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Tail and moment estimates for sums of independent random
variables with logarithmically concave tails
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By GLUSKIN (Tol Aviv) and S0 KWAPIEN (Wamszawa)

Abstract. For vandom variahles S = Y72, €, where (£) is a sequence of sym-
wetrie, independend, identically distributed random variables such that In P{|&]| = #) is a
cocave function we give estinates from above and from bhelow for the tail and moments
of &, The osthmates are exact up to a constant depending only on the distribution of £.
They extend results of 5. J. Mootgomery-Smith [MS], M. Ledoux and M. Talagrand [LT,
Chapter 4.1] aud 1 Uitesenko {H] for the Rademacher sequence.

Notations and definitions. If ¥V is a convex, nondecreasing function
on RT with N(0) = 0 and @ = (@) is a sequence of real numbers we define
the conjugate funetion N* R — R* by

N*(1) = sup{st — N(s): s ¢ R"}

anl
o0
lolly = inf {t oMl < 1)
fel
o o0
a3 = sup { Z i ZN(L@ZD < 1}.
fa] imml
The following incequalities hald true (ef. [KR, Chapter 2.9, inequality (9.24)]):
(1) faln- < fielln < 2llal|w-
1N (L) == 0 thon [[ally = (5050 Jeal™)1/" and it will be denoted by [|af|.

If o = (o) I8 o sequence converging to 0 then we denote by o™ = (af)
the nonincrsasing vearvangement of (|ovgl).

Cliven any ¢ 2 1 and a sequence ¢ we denote by o the sequence (B:)
defined by fi = of foré < s and = 0fori > s and by a, the sequence
(8;) defined hy & == 0 for 1 € & and §; = o for > s.
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304 E. D, Gluskin and 8. Kwapief

For a real number s we denote by |s] the largest integer which does vot
exceed s and by [s| the smallest integer which is not less than s.

From now on we fix a convex function N as above and let (&) be a
sequence of symmetric, independent random variables each with distribution
given by P(|&1 > t) = e N for t > 0.

If N(t) = 1" werefer to the sequence (&;) as a symmetric Weibull scquence
with exponent =. In the particular case of r = 1 the sequence (£;) will he
denoted by ().

We dencte by (g,) a Bernoulli sequence, {.¢., a sequence of Lic symmetric
random variables taking on values =1, It can be viewed as the sequence (&)
corresponding to the function N which is equal to 0 on [0, 1] and oo on
(1, co).

For s > 0 we abbreviate (s71N)* by M, i.e. My(t) = s7 ' N*(st), and
we define

K(s,a) = max{||a®||s,, V5| as|lz} for a sequence a.

Finally, let us define two constants depending on N:

Ky = inf{c >0: Te‘N(t) at < j?e"t/“dt for all s > ()},
&

5

kg = B|&| = f e~ N gy,
0

By Karamata’s Theorem (cf. [MO, Chapter 16.B.4.a]), E¢(&;) < Ed(sym;)
for each nonnegative, convex function ¢ on R and hence, by MO, Chap-
ter 1LF]) (cf. also [B, Chapter 1, or [KW, Chapter 3.1]), we easily see that

for each sequence (§;)
) (22 86)" < (B o] )"
i>0 i>0

THEOREM 1. For each 1 < s < oo and each sequence ¢ = (ay) we have
[» o)
Jor S =377 i,

cK(s,a) < (B]S|)* € OK(s,a)
with ¢ = min{ky/2,1/(2e)} and C = 3 + 2k (N(1) + 1).

Proof. First we prove that if s = 2k for some positive integer & then
for each sequence (6,),

(3) (E‘ Z 6

i>0

3)”3 < max{8]1(8:) oor V3l (E) |2}
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Indeed, sinee o)t = 1 for each positive integer [, by simple computa-

tion we choeek (hat
= (2R k
2_4 bugg| = L E( Z 61'2|7’h'l) '

(4) 2
i) im0

Heuee, the expression in (4) is a convex fanction of (62) and therefore its
maximim under the constraints |6 < 571 for all 4, |(6)] < 1/4/5 is
atlained when & = s for & different s and 8; = 0 for the remaining 4’s.
So this maxiin raised Lo the power 1/8 equals

o s g (e ')

il

1/{2k)

1 _nL/(2k)
s 3k — 1))

o 2k (kD4 (3R 1)
= 2k ok

oyl

where the second equality Tolds sinee 3777, ini| has the distribution vy, 1-

Now, for s > |, put k = [4/2] and assume that K(s,a) < 1. Then

el az, < 1 and by the definition of M,

L 3 MB) 2 [sIMa(AL)) 2 L8] (Bl = 72N (L),

e QR (k- D) (K +2) ..

=1,

Henee, [&;] < (N (1) -+ 1)/ ] 4] for each positive integer 4, which gives 2k||a |
< 2AN(1) 1), Morveover, K(a, a) < 1 iplies that \/5!?”@;[]2 < 2. Therefore,

hy (3) we got
- ay L/ ] . 2k 1/(2R)
z:f‘?l;"ff',: ) < (E Zb-i.m )
PheY] imen

< 2AN() +1).

(J«;

Combining this with {2) we obtain

(6) (1 3ok ’

Now, we will esthnste the romaining part of 8, namely we will prove

(A PTG
}_: i€ m
i<y

(7) (Iv;‘
Let, (=) De o Bermoulli sequence independent of (). Then & ~

N () L and therefore
&
Zﬁg:EvtN(hn\)Ml\ )
i

(13" /«J,;g,,-,’") L (5
el

)”“ < kAN + DK (s, ).

I/
< 3fla*[la,

L/s
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Since N (y) ™! < M,(z) + sy for all @,y > 0, the Contraction Principle
(c¢f. [LT, Chapter 4.2, Lemma 4.6]) yields

(5|5 )" < < (£ Sata )
i<s
gZMg(ﬁ¢)+s”l(E‘Zm )1/"
i< [
<12<2M (Be) + % 21k \Z*ﬂ )me“"’

by (8), if ||e®)|ar, < 1 and k = [s/2]. Hence by homogcnmty we got (7),
which combined with (6) proves the right side inequality of tlmoi"om
To prove the left side inequality let (+;) be such that Y io, s N (y;) =

and .
iﬁz‘%‘ =Y Bivi=llo*|i-ey-
Then = =
(e Sal) > (A 8el)
=1

(Zﬁz%) (€ > v for & < 5)"/*

oQ

= [ s-n 27 exp (= D05 7N ().

=1

Hence, by (1) we obtain
i 5y 1/s 1
£ > o ||af
(8) (E‘gaz& ) = 2e”a F%
By Jensen’s Inequality and Remark 1 from [HK] we have
i sy 1/s b ay L/« o
(E‘ Zlaifv: ) 2 E!Ell(E ;aifi\ ) 2 =/l

This together with {8) proves the left side inequality of theoreru,

The estimates of Theorem 1 lead quickly to a tail estitate for 9. Namely,
for each A > 0 by Chebyshev’s Inequality we get for all s > 1,

P(|8] > MK (s,a)) < ATE|S|*/K(s,a)" < (C/N)°.
In particular, if we put A = Ce we obtain

(9) P(|S] > CeX(s,a)) < e~
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To prove estimates from below we need the inequality
(1) N(rya) 56K (s,a) foralll <s<r < 2s.

To see this, since obviously

__\ZEMH”Q > 1
Villals = 2

it is enough Lo show thal [|a®]y, /[|e”||ar, = 1/6. This is proved as follows:
by convexity of Ny Tor all £ > 0,

| &
O ED)]
T & r

which yiu ds M(1) < M (Li) for all £ > 0 and this implies that ||bln, <
HI)||M for cach soduence b h; this together with the obvious inequality ||a”||ar.
< Mla|| . proves (10).

Now, by the Paley Zygmund Inequality (¢f. [K], Chapter 1.6), we obtain

(. r (|S| 2 2[ (s, rz)) > ’-D(|S'“ 5 (%)HESF)
e )
) (6) (75%)

Hence, if we define I'(f, o) = max{s : K'(s,a) < ¢t} then we arrive at

A f
—

i

i
TN
B = b

CoROLLARY. There are positive constants ¢1, co depending only on the
congtants o, ¢ from Theorem 1 such that for oll t > K(1, a),

¢ et < ‘S‘ ~ 'ﬁ) < HMAP‘(‘r:gt,a,)_

Prool, The right inequality with ¢y == 1/(Ce) follows by (9) and the
tlvlun(‘mu of I, T prove the loft ineguality let G/(2 ) = inf{s : K(s,0) 2 t}.

Then by {(11) we luW(:
X 0¥ (Bt e)
" ‘l) -3 ..mf.....,_
A2
and it is enowgh to show that

21n l%fw(‘“’(f ) < Feyt)

Py
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for some ¢; and all t > K(1,a). This follows easily by (10) with

e 6
12C
=2 120)"
[ C

Remark 1. If (&) is a symmetric Weibull sequence with exponent »
then N(¢) = " and it is easy to compute that K(s, a) = inmﬂx{crﬁl’I”‘Hﬂn”\ o
V's|las|a}, where r* = r/(r—~1) and ¢, = (1/P)H(1/r* )47 Tn this case the
function K (s,a) and hence F'(¢,a) are explicitly computable for sequences
such as (1/47%).

Theorem 1 is of interest for interpolation theory hecause it gives an
equivalent formula for the K-functional interpolating the norms || « ||+ and

IR P

Remark 2. Inthe general case, the function K (s,a) is computable for
the sequence a = o which is given by ayy =2 = ... =, = 1, ¢y = () for
i > n. And it is easy to see that

t2/n ift <m,
F(t.n) ~ {tG(t/n) ift>mn,
where G(x) = inf{y : N*(1)zy — N*(y) > 0}, and F' ~ H meany that there
are universal constants dy, do, d3 which depend on the digtribution of £ and
which do not depend on n such that H{d:t,n) < F(t,n) < H{dat, n) for all
t > ds.
It is of interest to compare the function F(f,n) with the function ap-
pearing in the Large Deviation Theorem.

Remark 3. If we replace (¢;) by the sequence (|&;] — E|&]) then we
obtain similar estimates for moments and tails. This follows by the result for
the sequence (¢;) and the symmetrization inequalities as in [LT, Chapter 6.1].

Remark 4. Also, in the above results the convexity condition on N
can be relaxed to the following one: there exists a constant sy such that
N(kgey) <yN(z)forallz >0and 1>y > 0. '

In this case we have rzlely- < ||a|y instead of (1) and the proof of
Theorem 1 repeats with ¢ modified to ¢ = min{xs/2, x3/(2¢)}. Similarly we
modify the proof of the Corollary to fit this case,
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