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On joint spectra of pairs of analytic Toeplitz operators
by

MIHAI PUTINAR (Riverside, Calif.)

Abstract. One computes the joint and essential joint spectra of a pair of mnlti-
plication operators with bounded analytic functions on the Hardy spaces of the unit
ball in C™.

1. Introduction. The aim of the present note is to relate the recent
results of E. Amar [1] on the Corona Problem for Hardy spaces of the unit
ball in C™ to the computation of certain joint spectra of pairs of bounded
analytic functions. More precisely, let B denote the unit ball in C" and let
HP(B) be the Hardy space corresponding to p € [1,00). We will compute
the joint and essential joint spectra (in the sense of J. L. Taylor) for any
pair of bounded analytic functions in B, regarded as multiplication oper-
ators on H?(B). The only novelty here is the use of the non-trivial hard
analysis estimates of [1] in the framework of multivariable spectral analysis.
Similar prior results, known for the Bergman space [2] or the H2-space of a
strictly pseudoconvex domain [8], have been derived from the much better
understood L*-estimates for the d-operator.

The computation of the joint spectrum (in the sense of Taylor) of a
system of multiplication operators with analytic functions is practically an
extension of the corresponding Corona Problem. That is, besides the de-
scription of the set of all solutions of the Corona Problem one finds all
linear relations among given solutions, the relations among these relations
and so on. This homological point of view has appeared for the first time
related to the Corona Problem in the note [3] of Hérmander and it was
put in an abstract setting {of joint spectra of commuting systems of linear
operators) by J. L. Taylor [6]. . :

The case of pairs of analytic Toeplitz operators treated in this note is
two-fold privileged. First, because the joint and essential joint spectra turn
out by simple reasons to beequal in this situation to the corresponding right

1991 Mathematics Subject Classification: 47A13, 48J15.
Paper supported by NSF grant DMS 9201729.

[129]



130 M. Putinar

spectra. And second, because a part of the analytic techniques of [1] seem to
be specific to pairs of functions. The main result of this note can be stated
as follows.

THEOREM 1. Let f = (fi, f2) be a pair of bounded analytic functions in
the unit ball B of C* and let p € [1,00). Then

(a) o(f, HP(B)) = or(f, H?(B)) = J(B),
(b) oe(f, HP(B)) = owe(f, H?(B)) = ﬂ0<r<1 f(B\rB} and
ind(f — A) = multy(f|B),

for any point X € C"\ o.(f, HP(B)).

Above, ind(f — A) is the Fredholm index of the pair f at the point X
and multy(f|B) is the multiplicity of the value A for the analytic function
f: B — C". These notions as well as the various joint spectra appearing in
the statement of Theorem 1 will be recalled in the next section.

2. Preliminaries. Let f = (fi,fo} be a pair of commuting linear
bounded operators acting on the Banach space X. By definition, Taylor’s
joint spectrum of f with cceflicients in X is the subset o(f, X) of C™ on
which the following Koszul complex K.(f — z, X) (depending on z € C™):

0 0 -x" P xex P x

is not exact. We recall the definition of the boundary operators §:

S2(f —2)g = {fo — z)g @ (—(fL — 21)9),
§1(f — 2)(g1,92) = (fr — 21)gn + (f2 — 22) 92,

where g, 91,92 € X.
The right joint spectrum of the pair f on the space X is the set

oo (f, X) ={z € C" : Im(&:(f — 2)) # X}.

It is obvious that o(f, X) C o{f, X).

Similarly, the essential joint spectrum oe(f, X) is the set of those points
z € C™ for which the complex K.(f — z, X) does not have finite-dimensional
homology. For a point z € C™\ o.(f, X), the Fredholm indez of f at z is the
Euler-Poincaré characteristic of the complex (1):

ind(f — 2) = dim Coker §;(f — z)
— dim(Ker 61 (f — 2)/Imé3(f — 2)) + dim Ker é3(f — 2).
The right essential spectrum o(f, X) is the set of those points z € C"
for which the algebraic image of §1(f — 2} has infinite codimension in X.

These spectra are non-empty and compact and they naturally generalize
the known corresponding sets associated with a single linear operator. The
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reader can consult the monograph [7] for an introduction to the multivariable
spectral theory on Banach spaces.

We state first a simple remark which allows one, on some specific spaces
of analytic functions, to reduce the computation of the joint spectrum of a
pair of multiplication operators with analytic functions to the more acces-
sible right spectrum.

Lemma 1. Let f = (f1, fa) be a pair of bounded analytic functions in
the unit ball B of C" and let the constants p € [1,00), 0 < r < 1 and
§ > 0 be fired. If |fr(2)| + |f2(2)] > § forr < |2| < 1, then the Koszul
complez K.(f, HP(B)) is exact in positive degree (that is, Kerds = 0 and
Ker §; = Im és).

Proof, An element h € H?(B) belongs to the kernel of 63(f) if and only
if f1h = fah = 0. Since the zeroes of the functions f; and f; are complex
analytic sets of dimension at most one in B, the uniqueness principle forces
the function h to be zero.

Let (hy, ko) € HP(B) @ H?(B) be an element of Ker 6;(f). Then fih; +
fihy =0 in H?(B). Consider the open subsets of B:

Up={z€B:|fj(2)f >6/2} (i=1,2)

By assumption the annulus 4 = {z € B : r < |z| < 1} is covered by
these sets and therefore we can unambiguously define the following analytic

function.:
Wiz = { Mm@/ ), ze AN,
~ho(2)/ fi(z), z€ ANUy.

By the Hartogs extension theorem, the function h’ has an analytic ex-
tension, denoted by A, to the unit ball B, In order to estimate the HP-norm
of the function h we remark that for a fixed p € (v, 1) we have

- haleQ)l? Ia(eQ)l
[Ireras) < [ Tspa©r [ jpnaE

8 Sra~ttn Sne i

[ Il s(c) + [ 1ha(eQ)lP ds(c))
s g

TP+ (B2 7).

In the above integrals S stands for the unit sphere in C" and ds is the
normalized rotation invariant measure on S.

Again, by the uniqueness principle for analytic functions, the identity
(h1, ha) = 81(f)h holds everywhere.

This finighes the proof of Lemma 1.

ds (C)

For the sake of completeness we state the following known result.
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LEMMA 2. Let f be an m-tuple of bounded analytic functions in the unit
ball B of C* and let p € [1,00}. Then

fB) Coul(f, HP(B)) and [} F(B\rB)C ow(f, HP(B)).
O«<r<l

To prove the first inclusion one remarks that, if z € f(B), then the
system f has a common zero in B and hence the map 6;(f — z) cannot be
onto. Thus f(B) C o (f, H?(B)), and since the right spectrum is closed the
assertion follows.

The second inclusion is based on a standard one variable H ®-interpola-
tion trick which we do not repeat here. The paper [2] containg this argument
in detail.

Finally, we remark that both Lemmas 1 and 2 are valid on more general
domains, for instance at least on bounded strictly pseudoconvex domains
with smooth boundary.

3. Proof of Theorem 1. In order to prove the converse inclusions
in Lemma 2 we need the LP-estimates for the tangential Cauchy-Riemann
operator given in [1].

Assume that f = (f1, fo) is a pair of bounded analytic functions in the
unit ball B C C". If there exists a positive § with |fi(2)| + [f2(2)| > 6 for
z € B, then Theorern 3 of [1] asserts that the map §,(f) : HP(B)&H?(B) —
H?(B) is onto. Thus assertion (a) of Theorem 1 is proved.

In order to prove {b} suppose that 0 ¢ 3.,y f(B\rB). Then there
is a positive § with |fi(2}} + |fa(2)| > 6 whenever r < [2] < 1. Let V
denote the common zeroes in B of the set pair of functions f. Since V is
relatively compact in B, the analytic dimension of V' is at most zero (see for
instance [4]). Thus the set V is finite.

Let @ be the sheaf of germs of analytic functions in the unit ball B. The
support of the analytic sheaf O/(f1, f2)O coincides with the set V. Hence
the space O(B)/(f1, fo)O(B) is finite-dimensional, say of dimension N. As
a consequence of Cartan’s Theorem B we infer that a function A € O(B)
can be written as

(2) h= fihi + faha,

with hy, ha € O(B), if and only if the terms of order less than or equal
to N in the Taylor expansions of » at the points v of the set V satisfy
certain linear relations (expressed more precisely by the conditions (2) mod
(21— w)"(22 —va)!, k41> N + 1, » € V). The reader can consult (4] for
the general theory needed for this part of the proof.

Our next aim is to strengthen the latter conclusion to involve HP-func-
tions rather than merely analytic functions in B.
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LemMA 3. Let f = (f1, fa) be a pair of bounded analytic functions in B
satisfying the condition |fi(2)| + |f2(2)| > 6 > 0 for r < |z| < 1. Let p €
[1,00). Then a function h € H(B) which can be written as h = fihy + f1ha
with hi, ha € O(B) admits a similar decomposition with hy, he € H?(B).

Proof. Assume that h = fihy+ fohy with by, ke € O(B). In the annulus
A= {z € B:r <|z|} we can construct another similar, but only smooth,
decomposition of h by using the functions k; = f;h/|f? { = 0,1), where
[FI2 = 1A%+ 1ol

Let ¢ : [0,1] — [0,1] be a smooth function with ¢(t) = 1 for ¢ <
r+ (L—r)/3 and ¢(t) = 0 for t > r+2(1 — r)/3. Let x(2) = o(|2),
z € 8.

Then the functions g; = xh; +(1—x)k; (§ = 1,2) are smooth and satisfy
the identity frg1 + fag2 = h. Consequently, fi9g; + fo8gs = 0 and thercfore
the differential form

B1(2), zef{zeA:l|fal#£0},
w(z) = —m%gli(z), ze{ze A:|f1| #£0},
0, 2 € B\ A,

is well defined, J-closed and with smooth coefficients. Moreover, since the
zeroes of fi or f, are nowhere dense in B, the identities

d91=fow and Bga= —fiw

hold everywhere in B.
In a neighbourhood of the houndary of B the form w coincides with
35(_@_) . ng_g(ﬁ) _  F0F - Fibhi
fa \IfP AP {1 '
Thus the conditions of Theorem 1 of [1] are satisfied and there exists
a function uw € LP(9B) with the property that d3u = w. Therefore, at the
level of functions defined on the boundary of B, the elements I} = g, — fou
and Iy = g3 + fiu belong to H?(B) (because of the choice of u) and satisfy
the desired identity fily + fale = h.
This corapletes the proof of Lemma. 3,

To finish the proof of assertion (b) in Theorem 1 it suffices to apply
Lemma 1 and to remark that, by Lemma 3,

Coker 61(f) =2 O(B)/(f1, f2)O(B).

Thus under our assumptions it follows that 0 is not in the right essential
spectrum of f. Moreover, Lemma 1 shows that

ind(f) = dim{Q(B}/(f1, f2)O(B)) = multe(f|B).
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(The reader can take the second equality as a definition of the multiplicity
of the value 0 of f.)
This completes the proof of Theorem 1.

We remark finally that part (a) of Theorem 1 remains true, with an
identical proof, on any bounded domain of C™ oun which the H?P Corona
Problem is solvable.
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LF weighted inequalities for the dyadic square function
by

AKTHITO UCHIYAMA (Sendai)

Abstract. We prove that
f (Sdf)PV dz < Cpn f lfpr([P/zHa)Vdm

where 53 is the dyadic square function, M ) s the k-fold application of the dyadic
Hardy-Littlewood maximal function and p > 2

1. Introduction. Let V(z) > 0. S. Y. Chang, J. M. Wilson and T. H.
Wolft [CWW] showed that if p = 2, then

(1.1) [ 8ef@*V(@)de < Cpyu [ 1F(@)PMV (z)de
R® R"

where Sy f is the square function of f with respect to the kernel func-
tion 1 that satisfies certain strict conditions and where M f is the Hardy—
Littlewood maximal function of f. 8. Chanillo and R. L. Wheeden [CW]
showed that (1.1) holds for 1 < p < 2 and fails for p > 2. (Furthermore,
they relaxed the conditions on ¢.) J. M. Wilson [W6] extended (1.1) to the
case 0 < p < 1 by replacing |f(z)| by a certain maximal function of f. Then
the remaining problem is to get inequalities that are similar to (1.1) and
that hold for the case p > 2. In Derrick [D] the following problem is listed.
{See also [W6], p. 293.)

J. M. WiLgon’s PrOBLEM. Let S; be the dyadic square function. Let
MUF=Mf, MEf = M(MJ), ... Then, is the following inequality true:
[ Saf(@)PV(z)dz < Cpn [ |({@)[PM*EV(z) da,

r" R™
as p — 00, with k(p) ~ p/27 In particular, with k(p) = ~[-p/2]?
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