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On measure-preserving transformations
and doubly stationary symmetric stable processes

by

A, GRROSE (Santa Barbara, Calif) snd A, WERON (Wroctaw)

Absgtract. Tu a 1987 paper, Cambanis, Hardin and Weron defined doubly stationary
gtable processes sy those stable processes which have a spectral representation which is
itwelf stationary, and they gave an example of a stationary symmetric stable process which
they claimed was not doubly stationary. Fere we show that their process actually had a
moving average representation, and hence was doubly stationary. We also characterize
cloubly stationary processed in tevms of measure-preserving regular set isomorphisms and
the existence of a-nite invariant measures. One consequence of the characterization is that
all harmonizable syrmmetric stable processey are doubly stationary. Another consequence
is that there exist stationary symmetric stable processes which are not doubly stationary.

1. Introduction and preliminaries. If (X,) is a non-Gaussian sym-
metric stable process (definitions are given below) then, being infinitely di-
visible as well, it has a canonical speetral representation (X) 3 ( fr dN),
where (f;) is a process on some measure space, N is a Poisson random
measure on that measure space, and the integral is appropriately defined
(Maruyamna, 1970). Furthermore, Maruyama (1970, Section 4) observed that
if the stochastic process (X) is stationary, then the process (f;) in the spec-
tral representation is also stationary; this follows easily from the construc-
tion of (f;), in which a Kolmogorov existence type argument was used.

But it is well known that the symmetric stable process (X;) has another
representation ([ f.dM) where M is a symmetric stable random measure
ol some measure space and (fi) is a process of L functions on that space
(ace, for instance, Hardin, 1982). Henceforth “spectral representation” of
a sbable process will always refer to this representation unless stated oth-
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erwise. It seems natural to expect, by analogy with the Poisson random
measure representation described above, that the process (fi) in this rep-
resentation would also be stationary whenever {X,) is stationary. On the
other hand, the analogy is not completely valid: The canonical representa-
tion of an n-dimensional symmetric stable random vector is with respect to
a stable random measure on a measure space (E, &, iy ), where ji,, is a mea-
sure concentrated on the unit sphere in R". Unlike the finite-dimensional
Lévy measures, these measures i, clearly do not satisfy the Kolmogorov
consistency criteria, We therefore have intuitive reasons to suggest both the
existence and the possible non-existence of a stationary spectral representa-
tion.

Cambanis, Hardin and Weron (1987) called a SeeS process doubly station-
ary if it has a representation ([ fi dM) where the process of L™ functions
{(f:} 1s also stationary, and they gave an example of a stationary symanetric
stable process which they claimed was not doubly stationary. In this paper
we show that their example was incorrect, and that it was actually a moving
average process and hence doubly stationary (Example 1). We then char-
acterize doubly staticnary processes in terms of measure-preserving trans-
formations (Theorem 6) and in terms of the existence of o-finite invariant
measures (Theorem 7), and in Example 2 we construct a stationary sym-
metric stable process which is not doubly stationary, using an example by
Ornstein (1960} of a nonsingular transformation on [0, 1] which does not ad-
mit a o-finite invariant measure equivalent to Lebesgue measure. (We have
recently learned that Jan Rosinski also found the gap in the Cambanis,
Hardin and Weron (1987) example, and that he observed as well that the
faxistence of stationary, non-doubly stationary processes follows from the ex-
istence of nonsingular transformations which do not admit o-finite invariant
measures.) -An additional consequence of Theorem 6 is that harmonizable
processes are doubly stationary.

Now for the definitions. Let G be an arbitrary group. A stochastic process
(Xt)teq Is stationary if the distribution of (X)seq is the same for alls € G.
A .stochastic process [X;) is said to be symmetric ov-stable (SaS) if every
finite linear combination of the X;’s is a SaS random variable.

The symbols By and By ;) will denote the Borel o-fields on R and [0, 1].
For p € (0, 0o} and a measure space (E,£, u), we will write

I£1P = [ |£17 dy,

and let LP(E,£,u) (or an abbreviation thereof) denote the class of all
ct;mplexwalued functions f such that ||f||? is finite. It is well known that
LP i a complete metric space with respect to the metric

(£.9) = |If — g||"AV/7.
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Tf (17%) is a group of isometries on sotme LF(E, £, ) and f is an LP func-
tion, we let Ly denote the closed linear subspace generated by the functions
Uy it will always be clear which isometry is implied by the notation “Lg”.

Hven a linear subspace F' C LY, the ratio o-field o(F) is the o-field gener-
ated by functions of the form f/g, where f and g are functions in F' (see
Hardin, 1082},

Ti is well kuown (e.g. Hardin, 1982) that for every stationary SaS process
X == (X )iec; there is a linear subspace L of some L*(E, £, i}, a function f
in L, and a group of isowmetries U = (U “ieer defined on L such that for any
finite linear combination Y &y (where the as's are real numbers),

K oxp (71 Z (L-{,X;) =2 OXP (—-» H Z a, Ut f ”).

We way that (U, f) i a speetral representation for the SoS process X. Using
this notation, a process is doubly stationary if it bas a representation (U, f)
guch that (I7'f) is stationary.

We will generally not write the “* explicitly when referring to groups of
isometries or groups of set transformations. For instance, we will generally
write “WU = U, W” instead of “WU = ULW for all ¢”.

All measures in this paper will be assumed to be o-finite. We let m de-
note Lehesgue measure. I two measures on the same o-field have the same
gats of measure wero, we say the measures arve equivalent. If (Ey, €1, wy) and
(B, £y, jiy) arc measure spaces, a transformation ¢ : €1 — & is called a
regular st isomorphism (see Lamperti (1958) or Hardin (1981)) if it pre-
serves set complements and countable unions and intersections and if it is
nonsingular, 1.e. the measures jpd and yy have the same sets of measure
zero. When we say that a regular set isomorphism is invertible, we mean
that its inverse is also a regular set isomorphism; a regular set 1somorphism
¢ always has an inverse defined on its image $Ey C Ez. A regular set iso-
morphism ¢ induces an operator, also called ¢, on the class of measurable
functions by

dla = lgpa.
A regnlar set isomorphism ¢ : &~ €18 gaid to admit an inuvariant measure
v on & if vg = . In this case we also say that ¢ is measure-preserving (with
rospoct 1o vy, I (181, £, ) and (B, &2, p2) ave o-finite measure spaces and
@1 &) =~ &y 19 regular sot isomorphism, we write
Qb" . El/»(f‘l(f)“l
T odpy

2. Results. Before looking at Example (iv) of Cambanis, Hardin and
Weron (1087), we state the following chain rule. We omit the proof, which
is straightforward.
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LEMMA 1. If ¢ and 4 are regular set isomorphisms on o-finite measure
spaces such that the composition ¢ is defined, then

(69) = w(¢) - 4.
EXAMPLE 1. The S18 process of Bxample (iv) of Cambanis, Hardin and
Weron (1987), represented by (U*)ier, 1) on L'[0, 1], where
Utg(x) = 2% ~Lg(?),
is & moving average process.
Proof. Define & : [0,1] — [0, 1] by
Pz = mgt, teR, z€[0,1].
Similarly, define &} : R — R by
Piz=x-+t teR zecR

Th.en (¢8)ier = ((F) Vier, ¢ = 1,2, are groups of regular set isomor-
phisms. Define ¥ : R — [0,1] by

Tr=2"" teR, zeR,

aid define the regular set isomorphism ¥ = ¥~ One can check directly
that

PO =P, tekR,
and that therefore ¢y, ¢q and 1 satisfy
(1) PP = doth.
Now define the positive isometries induced by the set isomorphisms by
Uif = () - (8:f), i=12, Wf= () (f).

(Note that (U1, 1) represents the Sa:S process defined in this example.) Then
for all 14 in LP(g)

?

WULLa =[g1(9") - ¢1] Ly a,
UsWla = [tb(#5) - 9]+ Lgypa.

N f’t now follows from (1) and an application of the chain rule (Lemma 1)
a

T/VU], = UQW

Thus (U,, W1) represents the same SaS process as (U1, 1), But U, is the
group of shift operators, i.e.

Usg(w) = g(z+1), teR, ge L'(R),

so the process given in the example is a moving average. w
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Remark. The proof in Cambanis, Hardin and Weron (1987) that the
process has no stationary representation is correct until the last line, where
it I8 implicitly assumed that u(B) < oo, Thus it was actually proven that the
process has no statlonary representation on a space of finite measure. This
also follows from results in Gross (1994), where it is shown that an ergodic
Beu process separable in probability cannot have a stationary representation
on a space ol fiuite measure; it is casy to check, using the results in Gross
(1994), that this particular example is mixing.

All the results in Uhis paper rely on the representation of a linear isometry
of an LY space into itself by a regnlar set isomorphism on the o-field. The
first general result was proven by Lamperti (1958); we re-state it here.

TrsorEs 2 (Lampertd, 1958). Let U be an ssometry from LP(E,E, 1)
dndo LU E, i)y where i ds o-fingte and p is o positive real number not
equal to 2. Then theve cadst Loin LY(E, €, 1) and o regular set isomorphism
g &~ & defined by

B(A) = supp(Ula), p(A4) < oo,
suede that

Uf=h-(8f), [e&L').

Necessarily then, {h]V == ¢/,

Our goal now s to characterize doubly stationary processes in terms
of measure-preserving regular set isomorphisms (Theorem 6). The proof,
contained in tho next three lemmas, is as follows: Let X be a stationary
Sal process, separable in probability, Then X has a representation on a
Borel subset of a soparable complete metric space (Lemma 3), so by an
argunent due 1o Rosinski (1094) the regular set isomorphisms in the spectral
representation are induced by point transformations (Lemma 4). But then
we show that if the poiut transformations are measure-preserving, then we
canl congtrecl o stafionary spectral representation of the process on some
product space (Lemma §).

Lemma 3. Lel {(VHeen ) be o representation of o stationary So8
wrocess, separable ino probabibity, Then there exisls o spectral representa-
don (U ceen [ Jou the same process, defined on some LYK, E, i) where
1= [R5\ A0} for some countable 8§ < G, such that

Lop d st
(T Neec = (Vigheo
Proof Sinee this proof consists of standard measure-theoretic argu-
wents with only slight modifications, we will present an outline only.
Let § ¢ ¢ be a countable subset such that {X; heg is dense in {X; e
with respect to convergence in probability. Define B = R\ {0} and let £ be



280 A. CGross and A, Weron

generated by the cylinder sets of E. Say the representation (V,g) is on the
measure space L%(M, F,v). By the separability assumption, we can assuirie
without loss of generality that F is generated by the Vig's,t € 8.

We will follow the usual argument in the Kolmogorov existence theorem
with a minor modification to account for the fact that the measure may
be infinite. As in the Kolmogorov existence theorem, we begin by defining
a measure x4 on the field generated by finite Cartesian products of Borel
subsets of the real line. In addition, we require that at least one of the Borel
subsets in the Cartesian product be a compact subset of R\ {0}, We define
4 on this field in the usual way as the measure induced by the process
(Vtghes. Because of our additional requirement on the cylinder sets, and
the fact that the V'g's are [® functions, the measure & is finite on this Hokl;
therefore, by elementary measure-theoretic arguments, it is also regular (sce,
for instance, Billingsley, 1986, Theorem 12.3). Hence we can continuc with
the usual Kolmogorov proof, extending i to a unique measure on the o-field;
the process (fi)ies on (E,€, 1) defined by fi(z) = z(f) thus has the same
distribution as {V'g).es-

We will now show that the process (fi)ieq has the same distribution as
(Vig)ie- We will show first that convergence in measure implies a sort of
“convergence in distribution”; the argument follows the argument for the
case of probability measures in Billingsley (1986, Theorem 25.2), but again
we need to adapt it slightly to take into account infinite measures. Lot
{t1,...,ta} C G be an arbitrary finite index set, and suppose that vectors
(ftyons---» Fran) of L% functions converge in measure to (fi,,-..,fr,) as
n — o0. For any nonnegative real numbers a,...,ag with

M{ftl =u‘1:"':f‘bd=ad}=0

and at least one ay strictly positive, an adaptation of the standard proof of
convergence in distribution (Billingsley, 1986, Theorem 25.2) shows that

(2) nu‘{ffl_,’l’b 2 Q1,... 7ft0;,n 2 ad} — M{fﬁ;[ 2 45 P '7ftr); 2 ﬂd}.

Here the requirement that some ay be strictly positive insures that the sets
have finite measure.

Note that sets of the form {f;, > a1y Jiy = ag} with the ay’s as.

described above, together with the similar sets for nonpositive ay's, gene-
rate £. Thus (2}, together with the similar statement for nonpositive az's,
the equality in distribution of (f;)1es and (V'¢)ies, and separability, imply
that the processes (fi)icc and (V'g)ieq have the same distribution. w

i LeMMA 4. If U = (U')eq is a continuous group of isomelries on
L (E,Ej,p), where I is a Borel subset of a complete separable metric space
and i is a o-finite Borel measure, then U has o representotion of the form

(3) Ulg=h;-(gor"), teG, ge L=,
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v (et e AP . , .
where (75 )1eq i a group of nonsgingular point tronsformations and the func-
tions Iy ore -moasurable and satisfy

(II) h’-‘*"|@‘|" = T - (h:‘. o 'T'H\).

This statement s essentially proven by Rosinski (1994) in the proof of
his Theorem b4, Consequently, we will omit the proof here. (Note that the

continuity of £ +» U is equivalent to the separability in probability of the
Sexs process.)

lLuiMMa B Vlml, (7 1) be o spectral representation for o SaS process,
where [ ¢ LU E, 1) for an arbitrary o-finite measure space (B, €, ). If

Uy ke the represerdation
[ty = he(gorh, teq, geL¥,

whese (T4) s« growp of mensure-preserving point transformations, then the
S8 process also has a representation (Us, fa), where

teG, ge L”,

Jor some growp of measurc-preserving point transformations ().

Uzt"r] =G0 T",

Proofl We will construct the stationary representation using a skew
product transformation on the product space of E with the unit circle
{z ¢ €|z = I} Lot T denote the wnit circle; we will always take the
measure on T to he normalized Lebesgue measure.

Deline the point transformations T E x T — E x T by

T, y) = (', ha() - 3,
where T and b are induced by {71 as described in the statenoent of the lemma.
Define the LY(# x T} isometries U by ULf = fe T
Daline the point transformation ¢ : £ x T — E by

Plmy) =,
aud define the LO(FE x T) function hy by

hap(2,9) = Y.
Now define W Lo(19) - LY E x T) by

W e by (f o).

Note thab W is an isometry sinee 2 is measure-preserving and [hy| = 1.

Diveel eateulation shows that W = U;W. Hence, taking fo = W fy,
we have constructad a ropresentation (Us, fa) having the desired form. =

We now combine the resulis of Lemmas 35 into a single theorem.

THEOREM 6. A neecssary and sufficient condition for a stationary Sa S
process, separable in probubility, to be doubly stationary ts that it have o
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representation ((U')ieq, f), where the group of isometries U s induced by
a group of measure-preserving regular set isomorphisms ¢, in the sense that

U'f = (1) he.
Proof. The necessity is clear—the transformations ¢' are the shifis

defined on the o-field generated by the cylinder sets of (U f) and the h,’s
are 1. Sufficiency was proven in Lemmas 3-5. »

An immediate consequence of Theorem 6 is that harmonizable processes
are doubly stationary. (A SaS process indexed by R is harmonizable if it
has a representation given by isometries Ut f{z) = f(&)e™"; harmonizable
processes indexed by arbitrary locally compact abelian groups are defined
similarly.)

We now apply Theorem 6 to state another characterization of double
stationarity. As we observed in the introduction, Jan Rosinski also noted
the connection between double stationarity and the existence of o-finite
invariant measures, independently of our work.

THEOREM 7. Let X be a stationary SaS process, a € (0,2), separable in
probability, with spectral representation (U, f) on some LB, &, 1) with
o-finite. Suppose that U is given by Ug = h-(¢g) as described in Theorem 2.
If ¢ admits a o-finite invariant measure equivalent to u, then X is doubly
stationary.

Proof Assume that v is a o-finite invariant measure for ¢, equivalent
to p. Take o : (B, &, u) — (E, €,v) to be the identity, and define the isom-
etry W L*(u) — L%(v) by

Wg = (@' (4g).
(Note that ¢ is a regular set isomorphism because » is equivalent to pu.)
Now (WUW !, W f) is another representation for X, and it is easy to see
that for any 14 in L®(v), the support of WUW =11, is just ¢A. In other
words, the group ¢ of regular set isomorphisms induced by the group of

isometries WUW ™! preserves the measure », 5o by Theorem 6, X is doubly
stationary. m

In general, nonsingular transformations on 10, 1] that you can write down
“off the top of your head” have o-finite invariant measures equivalent to
Lebesgue measure—the question of whether there exist nonsingular trans-
formations which do not admit such measures was open for over twenty-five
vears, until Ornstein’s (1960) example which we use for our Example 2.
Theorem 7 therefore suggests that in general, the stationary So8 processes
which one is likely to deal with are doubly stationary.

'EXAMPLE 2. For every o € (0,2), there ewist stationary Sa.8 processes
which are not doubly stationary.
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We construel bhis example in the following steps: First, we will establish a
relationship hetween the o-fleld o( L) for a given isometry, and the Radon—
Nikodyn derivatives of the regular set isomorphism corresponding to the
isometry. Then we will describe a nonsingular point transformation 7 on
[0,1], due to Ornstein (1966), which docs not admit a o-finite, invariant,
equivalent measure. Using the relationship established in the first step, we
will show that this particular example can be taken so that o(L,) = B,y

We will tlien nse Lenma 10 (stated and proven helow) to show that, if the
process is represented by another lsometry induced by a measure-preserving
transformation 7' on some measure space (B, £, 1), then there is a regular
set isomorphism «f By - &€ such that 7! = T4, Finally, we will
conclude that the Sl process represented by the isometry induced by 7

We will need to use a result from Hardin (1981) for our example. Recall
that Lamperti’s regult (Theorem 2) applies only to isometric operators on a
single L space. We will need a similar result for an lsometry Wi L — LP(v),
where L I8 a lnear subspace of some L¥(u). Here p is a positive number but
not an even juteger, Theorem 4.2 of Hardin (1981) asserts that an isometry
W Lo LP(v) can be extended to an isometry W defined on the class
of L functions of the form v h, where r is o p{L)-measurable function
and h isin L. Furthermore, there ds an inveriible reqular set isomorphism
i o(D) ~ g(W(L)) such tha!

(n) W{r«h) = (r)- (Wh).

Before actwally conglrcting our example, we establish the following fact
aboul g(/.y) for the special case f=1.

LiuvMa 8 Let (B, €, 1) be a measure space with pu(F) < oo, let p €
(0,00) \ {2}, and fet U2 LE() — LP(u) be an isometry with representation

Uf=h(6f)
g deseribed dn Theorem 2. Then, letting “17 denote the function identically
equal Lo 1,
a{ ™ (¢') buen € o(In).
I’ r o of. We will show that for each integer n, ¢"{¢’) is (L )-measurable,
I3y the elinjn rule, we have for n 2 1,
(@) = [¢™ (") g™ ()] (@),
(¢ ™) e LS (900 N 1T
Thus for n %= 1, ‘
) = (Y J Y = [P = LU

50 " (") 18 g(L)-measurable, A similar argument works for n < -1, m
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We will now describe Ornstein’s (1960) example of an invertible, non-
singular point transformation 7 : [0,1] — [0,1] such that the regular set
isomorphism 7! does not admit a o-finite invariant measure equivalent to
Lebesgue measure on the Borel o-fleld Byp 1.

The transformation is constructed by culting and stacking. We will de-
scribe the procedure briefly; for a more rigorous definition, see Orustein
(1960). For the N = 1 stage, begin with the ordered partition of [0,1) into
the intervals [0,1/2) and [1/2,1), which we picture as stacked one above the
other. The transformation 7 is defined on each interval of the stack by map-
ping it linearly onto the interval above it. At each stage, 7 remains undefined
on the top interval. Thus at the first stage 7 is only defined on [0,1/2).

If the Nth stack consists of the intervals (Iy,7In,.. Ly (b
is the “height” of the Nth stack), then the (N + 1)th stack is defined as
follows: Divide the interval Iy in half, and then cut the right half into
sn consecutive subintervals of equal measure, where sy is a parameter to
be specified later. Let I; v, @ = 0,1,...,sy, denote the resulting ordered
partition of Iy. This defines a similar partition of any other interval 7%y
in the stack into the subintervals v I; v, i = 0,1,...,8n5: Now create the
(N + 1)th stack by stacking each subcolumn on top of the subcolumn to
its left. In other words, extend T to part of the top interval by defining
(" L ) = Tpaw, 2= 0,1,...,55 — 1. The bottom interval In.1 of
the (N 4 1)th stack will now be Ip . By repeating this procedure, 7 is
defined on all of [0,1).

Ornstein (1960) showed that if sy is chosen sufficiently large, then  will
not admit a o-finite invariant measure equivalent to Lebesgue measure. We
want the transformation to satisfy a further condition, as described in the
following lemma.

LEMMA 8. In Ornstein’s ezample described above, the sy ’s can be chosen
so that

! T
o{r' o }nen = Bio,1y»
modulo sets of measure zero.

Proof. It is clear from the construction that the top interval in the
stack is always strictly shorter than the bottom interval, for all N > 1,
provided the sx’s are always chosen to be at least 2. Therefore, for any such
(.:hoice of sp, the subinterval ¥ ~1I; y will be shorter than Lo n Tor all
i=1,...,8y — 1; this says that 7' > Lon 7"~ L v, i = 1,...,8n5 — 1.
(Here 7/ coincides with the ordinary derivative of the almost everywhero
differentiable function 7.)

Let By denote the value of 7/ on 7% ~1]y y, ie.

B = m(Ln)/m(r"¥ 1L ).
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(Reeadl that m denotes Lehesgne measure.) By choosing sy large, we can
make n0(f A} snall and thus make By small. Therefore choose sa large
enough Lo snlisly Orustein's eriterion for nonexistence of an invariant mea-
gure, and also large enough so that Sy < Land fy # B, n=1,...,N - 1.
Thig insures that

(') M@)o Uy o= PP

[ othier words, (7)1 ) consists of precisely one interval in the {(N+1)th
atack. Therefore every intorval in the (N + 1th stack can be written in the
form (7'} ([ ) for some integer n, Hence o {7 01"}, gz containg B,y =

Before continning, we patse to note that the equality o(Ly) = Bp
does nol hold in general for all sonsingular point transformations which do
not adinit -linite invariant moasures, and hence some argument like the
preceding one s necessary for the next step in our example. For an example
of such a transflormation where p(Ly) # By,1), consider any transformation
¢ on [0,1] which does not admit a o-finite invariant measure, and define
woon [ 1] x [0,1] with product measure by (z,y) = ((z,y). Since the
nth derivative of ¢ deponds only on # for each integer n, so does U™L,
where (7 is the sometry given by U f(x,y) = f{@(z, 1)) - ¥'(2,v); thus the
ratio e-field generated by (/™1) is strictly smaller than the Borel o-field.
But {0, 1] x [0, 1] is BBorel isomerphic to [0,1], so 4 is equivalent to some
nousingilar transformation on [0,1], which also does not have an invariant
measnre. This the ratio e-field corresponding to this transformation on
[0, 1] is also strictly smaller than By ). (This example was provided by the
referec.)

We now deline the Sad sequence in terms of 7. Let 7 be as in Lemma 9
ahove, and let

Ug=h-(geT),

whore i 18 any function satislying || = dmr /dm, Then (I, 1) will represent
our siationnry Hod sequence,

If the Sed sequence reprasented by (U, 1) were doubly stationary, then
by Theorem 7 there wonld he an LY(E, €, u), ¢ & o-finite measure, and
isomolrios T2 LU(ILE ) - Le(ELE ) and Wi Ly~ LB, &, 1)
stich that 7' induces a measure-preserving regular set isomorphism {also
ealled T anel oo Lhe subspace Jo,

WU = T'W,

Lol 9 he the regnlar seb isomorphism defined on o(L1) corresponding to
W in Hardin’s (1981) Theorem 4.2 as described above. It is easy to see that
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the transformations 7! and 7T also correspond to the operators U and 1" as
described in Hardin’s Theorem 4.2, so our Lemma 10 (stated below) applies
and

yr =Ty

on g(L1) = Bjg,1). But T was assumed to be measure-preserving, so

wipr ™ = Ty = pap.

Thus u1 iz a o-finite invariant measure for 7, and py is equivalent to
Lebesgue measure since ¢ is a regular set isomorphism. But 7 was cho-
sen so as not to admit such an invariant measure. We conclude that the
stationary Sa8 sequerce represented by (U, 1) is not doubly stationary. w

We now state and prove the lemma that was used in Example 2.

LeMMA 10. Let L be o linear subspace of some L¥(p), p o posilive real
number bui not an even integer, let Uy : L — L be an isometry, lel W : L —
LP(v) be an isometry, and define Us on W (L) by U = WU WL If ¢y, ¢
and i are the regular set isomorphisms on o(L), o(W(L)) and o(L) induced
by Uy, Uy and W by Hardin’s (1981) Theorem 4.2 as described above, then

2 =1yt

Proof. We begin with a fact about p{L). By Lemma 3.2 of Hardin
(1981), there is a function 5 of “full support” in L, ie., the support of #
contains the support of every function in L. In the proof of Theorem 4.2
(1981), Hardin shows that o(L) is the o-field generated by functions of the
form g/n, for arbitrary g in L. One final fact: Lemma 3.4 of Hardin (1981)
asserts that if V is an isometry and # has full support in L, then V7 has
full support in V(L).

It suffices to show that

vo1(g/n) = ¢av{g/m),

Now taking r = g/n and h = 7 in the representation (5) of the isometry Uy,
we have

g €.l

véi(g/n) =¥ (Urg/Uin).
Taking r = U19/Usn and k = Uy in (5) for W (this is justified sinee Uy
has full support in L = Uy (L)), we get

Y(Urg/Urn) = WU g/ WU = UsW g /U W,

Noting that Wn has full support in W (L), then converting back from Uy to
¢2 and from W to v, we obtaln

Yoi(g/n) = davr(g/n).

Hence ¢2 = 91471, and the lemma is proved. m
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