definition of the multiplicity

(The reader can take the second equality as a definition of the multiplicity of the value 0 of f.)

This completes the proof of Theorem 1.

We remark finally that part (a) of Theorem 1 remains true, with an identical proof, on any bounded domain of \mathbb{C}^n on which the H^p Corona Problem is solvable.

References

- [1] E. Amar, On the Corona Problem, J. Geom. Anal. 1 (1991), 291-305.
- [2] J. Eschmeier and M. Putinar, Spectra of analytic Toeplitz tuples on Bergman spaces, Acta Sci. Math. (Szeged) 57 (1993), 85-101.
- [3] L. Hörmander, Generators for some rings of analytic functions, Bull. Amer. Math. Soc. 73 (1967), 943-949.
- [4] B. Kaup and L. Kaup, Holomorphic Functions of Several Variables: an Introduction to the Fundamental Theory, de Gruyter, Berlin, 1983.
- Y.-S. Li, Corona Problem of several complex variables, in: Contemp. Math. 137, Amer. Math. Soc., 1992, 307-328.
- [6] J. L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal. 6 (1970), 172-191.
- [7] F.-H. Vasilescu, Analytical Functional Calculus and Spectral Decompositions, Reidel, Dordrecht, 1982.
- [8] R. Wolff, Spectral properties of Toeplitz tuples with H[∞] symbol on Hardy spaces. I, preprint, Münster University, 1994.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF CALIFORNIA RIVERSIDE, CALIFORNIA 92521 U.S.A.

Received August 16, 1994
Revised version March 1, 1995
(3328)

L^p weighted inequalities for the dyadic square function

by

AKIHITO UCHIYAMA (Sendai)

Abstract. We prove that

$$\int (S_d f)^p V \, dx \le C_{p,n} \int |f|^p M_d^{([p/2]+2)} V \, dx,$$

where S_d is the dyadic square function, $M_d^{(k)}$ is the k-fold application of the dyadic Hardy-Littlewood maximal function and p > 2.

1. Introduction. Let $V(x) \ge 0$. S. Y. Chang, J. M. Wilson and T. H. Wolff [CWW] showed that if p = 2, then

(1.1)
$$\int_{\mathbb{R}^n} S_{\psi} f(x)^p V(x) dx \le C_{p,\psi,n} \int_{\mathbb{R}^n} |f(x)|^p M V(x) dx,$$

where $S_{\psi}f$ is the square function of f with respect to the kernel function ψ that satisfies certain strict conditions and where Mf is the Hardy–Littlewood maximal function of f. S. Chanillo and R. L. Wheeden [CW] showed that (1.1) holds for 1 and fails for <math>p > 2. (Furthermore, they relaxed the conditions on ψ .) J. M. Wilson [W6] extended (1.1) to the case 0 by replacing <math>|f(x)| by a certain maximal function of f. Then the remaining problem is to get inequalities that are similar to (1.1) and that hold for the case p > 2. In Derrick [D] the following problem is listed. (See also [W6], p. 293.)

J. M. WILSON'S PROBLEM. Let S_d be the dyadic square function. Let $M^{(1)}f = Mf$, $M^{(2)}f = M(Mf)$, ... Then, is the following inequality true:

$$\int_{\mathbb{R}^n} S_d f(x)^p V(x) dx \le C_{p,n} \int_{\mathbb{R}^n} |f(x)|^p M^{(k(p))} V(x) dx,$$

as $p \to \infty$, with $k(p) \sim p/2$? In particular, with k(p) = -[-p/2]?

¹⁹⁹¹ Mathematics Subject Classification: Primary 42B25.

Key words and phrases: dyadic square function, dyadic maximal function, weighted inequality, BMO.

Supported in part by Grant-in-Aid for Scientific Research No. 06640101, Ministry of Education, Japan.

In this paper we investigate this problem. Our result is still incomplete.

2. Results

NOTATION. \mathbb{R} , \mathbb{Z} and \mathbb{N} denote the sets of all real numbers, integers and natural numbers, respectively. We fix the dimension $n \in \mathbb{N}$. For $k \in \mathbb{Z}$, let D_k be the set of all cubes in \mathbb{R}^n of the form

$$[2^{-k}j_1, 2^{-k}(j_1+1)) \times \ldots \times [2^{-k}j_n, 2^{-k}(j_n+1)),$$

where $j_1, \ldots, j_n \in \mathbb{Z}$. Let

$$D = \bigcup_{k \in \mathbb{Z}} D_k,$$

that is, D is the set of all dyadic cubes in \mathbb{R}^n . For $f \in L^1_{loc}(\mathbb{R}^n)$, $k \in \mathbb{Z}$ and $x \in \mathbb{R}^n$, let

$$E_k f(x) = 2^{kn} \int_{I(x,k)} f(y) \, dy,$$

where $I(x, k) \in D_k$ and $I(x, k) \ni x$, that is, E_k is the conditional expectation with respect to the sub- σ -field generated by D_k . Let

$$S_d f(x) = \left(\sum_{k \in \mathbb{Z}} (E_k f(x) - E_{k-1} f(x))^2\right)^{1/2},$$

$$M_d f(x) = \sup_{k \in \mathbb{Z}} E_k |f|(x).$$

Let

$$M_d^{(1)} f = M_d f, \quad M_d^{(k+1)} f = M_d(M_d^{(k)} f) \quad (k = 1, 2, \ldots).$$

Remark 2.1. All functions considered in this paper are real-valued.

Our result is the following.

Theorem. Let $2 , <math>f \in \bigcup_{1 \le q < \infty} L^q(\mathbb{R}^n)$, $V \in L^1_{loc}(\mathbb{R}^n)$ and $V(x) \ge 0$. Then

(2.1)
$$\int_{\mathbb{R}^n} S_d f(x)^p V(x) \, dx \le C \int_{\mathbb{R}^n} M_d f(x)^p M_d^{([p/2]+1)} V(x) \, dx,$$

(2.2)
$$\int_{\mathbb{R}^n} S_d f(x)^p V(x) \, dx \le C \int_{\mathbb{R}^n} |f(x)|^p M_d^{(\lceil p/2 \rceil + 2)} V(x) \, dx,$$

where [p/2] is the greatest integer not exceeding p/2 and where C is a constant depending only on p and n.

Remark 2.2. (2.1) and (2.2) can be extended to the cases 0 and <math>1 , respectively. But in these cases better results are known.

The arguments of [CWW], [CW] and [W6] show that

$$\int S_d f(x)^p V(x) dx \le C \int |f(x)|^p M_d V(x) dx \qquad \text{if } 1
$$\int S_d f(x)^p V(x) dx \le C \int \sup_k |E_k f(x)|^p M_d V(x) dx \qquad \text{if } 0$$$$

Remark 2.3. For our case 2 , the argument of [CW], Theorem 2, shows

$$\int S_d f(x)^p V(x) dx \le C \int |f(x)|^p \left(\frac{M_d V(x)}{V(x)}\right)^{p/2} V(x) dx.$$

[W6], Theorem 6, gave a little bit more complicated result.

Remark 2.4. The classical theory using the A_1 -condition shows

$$\int S_d f(x)^p V(x) dx \le C \int |f(x)|^p M_d(V^{1+\varepsilon})(x)^{1/(1+\varepsilon)} dx$$

if $1 and <math>\varepsilon > 0$. Our $M_d^{([p/2]+2)}V$ is smaller than $CM_d(V^{1+\varepsilon})^{1/(1+\varepsilon)}$. (In Remarks 2.2–2.4, the C's depend only on $p, n \ (\text{and } \varepsilon)$.)

For the proof of our Theorem we need more notation.

NOTATION (continued). For a measurable set $\Omega \subset \mathbb{R}^n$ let Ω^c , χ_{Ω} and $|\Omega|$ denote the complement, the characteristic function and the Lebesgue measure of Ω , respectively. For $V(x) \in L^1_{loc}(\mathbb{R}^n)$ let

$$V\{\Omega\} = \int\limits_{\Omega} V(x) \, dx, \quad \operatorname{av}(V,\Omega) = \int\limits_{\Omega} V \, dx/|\Omega|.$$

For a nonnegative function $V \in L^1_{loc}(\mathbb{R}^n)$, $Q \in D$ and $\eta > 0$ let

$$Y(V,Q,\eta) = \begin{cases} \frac{1}{V\{Q\}} \int_{Q} V(x) \left(1 + \log^{+} \frac{V(x)}{\operatorname{av}(V,Q)}\right)^{\eta} dx & \text{if } V\{Q\} > 0, \\ 1 & \text{if } V\{Q\} = 0. \end{cases}$$

Very often we abbreviate $L^p(\mathbb{R}^n)$, $\|\cdot\|_{L^p}$, $\int_{\mathbb{R}^n} f(x) dx$ and $\{x \in \mathbb{R}^n : f(x) > \lambda\}$ to L^p , $\|\cdot\|_p$, $\int f dx$ and $\{f > \lambda\}$, respectively.

Remark 2.5. We borrowed $Y(V,Q,\eta)$ and the main idea of our proof from J. M. Wilson [W1]-[W7], where he investigated the inequalities of the type

$$\int \sup_{k} |E_k f|^p \cdot V \, dx \le C \int (Sf)^p MV \, dx$$

as well as our type (1.1).

3. Preliminaries I

LEMMA 3.1 Let $f \in \bigcup_{1 \leq q < \infty} L^q$. Then there exist $\{a_Q\}_{Q \in D} \subset L^{\infty}$ and $\{\lambda_Q\}_{Q \in D} \subset \mathbb{R}$ so that

$$(3.1) a_Q(x) = 0 on Q^c,$$

$$\int a_Q \, dx = 0,$$

$$(3.4) \lambda_Q \in \{2^k : k \in \mathbb{Z}\} \cup \{0\},$$

$$(3.5) if \lambda_P = \lambda_Q \neq 0, then P \cap Q = \emptyset or P = Q,$$

(3.6)
$$\sum_{Q \in D} \lambda_Q \chi_Q(x) \le C M_d f(x),$$

$$f(x) = \sum_{Q \in D} \lambda_Q a_Q(x) \quad \text{a.e.},$$

where D is the collection of all dyadic cubes in \mathbb{R}^n and where C depends only on n.

Proof. Let $k \in \mathbb{Z}$. Let $\{Q_{k,j}\}_{j=1,2,\dots}$ be the maximal elements with respect to inclusion among the cubes Q satisfying $Q \in D$ and $\operatorname{av}(|f|,Q) > 2^{kn}$. Then

(3.8)
$${Q_{k,j}}_j$$
 are mutually disjoint,

(3.9)
$$\operatorname{av}(|f|, Q_{k,j}) \le 2^{(k+1)n}.$$

Since $f \in L^q$ for some $q \in [1, \infty)$, we have

(3.10)
$$\bigcup_{j} Q_{k,j} = \{ M_d f > 2^{kn} \},$$

in particular,

Moreover,

(3.12)
$$\left|\bigcup_{j} Q_{k,j}\right| \to 0 \quad (k \to \infty),$$

(3.13) for each $Q_{k+1,i}$ there exists $Q_{k,j}$ so that

$$Q_{k,j} \supset Q_{k+1,i}$$
 and $Q_{k,j} \neq Q_{k+1,i}$.

By (3.8) and (3.13) the $Q_{k,j}$ $(k \in \mathbb{Z}, j = 1, 2, ...)$ are all distinct.

Next, we take the "good part" of the Calderón-Zygmund decomposition of f with respect to 2^k , namely let

$$g_k = \left(1 - \sum_j \chi_{Q_{k,j}}\right) f + \sum_j \operatorname{av}(f, Q_{k,j}) \chi_{Q_{k,j}}$$

for $k \in \mathbb{Z}$. (If $||f||_{\infty} \leq 2^{kn}$, then $\{Q_{k,j}\}_{j}$ is empty and $g_k = f$.) Then

(3.14)
$$||g_k||_{\infty} \le 2^{(k+1)n}$$
 by (3.9) and (3.11),

(3.15)
$$\int\limits_{Q_{k,j}} g_{k+1} \, dx = \int\limits_{Q_{k,j}} f \, dx = \int\limits_{Q_{k,j}} g_k \, dx \quad \text{ by (3.13) and (3.8)},$$

(3.16)
$$g_{k+1} - g_k = 0$$
 on $\left(\bigcup_{i} Q_{k,j}\right)^c$ by (3.13),

(3.17)
$$f = \lim_{k \to +\infty} g_k \quad \text{by (3.12)}$$
$$= \lim_{k \to +\infty} (g_k - g_{-k}) \quad \text{by (3.14)}$$
$$= \sum_{k = -\infty}^{+\infty} (g_{k+1} - g_k) \quad \text{a.e.}$$

For each $Q_{k,j}$ set $b_{k,j} = (g_{k+1} - g_k)\chi_{Q_{k,j}}$. Then

$$(3.18) b_{k,j} = 0 \text{on } Q_{k,j}^{c},$$

(3.19)
$$\int b_{k,j} dx = 0 \quad \text{by (3.15)},$$

$$(3.20) ||b_{k,j}||_{\infty} \le 2^{3n} \cdot 2^{kn} by (3.14),$$

(3.21)
$$\sum_{j} b_{k,j} = g_{k+1} - g_k \quad \text{by (3.16) and (3.8)}.$$

Finally, we define $\{a_Q\}$ and $\{\lambda_Q\}$. Let $Q \in D$.

Case 1. If there exists $Q_{k,j}$ so that

$$(3.22) Q = Q_{k,i},$$

then set

$$a_Q = 2^{-(k+3)n} b_{k,j}$$
 and $\lambda_Q = 2^{(k+3)n}$.

(Recall that for each $Q \in D$ at most one $Q_{k,j}$ satisfies (3.22).)

Case 2. If there does not exist $Q_{k,j}$ that satisfies (3.22), then set

$$a_O \equiv 0$$
 and $\lambda_O = 0$.

Then the desired properties (3.1)–(3.7) follow from (3.8), (3.10) and (3.17)–(3.21).

Remark 3.1. This is an application of the argument of [C]. This kind of argument might be implicit in [Gs].

Lemma 3.2 Let $Q \in D$. Let $a_Q \in L^\infty$ satisfy (3.1)–(3.3). Let $\lambda > 0$. Then

(3.23)
$$S_d a_Q(x) = 0$$
 on Q^c ,

$$(3.24) |\{x \in Q : S_d a_Q(x) > \lambda\}| \le C \exp(-\lambda^2/C)|Q|,$$

where C depends only on n.

Proof. (3.23) is clear from (3.1)-(3.2). Take any $P \in D$. Set

$$c_0 = \sum_{k: \, 2^{-k} \ge l(P)} (E_k a_Q(x_0) - E_{k-1} a_Q(x_0))^2,$$

where $x_0 \in P$ and where l(P) denotes the edge length of P. Then

$$\int_{P} |S_{d}a_{Q}(x)|^{2} - c_{0}| dx = \int_{P} \sum_{k: 2^{-k} < l(P)} (E_{k}a_{Q}(x) - E_{k-1}a_{Q}(x))^{2} dx$$

$$= \int_{P} (a_{Q}(x) - \text{av}(a_{Q}, P))^{2} dx \le |P| \quad \text{by (3.3)}.$$

So, the dyadic-BMO norm of $(S_d a_Q)^2$ is at most 1. Then (3.24) follows from the John-Nirenberg inequality and from

$$\operatorname{av}((S_d a_Q)^2, Q) \le 1,$$

which follows from (3.1)–(3.3). (For the dyadic BMO and the John-Nirenberg inequality see [Gn], pp. 274 and 230.) ■

The following two lemmas are easy. We omit their proofs.

LEMMA 3.3. Let $G \neq \emptyset$ be a subset of D. Let $G' \subset G$. Suppose that to each $Q \in G$ there corresponds $a_Q \in L^1$. Let $\{a_Q\}_{Q \in G}$ satisfy (3.1), (3.2) and

$$\sum_{Q \in G} |a_Q(x)| \in L^1_{\text{loc}}.$$

Then

$$S_d\Big(\sum_{Q\in G}a_Q\Big)(x)=S_d\Big(\sum_{Q\in G\backslash G'}a_Q\Big)(x) \quad on \Big(\bigcup_{Q\in G'}Q\Big)^c.$$

LEMMA 3.4. Let $(\emptyset \neq)G \subset D$. Suppose that to each $Q \in G$ there corresponds $\lambda_Q \in \mathbb{R}$. Let $\{\lambda_Q\}_{Q \in G}$ satisfy (3.4) and (3.5). Let 0 . Then

$$C^{-1} \sum_{Q \in G} \lambda_Q^p \chi_Q(x) \leq \Big(\sum_{Q \in G} \lambda_Q \chi_Q(x)\Big)^p \leq C \sum_{Q \in G} \lambda_Q^p \chi_Q(x),$$

where C depends only on p.

4. Preliminaries II. Recall the definition of $Y(V, Q, \eta)$.

LEMMA 4.1. Let $\eta > 0$. Let $Q \in D$. Let $E \subset Q$ be a measurable set. Let $V \in L^1_{loc}$, $V(x) \geq 0$ and $V\{Q\} > 0$. Then

(4.1)
$$V\{E\}/V\{Q\} \le CY(V, Q, \eta)(\log(|Q|/|E|))^{-\eta},$$

where C depends only on η .

Proof. We may assume $V\{E\} > 0$. Set

$$E' = \{ x \in E : V(x) > \text{av}(V, E)/2 \}.$$

Then

$$(4.2) V\{E'\} = V\{E\} - V\{E \setminus E'\} \ge V\{E\} - V\{E\}/2 = V\{E\}/2.$$

So,

$$\begin{split} Y(V,Q,\eta) &\geq \frac{1}{V\{Q\}} \int\limits_{E'} V(x) \bigg(1 + \log^+ \frac{\operatorname{av}(V,E)}{2\operatorname{av}(V,Q)} \bigg)^{\eta} \, dx \\ &\geq \frac{1}{2} \frac{V\{E\}}{V\{Q\}} \bigg(\log^+ \frac{V\{E\}|Q|}{2V\{Q\}|E|} \bigg)^{\eta} \quad \text{by (4.2)}. \end{split}$$

So,

$$(4.3) \qquad \frac{V\{E\}/V\{Q\}}{2|E|/|Q|} \bigg(\log^+ \frac{V\{E\}/V\{Q\}}{2|E|/|Q|} \bigg)^{\eta} \leq \frac{Y(V,Q,\eta)}{|E|/|Q|}.$$

Put $h(t) = t(\log t)^{-\eta}$. If

$$\frac{V\{E\}/V\{Q\}}{|E|/|Q|} > C_{\eta},$$

then

h(the left-hand side of (4.3)) \leq h(the right-hand side of (4.3)), which implies (4.1); else (4.1) is clear.

LEMMA 4.2. Let $(\emptyset \neq)G \subset D$. Suppose that to each $Q \in G$ there correspond $a_Q \in L^{\infty}$ and $\lambda_Q \in \mathbb{R}$. Let $\{a_Q\}_{Q \in G}$ and $\{\lambda_Q\}_{Q \in G}$ satisfy (3.1)–(3.5) and

$$\sum_{Q \in G} \lambda_Q \chi_Q \in L^1_{\text{loc}}.$$

Set

$$u(x) = \sum_{Q \in G} \lambda_Q a_Q(x).$$

Let $\eta > 0$, $V \in L^1_{loc}$, $V(x) \geq 0$ and set

$$A = \sup_{Q \in G} Y(V, Q, \eta).$$

Then the following hold.

(i) If $k \in \mathbb{Z}$, $m \in \mathbb{N}$ and $\varepsilon \in (0,1)$, then

$$(4.4) V\{x \in \mathbb{R}^n : S_d u(x) > 2^k\}$$

$$\leq V \Big\{ x \in \mathbb{R}^n : \sum_{Q \in G} \lambda_Q \chi_Q(x) > 2^{k-m} \Big\}$$

$$+ \sum_{h=-\infty}^{k-m} \min \{ CA2^{-2\eta\varepsilon m} 2^{-2\eta(1-\varepsilon)(k-h)}, 1 \}$$

$$\times V \Big\{ x \in \mathbb{R}^n : \sum_{Q \in G} \lambda_Q \chi_Q(x) > 2^h \Big\},$$

where C depends only on η , ε and n.

$$(4.5) p \in (0, 2\eta),$$

then

$$(4.6) \quad \int S_d u(x)^p V(x) \, dx \le C A^{p/(2\eta)} \int \left(\sum_{Q \in G} \lambda_Q \chi_Q(x) \right)^p V(x) \, dx,$$

where C depends only on p, η and n.

Proof of (i). Let

$$\widetilde{u} = \sum_{Q \in G: \lambda_Q \le 2^{k-m}} \lambda_Q a_Q \text{ and } \Omega = \bigcup_{Q \in G: \lambda_Q > 2^{k-m}} Q.$$

Then Lemma 3.3 implies $S_d u(x) = S_d \widetilde{u}(x)$ on Ω^c . So,

$$(4.7) \{S_d u > 2^k\} \subset \Omega \cup \{S_d \widetilde{u} > 2^k\} \subset \left\{ \sum_{Q \in G} \lambda_Q \chi_Q > 2^{k-m} \right\} \cup \{S_d \widetilde{u} > 2^k\}.$$

On the other hand,

$$(4.8) \quad \{S_d \widetilde{u} > 2^k\} \subset \left\{ \sum_{h=-\infty}^{k-m} 2^h \sum_{Q \in G: \lambda_Q = 2^h} S_d a_Q > 2^k \right\}$$

$$\subset \bigcup_{h=-\infty}^{k-m} \left\{ \sum_{Q \in G: \lambda_Q = 2^h} S_d a_Q > c_{\varepsilon} 2^{k-h-\varepsilon(k-m-h)} \right\}$$

$$= \bigcup_{h=-\infty}^{k-m} \bigcup_{Q \in G: \lambda_Q = 2^h} \{S_d a_Q > c_{\varepsilon} 2^{k-h-\varepsilon(k-m-h)} \}$$

$$= \bigcup_{h=-\infty} \bigcup_{Q \in G: \lambda_Q = 2^h} \{S_d a_Q > c_{\varepsilon} 2^{k-h-\varepsilon(k-m-h)} \}$$

$$= \bigcup_{Q \in G: \lambda_Q = 2^h} \{S_d a_Q > c_{\varepsilon} 2^{k-h-\varepsilon(k-m-h)} \}$$

The first equality of (4.8) follows from the fact that the sets $\{S_d a_Q > 0\}$, where $Q \in G$ and $\lambda_Q = 2^h$, are mutually disjoint by (3.5) and (3.23). Note that $E_Q \subset Q$ by (3.23). Then

$$\begin{aligned} & (4.9) \quad \sum_{Q \in G: \ \lambda_Q = 2^h} V\{E_Q\} \\ & \leq \sum \min\{CA(\log(|Q|/|E_Q|))^{-\eta}, 1\}V\{Q\} \quad \text{by Lemma 4.1} \\ & \leq \min\{CA(\log^+(C^{-1}\exp((c2^{k-h-\varepsilon(k-m-h)})^2/C)))^{-\eta}, 1\} \\ & \times \sum_{Q \in G: \ \lambda_Q = 2^h} V\{Q\} \quad \text{by (3.24) with } \lambda = c2^{k-h-\varepsilon(k-m-h)} \\ & \leq \min\{CA\max\{c'2^{2\varepsilon m + 2(1-\varepsilon)(k-h)} - C, 0\}^{-\eta}, 1\}V\Big\{\sum_{Q \in G} \lambda_Q \chi_Q \geq 2^h\Big\} \\ & \text{by (3.5)} \end{aligned}$$

$$= \min\{CA \max\{\dots, 1\}^{-\eta}, 1\}V\{\dots\} \quad \text{by } CA \ge 1$$

$$\leq \min\{CA2^{-2\eta\varepsilon m}2^{-2\eta(1-\varepsilon)(k-h)}, 1\}V\Big\{\sum_{Q \in G} \lambda_Q \chi_Q \ge 2^h\Big\}.$$

So, substituting (4.8)-(4.9) into (4.7) gives (4.4).

Proof of (ii). Take $\varepsilon \in (0,1)$ and $m \in \mathbb{N}$ so that

$$(4.10) p < 2\eta(1-\varepsilon),$$

$$(4.11) 2^{2\eta m} \approx A.$$

Then

iem

$$\sum_{k\in\mathbb{Z}} 2^{kp} V\{S_d u > 2^k\}$$

$$\leq \sum_{k \in \mathbb{Z}} 2^{kp} V \Big\{ \sum_{Q \in G} \lambda_Q \chi_Q > 2^{k-m} \Big\}$$

$$+CA2^{-2\eta\varepsilon m} \sum_{k\in\mathbb{Z}} 2^{kp} \sum_{h=-\infty}^{k-m} 2^{-2\eta(1-\varepsilon)(k-h)} V \left\{ \sum_{Q\in G} \lambda_Q \chi_Q > 2^h \right\} \quad \text{by (4.4)}$$

$$=2^{mp}\sum_{k\in\mathbb{Z}}2^{kp}V\Big\{\sum\lambda_Q\chi_Q>2^k\Big\}$$

$$+CA2^{-2\eta\varepsilon m}\sum_{h\in\mathbb{Z}}V\Big\{\sum\lambda_Q\chi_Q>2^h\Big\}\sum_{k=h+m}^{\infty}2^{kp}2^{-2\eta(1-\varepsilon)(k-h)}$$

$$= \dots + CA2^{m(p-2\eta)} \sum_{h \in \mathbb{Z}} 2^{hp} V \left\{ \sum_{k} \lambda_Q \chi_Q > 2^k \right\} \quad \text{by (4.10)}$$

$$=2^{mp}(1+CA2^{-2\eta m})\sum_{h\in\mathbb{Z}}2^{hp}V\Big\{\sum\lambda_Q\chi_Q>2^h\Big\}$$

$$\leq CA^{p/(2\eta)} \sum_{h \in \mathbb{Z}} 2^{hp} V \left\{ \sum \lambda_Q \chi_Q > 2^h \right\} \quad \text{by (4.11)}$$

$$\leq CA^{p/(2\eta)} \int \left(\sum_{Q\in G} \lambda_Q \chi_Q\right)^p V dx. \blacksquare$$

LEMMA 4.3. Let $\{a_Q(x)\}_{Q\in D}$ and $\{\lambda_Q\}_{Q\in D}$ satisfy (3.1)-(3.5) and

$$\sum_{Q \in D} \lambda_Q \chi_Q \in L^1_{\text{loc}}.$$

Set

$$u(x) = \sum_{Q \in D} \lambda_Q a_Q(x).$$

Let
$$V \in L^1_{loc}$$
, $V(x) \ge 0$ and $0 . Then
$$\int S_d u(x)^p V(x) dx \le C \sum_{Q \in D} \lambda_Q^p V\{Q\} Y(V, Q, \eta),$$$

where C depends only on p, η and n.

Proof. For $j \in \mathbb{N}$ set

$$G_j = \{Q \in D : 2^{j-1} \le Y(V, Q, \eta) < 2^j\}, \quad u_j = \sum_{Q \in G_j} \lambda_Q a_Q.$$

(If $G_i = \emptyset$, we define $u_i \equiv 0$.) Then

$$(4.12) u = \sum_{j \in \mathbb{N}} u_j$$

and

$$(4.13) \int (S_d u_j)^p V \, dx \le C(2^j)^{p/(2\eta)} \int \left(\sum_{Q \in G_j} \lambda_Q \chi_Q\right)^p V \, dx \quad \text{by (4.6)}$$

$$\le C2^{jp/(2\eta)} \sum_{Q \in G_j} \lambda_Q^p V \{Q\} \quad \text{by Lemma 3.4}$$

$$\le C2^{j(p/(2\eta)-1)} \sum_{Q \in G_j} \lambda_Q^p V \{Q\} Y(V, Q, \eta)$$

since $Y(V, Q, \eta) \approx 2^j$ for $Q \in G_j$. Take

$$(4.14) \varepsilon \in (0, 1 - p/(2\eta)].$$

Then

$$\int (S_d u)^p V \, dx \le \int \left(\sum_{j \in N} S_d u_j\right)^p V \, dx \quad \text{by (4.12)}$$

$$\le C \sum_{j \in \mathbb{N}} 2^{\varepsilon j} \int (S_d u_j)^p V \, dx \quad \text{by H\"older's inequality (if } p > 1)$$

$$\le C \sum_{j \in \mathbb{N}} \sum_{Q \in G_j} \lambda_Q^p V \{Q\} Y(V, Q, \eta) \quad \text{by (4.13)-(4.14).} \quad \blacksquare$$

5. Preliminaries III. The lemmas in this section are known.

LEMMA 5.1. Let $k \in \mathbb{N}$ and $\gamma > 1$. Let $V \in L^1$ and $V(x) \ge 0$. Let $\lambda > 0$. Then

$$(5.1)_k C^{-1}\lambda |\{x \in \mathbb{R}^n : M_d^{(k)}V(x) > \gamma\lambda\}|$$

$$\leq \int_{\{x \in \mathbb{R}^n : V(x) > \lambda\}} V(x) \left(\log \frac{V(x)}{\lambda}\right)^{k-1} dx$$

$$\leq C\lambda |\{x \in \mathbb{R}^n : M_d^{(k)}V(x) > \lambda\}|,$$

where C depends only on k, γ and n.

The case k=1 of Lemma 5.1 is well known. The general case will be explained in Section 7.

Lemma 5.2. Let $k \in \mathbb{N}$ and

$$(5.3) Q_0 = [0,1) \times \ldots \times [0,1) (\subset \mathbb{R}^n).$$

Let $V \in L^1$, $V(x) \ge 0$ and

$$(5.4) V(x) = 0 on Q_0^c$$

Then

$$(5.5) cM_d^{(k)}V(x) \le (\chi_{Q_0}M_d)^{(k)}V(x) + \sum_{j=0}^{k-1} (\log(2+|x|))^{k-1-j} (1+|x|)^{-n} ||(\chi_{Q_0}M_d)^{(j)}V||_{L^1},$$

where c > 0 depends only on k and n and where

$$(\chi_{Q_0} M_d)^{(0)} V(x) = V(x),$$

$$(\chi_{Q_0} M_d)^{(j)} V(x) = \chi_{Q_0}(x) M_d((\chi_{Q_0} M_d)^{(j-1)} V)(x) \quad (j \in \mathbb{N}).$$

The case k = 1 of Lemma 5.2 is clear. The rest of the proof is by induction on k.

LEMMA 5.3. Let $k \in \mathbb{N}, \ Q \in D, \ V \in L^1_{loc}, \ V(x) \geq 0$ and $V\{Q\} > 0$. Then

(5.6)
$$\int_{Q} V(x) \left(\log^{+} \frac{V(x)}{\operatorname{av}(V,Q)} \right)^{k} dx \le C \int_{Q} M_{d}^{(k)} V(x) dx,$$

where C depends only on k and n.

Proof. We may assume that

$$(5.7) Q = Q_0 in (5.3),$$

that (5.4) holds and

(5.8)
$$\operatorname{av}(V, Q_0) = V\{Q_0\} = 1.$$

Set

$$A = \int_{Q_0} V(x)(\log^+ V(x))^k dx.$$

For the proof of (5.6) (under (5.7), (5.4) and (5.8)) we may assume that

$$(5.9) A is very large.$$

If $1 \le j \le k-1$, then

(5.10)
$$\|(\chi_{Q_0} M_d)^{(j)} V\|_1 \le \|\chi_{Q_0} M_d^{(j)} V\|_1$$

 $\le \int_{\{M_d^{(j)} V \ge 1\}} M_d^{(j)} V dx$ by (5.8)
 $\le C \int_{Q_0} V(\log^+ V)^j dx + C$
by the first inequality of (5.2), (5.4) and (5.8)
 $\le C A^{j/k}$ by Hölder's inequality and (5.8)–(5.9).

Moreover,

$$(5.10)_{i=0}$$

$$\|(\chi_{Q_0} M_d)^{(0)} V\|_1 \le 1$$

is clear. Substituting (5.10) into (5.5) gives

(5.11)
$$cM_d^{(k)}V(x) \le \chi_{Q_0}(x)M_d^{(k)}V(x) + (\log(2+|x|))^{k-1}(1+|x|)^{-n}A^{(k-1)/k}.$$

So.

$$\begin{split} A &\leq C \int\limits_{\{M_d^{(k)}V>1\}} M_d^{(k)}V\,dx \quad \text{ by the second inequality of } (5.2) \\ &\leq C \int\limits_{\{|x|1\} \subset \{|x|$$

This and (5.9) yield

$$cA \le \|\chi_{Q_0} M_d^{(k)} V\|_1,$$

which implies (5.6).

6. Proof of the Theorem. Applying Lemma 3.1 to our f gives $\{a_Q(x)\}_{Q\in\mathcal{D}}$ and $\{\lambda_Q\}_{Q\in\mathcal{D}}$ that satisfy (3.1)-(3.7). Set

$$\eta = [p/2] + 1, \quad H = \{Q \in D : V\{Q\} > 0\}.$$

Then

$$\begin{split} \int S_d f(x)^p V(x) \, dx &\leq C \sum_{Q \in D} \lambda_Q^p V\{Q\} Y(V,Q,\eta) \quad \text{ by Lemma 4.3} \\ &= C \sum_{Q \in H} \lambda_Q^p V\{Q\} Y(V,Q,\eta) \\ &= C \sum_{Q \in H} \lambda_Q^p \int_Q V(x) \left(1 + \log^+ \frac{V(x)}{\operatorname{av}(V,Q)}\right)^{\eta} dx \\ &\leq C \sum_{Q \in H} \lambda_Q^p \int_Q \chi_Q(x) M_d^{(\eta)} V(x) \, dx \quad \text{ by Lemma 5.3} \\ &\leq C \int \left(\sum_{Q \in H} \lambda_Q \chi_Q(x)\right)^p M_d^{(\eta)} V(x) \, dx \quad \text{ by Lemma 3.4} \\ &\leq C \int_Q M_d f(x)^p M_d^{(\eta)} V(x) \, dx \quad \text{ by (3.6)}, \end{split}$$

which implies (2.1). (2.2) follows from (2.1) and from the following inequality of C. Fefferman and Stein (see [S2], p. 53):

$$\int M_d f(x)^p W(x) dx \le C_p \int |f(x)|^p M_d W(x) dx \qquad (1$$

7. Appendix. We outline of the proof of Lemma 5.1. By induction it is enough to show $(5.1)_{k=1}$ and two implications " $(5.1)_k \Rightarrow (5.2)_k$ " and " $(5.2)_k \Rightarrow (5.1)_{k+1}$ ". Firstly,

$$(5.1)_{k=1} C^{-1}\lambda |\{M_d V > \gamma \lambda\}| \le \int_{\{V > \lambda\}} V \, dx \le C\lambda |\{M_d V > \lambda\}|$$

can be proved by the argument of [S1], p. 7 (5), and [S1], p. 23 (b).

 $(5.1)_k \Rightarrow (5.2)_k$. Since $\gamma > 1$ is arbitrary, it is enough to show $(5.2)_k$ with γ replaced by γ^2 . Then

$$\begin{split} &\int\limits_{\{M_d^{(k)}V>\gamma^2\lambda\}} M_d^{(k)}V\,dx \\ &= \int\limits_{\gamma^2\lambda}^{\infty} |\{M_d^{(k)}V>\mu\}|\,d\mu + \gamma^2\lambda|\{M_d^{(k)}V>\gamma^2\lambda\}| \\ &\leq C\int\limits_{\gamma^2\lambda}^{\infty} d\mu\int\limits_{\{V>\mu/\gamma\}} \frac{V}{\mu} \bigg(\log\frac{V}{\mu/\gamma}\bigg)^{k-1}\,dx + C\int\limits_{\{V>\gamma\lambda\}} V\bigg(\log\frac{V}{\gamma\lambda}\bigg)^{k-1}\,dx \end{split}$$

by the first inequality of $(5.1)_k$

$$= C \frac{1}{k} \int_{\{V > \gamma \lambda\}} V \left(\log \frac{V}{\gamma \lambda} \right)^k dx + \dots \quad \text{by Fubini's theorem}$$

$$\leq C \int_{\{V > \lambda\}} V \left(\log \frac{V}{\lambda} \right)^k dx.$$

This implies the first inequality of $(5.2)_k$. The second inequality follows from the second inequality of $(5.1)_k$ and from a similar argument.

 $(5.2)_k \Rightarrow (5.1)_{k+1}$. Note that $(5.2)_k$ can be written as

$$\begin{split} C^{-1} & \int\limits_{\{V > \lambda\}} V \bigg(\log \frac{V}{\lambda}\bigg)^k \, dx \leq \int\limits_{\{M_d^{(k)}V > \lambda\}} M_d^{(k)} V \, dx \\ & \leq C \int\limits_{\{V > \lambda/\gamma\}} V \bigg(\log \frac{V}{\lambda/\gamma}\bigg)^k \, dx. \end{split}$$

Note that $(5.1)_{k=1}$ with V replaced by $M_d^{(k)}V$ implies

$$\begin{split} C^{-1}\lambda |\{M_d^{(k+1)}V > \gamma\lambda\}| &\leq \int\limits_{\{M_d^{(k)}V > \lambda\}} M_d^{(k)}V \, dx \\ &\leq C\lambda |\{M_d^{(k+1)}V > \lambda\}|. \end{split}$$

Then combining these two estimates implies $(5.1)_{k+1}$ (with γ replaced by γ^2).

Note. C. Pérez [P] showed similar weighted inequalities for the singular integral operator instead of our dyadic square function.

References

- [CWW] S. Y. A. Chang, J. M. Wilson and T. H. Wolff, Some weighted norm inequalities concerning the Schrödinger operators, Comment. Math. Helv. 60 (1985), 217-246.
 - [CW] S. Chanillo and R. L. Wheeden, Some weighted norm inequalities for the area integral, Indiana Univ. Math. J. 36 (1987), 277-294.
 - R. R. Coifman, A real-variable characterization of H^p, Studia Math. 51 (1974), 269-274.
 - [D] W. R. Derrick, Open problems in singular integral theory, J. Integral Equations Appl. 5 (1993), 23-28.
 - [Gn] J. B. Garnett, Bounded Analytic Functions, Pure and Appl. Math. 96, Academic Press, 1981.
 - [Gs] A. M. Garsia, Martingale Inequalities, Seminar Notes on Recent Progress, Benjamin, 1973.

- [P] C. Pérez, Weighted norm inequalities for singular integral operators, J. London Math. Soc. (2) 49 (1994), 296-308.
- [S1] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970.
- [S2] —, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993.
- [W1] J. M. Wilson, Weighted inequalities for the dyadic square functions without dyadic A_∞, Duke Math. J. 55 (1987), 19-49.
- [W2]. -, A sharp inequality for the square function, ibid., 879-887.
- W3] —, L^p weighted norm inequalities for the square function 0 , Illinois J. Math. 33 (1989), 361–366.
- [W4] —, Weighted inequalities for the square function, in: Contemp. Math. 91, Amer. Math. Soc., 1989, 299-305.
- [W5] —, Weighted norm inequalities for the continuous square function, Trans. Amer. Math. Soc. 314 (1989), 661-692.
- [W6] —, Chanillo-Wheeden inequalities for 0 , J. London Math. Soc. (2) 41 (1990), 283-294.
- [W7] —, Some two-parameter square function inequalities, Indiana Univ. Math. J. 40 (1991), 419-442.

MATHEMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCES
TOHOKU UNIVERSITY
AOBA-KU, SENDAI-SHI, 980, JAPAN

Received August 30, 1994
Revised version March 3, 1995
(3333)