (S1). We fix u € B,{0) and consider the set

Q={te[0,1]:tu e R(T)}.
As in Kirk and Schéneberg [18, Theorem 3], we can show that ¢ = 1 € Q,
Le., that B,(0) ¢ R(T). _
Now, assume that 7 is of type (S2) and consider the set
Q= {tc|0,1] : tu € T(Br(xo) N D(T))}.
We have  # () because 0 € Q. We let to = sup & and assume that #n < 1.

We let t,, € § witht, — to and u, € By (zo)ND(T) be such that tnu € Ttin.
We define the operators T, as follows:

Tor=T{z+up) —tpy, TE D(T) — U
We have 0 € 7,,(0) and '
0=T,0) <g—tng<g— tnllu] < lTn{x)l’
z € 8(Br(z0) — un) N (D(T) — tn)-

Since T, is m-accretive and of type (Sa), we may quote the' above argument
to obtain Byt sz € T{{ B (o) ~un) N(D(T) —1t,)). Since g < 1, there
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exists t € (¢g,1) and some n so that (¢ — t)||ull < (g — ta|lul}/2. This is
true because t —t, — 0 as (¢,1) — (tJ,00). It follows that we may choose
Un € (Br(z0) —un) N(D(T) —u,) such that (t—t,)u € T, (vy), which implies
that tu € T(v, +uy), Le., tu € T(By(ze) N D(T)). Since ¢ > ¢y, we have the
desired contradiction. The proof is complete. =

The above theorem yields the following general invariance of domain
result for m-accretive operators, which improves Theorem 3 of Morales [20]
and Theorem 3 of the author in [8]. The author assumed in [8] that X* is
uniformly convex and Morales assumed in [20] that X is a (BCC) space.

THEOREM 2. Assume that T : X D D(T) — X is m-accretive und

G < D(T) is oven and bounded. If T is locally ¢-expansive on G and of

type (S1), then TG is open. If T is of type (S2), B.(z¢) C D(T), for some
7> 0, and T' is ¢p-expansive on 0B, (xg), then By (Tro) C T(By(iy)).

Proof. Let g € . Then T is ¢-expansive on E,(zp) C G for some
» > 0. As in the proof of Theorem 1, we may assume that zp = 0. We
observe that the ¢-expansiveness of T on B,.(0) implies that

(1) 0= [T < ¢(r) = ¢{{lall) < |Te|l, = e 8B, (0).

Working as in the proof of Theorem 1 (i.e., using the proof of the Lemma,
in [20]), we now see that if Tz = Tz — v, where v is a fixed point in
Bip@y—yroyy/2> then (iib) holds. From Theorem 1, we thus obtain
() - Toy/e & B(T). Here we could also use Lemma 1 of the author in
[8]. A careful examination of the proof of Theorem 1 now reveals that since T
is actually ¢-expansive on the ball B, (0) and closed, we have B4,
C T(B.{0)). It follows that T'G is open.
To show the second part of the theorem, we first ohserve that (1) is still
true in this part. Since 7" is now of type (93), we may quote Theorem 1 in
order to obtain By, (0) € T(B-(0)). m

=T /2

A set M C X is pathwise connected if for every x,y € M there exists a
continnous function s: {0, 1] — M such that s(0) = 2 and s{1) = y. We are
now ready for a basic result involving the existence of pathwise counected
sets lying in the range of an accretive operator.

ProrPoSITION 1. Let G C X be open and bounded. Assume thal one of
the following conditions is satisfied:

(i) X* is uniformly convezr and T : & — X is demicontinuous and
accretive;
(i) T: G — X is continuous and accretive;
(iii) T: X 2 D(T) — X is m-aceretive and G < D(T).
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Assumne, fmﬁrr'r that M C X 1is pathwise connected and such that MOTG #
B and M NT(OG) = §. Then M C TG. If, moreover, Case (i) or (ii) holds
and T" is of type (81), or Case (iii) holds and T' 4s of type (S2), then M C TG.

Proof. Let (i) hold. We may (and do) assume that 0 € M NTG,0 € G
and T(0) = 0. In fact, if this is not already true, we fix yg € Mnra

and consider instead of 7' the operator Tz = T(z + z0) — 5o, 7 € G where
Tay = yy and G = @ — zy. We also consider instead of M the set M =
M = yo. Tt is GLH'y’ to see that M is pathwise connected, M N T(8G) = B
and M N7 ((r) 50,0 € C and T( } = 0. Moreover, T is demicontinuous and
accretive.

We consider the operators Thz = Tz + (1/n)z,n = 1,2,..., € D(T).
We lix y € M and let s: [0,1] — M be continuous and such that s(0) = 0
and s(1) = y.

We show first that s(t) € T,(0G) for all large n. In fact, if this is not
true, then we may assume, without loss of generality, that there exists an
infinite sequence {¢,} C [0,1} such that s{t,) € Tn(8G) for all n. Since
[0,1] is compact, we may also assume that £, — £ € [0,1]. Then s(t,) =
Ty -+ (1/n)z, for some sequence {z,} C O, and so s(t,) — s(tp). Since
{#n} is bounded, we have s(t)) € T(8G), which contradicts our assumption.

Let s(t) & T,,(8G) for n > ng, for some ng > 1. From now on we consider
only such values of n. Since the operator T}, is demicontinuous and strongly
accretive, the invariance of domain theorem of the author {9, Theorem 1}
tmplies that 7,,G is open. This says in turn that the set @, = {t € [0,1] :
s(t) € T,,G} is open in [0, 1] (with [0, 1] endowed with the relative topology
as a subspace of R) because @, = s~ HT,G). Obviously, @, # 0 because
e Q.

In order to show that @, is also closed in {0, 1}, we let {t.,n} C @, be such
that &, — ¢t € [0,1] and we observe that s(tm) = Ty, for some sequence
{n} C G, and s(t,,) — s(t). Since

S('[Jm) =T&m + (l/n)wm:

we have

. 2
(1/n) Lo sap (e, — w4, J (@ — 25)) = (1/n} lim sup fem — 25" <0,
Py f =r 00 m,f— o0

which implies that {w,,} is a Cauchy sequence. Letting z,, — T € G, we
have s(t) = T,F. Since §(t) € Tn(0G), we have s(t) € ToG. Tt follows that

@, s closed in [0, 1], -
Since it is also open in [0, 1], we must have @, = [0,1]. Thus, there exists
a sequence {@,} C G such that s(1) = T@r, or

Tzn + (1/n)2n = y-
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The boundedness of {z,} implies Tz, — y. Thus, ¥ € TG. If, moreover,
T is of type (S1), then y € R(T) = TG. Since y € M, we cannot have
y € T(8G). Thus, y € TG.

A very similar proof covers the case (ii). The basic difference is that we
now make use of the invariance of domain result of Deimling [4, Theorem 3].

In Case (iii), T}, is m-accretive and @-expansive. Thus, T, Is of type
(S1). Theorem 2 implies that T,,G is open. Letting 2, — & € (&, we have
Tntm — s(t) as m — oo. Since T, is closed, being me-accretive, we have
s(t) = T,Z. It Jollows that y € TG. If T is of type (92}, then there exists
z € G such that Tz = y. Since y ¢ T(8G), we must have y € TG, w

‘We now give an application of Proposition 1, where it is shown that a
ball lies in the range of a certain accretive operator. An operator 7' : X' D
D(T) — X is locally bounded on G C D(T) if for every point # € (7 there
exists an open ball By(2) C G (with r depending on z) such that T(B,(z))
is bounded.

THEOREM 3, Let G C X be open, bounded. Assume that T+ X D
D(T) — X is acecretive, with G C D(T), and that there exists 20 € G
such that

(2) [Tzl < IT2|, =€ dG,

with r = inf{||Tz| : © € 3G} > 0. Let T satisfy one of the conditions (i),
(ii) of Proposition 1 and be of type (S1), or Condition (iii) and be of type
(82). Assume that T is locally bounded on G. Then B,.(0) C TG.

Proof We observe first that we may take zg = 0. If this is not alveady
true, we consider instead of T the operator Tyz = Tz + xy), z € G, where
Gy = G — zg. Thus, we have [T(0)|| < |7z}, z € 8G.

We start the proof assuming that Case (iii) of Proposition 1 holds, i.e., we
assume that T' is m-accretive and of type (92). We introduce a perturbation
to the problem by considering the operator T, =T + al, 0 > 0.

To show that T, satisfies Condition (iib) of Lemma. 1, assume that this
is false and let Toz = pa for some (p,z) € {—oc,0) X OG. Then, for some
Jx € Jz,

<T.’E - T(O)).?m> + (T(D)J!) = (JU‘ - Of)(?l-,j,g),
‘which implies

=IO - il < (0 = ez, ju} = (1 = )||z]|?
and |T(0)]| > (o~ p)l|z|| = [|T=||. This contradicts (2). It follows that (iil)
holds.

Since T, is of type (S;) at zero, Lemma 1 says that Tz + oz = 0 is
solvable with solution 2z, € G for every a > 0. Since Te # —ax for z & 8G,
we have , € (. Since G is bounded, we let o« — 0 to obtain Tz, — 0 € TG,
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This implies that for ov oly € (0,7) we have B,_.(0) N T¢ # 0. We also
observe that [T 2 r,2 € O, which implies B,._.(0) N T(0G) = §. By
Proposition I, with M = B,_,(0), we have B,_.{0) C TG. Since £ € (0,7)
is arbitraty, we have I3,(0) € T'G and the proof of this part is complete.

In case (i) of Proposition 1 holds, we need to guote Theorem 4 of Morales
[21], where the Leray Schaunder condition (iib) is used in connection with
the demicontinuous aceretive mapping 7" in order to obtain

nf{| ||z e G} =0.

Actually, the local boundedness assumption is redundant here because
a demicontinuous aceretive operator is locally bounded on the interior of
its dowain whenever X* is uniformly convex (cf., for example, [12, Theo-
rom 3.110).

Now, assutue that (i) of Proposition | is true. We fix o > 0 and consider
the sot

Q= {t € Ry : #Tx -+ car = 0 for some z € G}
Since 0 € @, Q # (. We are going to show that the set () is open and closed
in B... To show that it is closed, let {#,} < @ be such that ¢, — t € Ry.
Then, for some sequence {z,} < G,

b L + vy, = 0.

Since 0 € ), we assuve that £ > 0. We may also assume that £, > 0. We
have, for an appropriate § € J(@y ~ B,

t,,x,’]’;::,“‘ Tﬂfnm,'j) + (tn - twra)(rf1mfrmaj> -+ “(mﬂ ™ Tams 3) =0,
which, using the accretiveness of T, implies

C\f”frn - 'J'm“2 < “n - trrﬂ ' HTwm” : “mn - wm“ —0 asm,n— oo,

because ||, || = (¢/tw)|/2m|| and the boundedness of G imply the bound-
edness of {Tw,,}. It follows that @, — {some) z € G, and, by continuity,
{2+ == 0. Since, as in the first case considered above, Tz # (—a/t)z,z €
O0G, we have ¢ € ¢ Thus, @ 1s closed.

To show that Q is 01w.n, agsume that it is not and let {¢,} C R be such
that by, £ ¢ Q and by, & Q,n == 1,2,... Obviously, t, > 0 for all n. We let
gilw) = LT + cvr. Since £ € Q, there is & € G such that gy(x) = 0. Since
(7 is open, there existy r > 0 such that B = B, B.{z) ¢ G. Since T is locally
hounded on ¢, we may agsume that I'5 s bounded We have

J'H ks (]fn.( )C Jt (B)
and 0 ¢ g, (B). Thus, the line segment [0, yn], with endpoints 0 and Yy,
must intersect the set dg,, (3). Let vy € [0,90] N Og,, (B). The strong ac-
cretiveness of g, implies let v, (B) is open by Deimling’s lnvariance of
domain theorem [4, Theorem 3). Tt is also casy to see that gy, (B) is closed.
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This implies that 8g,, (B) C g, (0B). Thus, there exists @, € 053 with
¢, (%) = vn. Since yy, = g¢, () — g¢(z) = 0, we have v, — 0. From

tnT'Ty + oy = vy

and the boundedness of {T'z,}, we can easily see that z, is a Cauchy sc-
quence. Letting x, — T € 9G, we have 5;(Z) = 0. Since g is injective, we
must have ¥ = z, i.e., a contradiction. It follows that ¢} = R, which implies
that the equation T’z + (I/n)z = 0 is solvable for every n = 1,2,... with
solution z,, € G. Thus, 0 € TG. The rest of the proof of this part follows as
in the proof of the first part above. It is therefore omitted.

From the proof of Theorem 3 we have the following result.

THREOREM 4. Let T : G — X be continuous, accretive and of lype (51) at
zero, where G is open and bounded. Let Tx 2 0,z € 8G. Then the following
statements are equivalent:

(i) 0 e T'G;
(ii) there exists zg € G such that for every x € 8G there exists j €
J(z — zo) such that (T'z,5) = 0;
(iil) there ewists zgp € G such that Tz # p(x — xg) for every (u,2) €
(—00,0) x 8G.

Proof. To show {i)=>(ii), it suffices to take zp € @ s0 that Tay = 0 and
use the accretiveness of 7'. To show that (ii)=»(iii), assume that (i) is true
and observe that

Te = plr —xo), (u.7) € (—00,0) x 8G,

implies, for an appropriate j € J(z — @),
0< (Tﬂ.’f,j) = ,LL(IL’ - mO:j> = f*"”m - "TUHQ <0,

i.e., a contradiction. The implication (iii)=-(i} follows from the proof of The-
orem 3 because, as we saw there, T2 - (1/n)z = 0 is solvable, for every
n=1,2,..., with solution z, € G. Thus, Ta, — 0 implies 0 € T'G. Since
0gT(HGE), TG 20. n

The assumption that Tz # 0,2 € 8@, in Theorem 4 iy implied by the
assumption that there exists ¥ € G such that |TZ]] < |Tz|,z ¢ 8G. A
related result is contained in the following theorem.

THEOREM 5. Let T : X O D(T) — X be aceretive and G ¢ D(T), where
G is open and bounded. Assume, further, that T is of type (81), locally
¢-ezpansive on G and such that TGN T(8G) = D and TG is closed. Then
if T satisfies one of the assumptions (1)-(iii) of Proposition 1, the following
statements are equivalent:

icm
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(1) 0 eI,
(i) there exists zo € G such that |Tay| < || Tz), = € 8G.

Proof. We give the proof only for the case (iii) of Proposition 1. All
the other cases can be treated similarly in connection with the proofs of
the respective parts of Proposition 1. It is obvious that (i) implies (ii). We
assume that (i) is true. We know that 7' is m-acceretive, locally ¢-expansive
on G and of type (87). By Theorem 2, we see that TG is open. Since TG is
closed and TG NAT(OG) = B, it follows that TG ¢ T(HE). We are going to
show that the set

A == {ﬁflﬂmu & [0, l]}
liew in TG Let us first show that M N TG = §. To this end, assume
that y ¢ M N OTE. Then y € T(HF) and so y = TE for some T € G,

If Twy = 0, we are done. Thus, we may assume that Tag £ 0. If y = 0,
then |7y || < ||7'F]| = |ly|| = 0, i.e., a contradiction. Hence, y # 0 and there

exists ¢ € (0, 1] such that y = 7% = tTzp. If £t = 1, then y € TGNT(8G), i.e.,
a contradiction. Consequently, ¢t € (0,1), which implies ¢||Tzo| < [[Tzol] <
|1TE|| == t||T®q], i.c., a contradiction again. We conclude that M NdTG == (.
Since M is connected and MNTG # 0 (Tay € T'G), we must have M C T'G.
It follows that 0 € T'¢ and the proof is complete. =

3. Compact perturbations. In this section we give an improvement
of Theorem 3 of the author in [11], where it was assumed that C is also
uniformly continuous on bounded sets, Namely, we give the following result.

THEOREM 6. Let T 2 X D D(T) — 2% be m-aceretive and C: D(T) — X
compoct. Let p & X and assume that there exists a positive constant b such
that @ € D(T') and {|z|| > b imply that there exists j € Jx such that

() {u+Cz—p,j) 20
Jor all w & Tw. Then p e (T+ CH(B,(0)N D(T)).

Belore we give the proof of this theorem, we quote a result from Naguma’s
paper [23, Theorem 7), ‘

TrEOREM A, Let T2 [0, 1] x & = X be continuous, with G an open subsel
of X, and such that 1'([0,1],&) ¢ K, where K is o compuct sel. Assume
that s : [0,1] = X is continuous and such that 8(t) & (I +T(t,))(0G) for
every L6 [0, 1] Then d(I +T(¢t,-), ¢, 8(t)) = const.

Proof of Theorem 6, In the proof of Theorem 3 of [L1] we 1‘1%:‘1.\[(-‘,
shown that there exists a ball B,(0) such that z+U(#, ) = 0 has no solution
zy € 013,(0) for any ¢ € [0,1), where

U{t,w) = ¢[CntT + l").”l {nu) — pl.
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If such a solution z, exists for ¢ = 1, we are done. Thus, we may assume
that no such solution exists for ¢ € [0, 1]. Let
ve(u) = (T + 1)~ Hnw).

We have, for t > 0, £p > 0 and u € B,4(0),

1 (2] — i ()] < Tle ) = g (W] + g (1) = e (0]

2L — 1
<2 n o fnu — ol + nllu—uol =0 as ({,u) — (to, un),
0

where we have used estimates from the proof of Thecrem 3 in [11]. Thus,
Cyi{u) — Cys,(ug) as (t,u) — (tg, uo) with 5 > 0. Also, (t,u) — tCys(u} is
continuous at (%p,ug) provided that £y > 0 and up € B,(0). It follows that
the operator U (¢, u) is continuous at every (g, ug) with &g > 0.

From the above inequality for ||y:(u) — v, (ug)|/, we see that the set
M = {y(u) : (t,u) € (0,1] x By(0}} is bounded. This says that the set
CM — p is compact and implies that ||U(¢,u)| = ¢|Cy{e) —p|| — 0 as
t — 07 uniformly w.r.t. u. It follows that the operator U{#,v) is continuous
at any point (fo,up) € {0, 1] x Bg(0). The set U([0,1], B4(0)) = {¢[Cys(u) —
pl it € [0,1],u € By(0)} lies inside the compact set K = [0,1] - CM ~p
because multiplication ((¢, z) ~ tx) is continuous and the set [0, 1] xCM — p
is compact.

Applying Nagumo’s theorem above, for T'(f,u) = U(t, u), G = B4(0) and
s(¢) = 0, we obtain the solvability of the equation z 4 U(1,z) = 0 for every
n and we are done. In fact,

Tzy + Czp + (1/7&)-'1:71 3 p,

for some sequence {z,} C By (0)N D(T). Since {z,} is bounded we have our
conclusion. m
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