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(The reader can take the second equality as a definition of the multiplicity
of the value 0 of f.)
This completes the proof of Theorem 1.

We remark finally that part (a) of Theorem 1 remains true, with an
identical proof, on any bounded domain of C™ oun which the H?P Corona
Problem is solvable.
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LF weighted inequalities for the dyadic square function
by

AKTHITO UCHIYAMA (Sendai)

Abstract. We prove that
f (Sdf)PV dz < Cpn f lfpr([P/zHa)Vdm

where 53 is the dyadic square function, M ) s the k-fold application of the dyadic
Hardy-Littlewood maximal function and p > 2

1. Introduction. Let V(z) > 0. S. Y. Chang, J. M. Wilson and T. H.
Wolft [CWW] showed that if p = 2, then

(1.1) [ 8ef@*V(@)de < Cpyu [ 1F(@)PMV (z)de
R® R"

where Sy f is the square function of f with respect to the kernel func-
tion 1 that satisfies certain strict conditions and where M f is the Hardy—
Littlewood maximal function of f. 8. Chanillo and R. L. Wheeden [CW]
showed that (1.1) holds for 1 < p < 2 and fails for p > 2. (Furthermore,
they relaxed the conditions on ¢.) J. M. Wilson [W6] extended (1.1) to the
case 0 < p < 1 by replacing |f(z)| by a certain maximal function of f. Then
the remaining problem is to get inequalities that are similar to (1.1) and
that hold for the case p > 2. In Derrick [D] the following problem is listed.
{See also [W6], p. 293.)

J. M. WiLgon’s PrOBLEM. Let S; be the dyadic square function. Let
MUF=Mf, MEf = M(MJ), ... Then, is the following inequality true:
[ Saf(@)PV(z)dz < Cpn [ |({@)[PM*EV(z) da,

r" R™
as p — 00, with k(p) ~ p/27 In particular, with k(p) = ~[-p/2]?
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In this paper we investigate this problem. Our result is still incomplete.

2. Results

NOTATION. R, Z and N denote the sets of all real numbers, integers and
natural numbers, respectively. We fix the dimension n (€ N). For k € Z, let,
Dy be the set of all cubes in B® of the form

27551, 27F Gy + 1)) x ... x [27RG,, 27

v jn € 2. Let
D=\ D,
kEZ
that is, [ is the set of all dyadic cubes in R™. For f € L}, .(R™), k € Z and
z € R", let

where j1, ...

Eof(z)=2" [ f(y)dy,

I(z,k)
where I(z, k) € Dy and I{z, k) 5 =, that is, Ej is the conditional expectation
with respect to the sub-o-field generated by Dy. Let

5u0() = (DB (e) ~ Beeaf@)?)

kEZ
My f(z) = sup Eg|f|().
keZ
Let
MPp=mMyr, MEVr=MmuMPRH (k=1,2..)
Remark 2.1. All functions considered in this paper are real-valued.

Qur result is the following,.

THEOREM. Let 2 < p < 00, [ € Upeyeon L
V(z) > 0. Then

YR™), V € L (R™) and

(2.1) [ Suf@)yV(z)de < O [ Maf(a)y MV (2) de
R* R"
(2.2) Saf(@)?V(z)dz < C [ |F(@)PMP DV (g) d,
_ d
R'ﬂ RTL
where [p/2] is the greatest integer not exceeding p/2 and where C s a con-
stant depending only on p and n.

Remark 22 (2.1)and (2.2) can be extended to the cases 0 < p < 2
and 1 < p < 2, respectively. But in these cases better results are known.
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The arguments of [CWW], [CW] and [W6] show that
[ 8af(@)V(e)dz < C [ |f()]PMaV (z) da fl<p<2,
f Saf(@)PV(z)dx < C f sup Exf(z)PMaV(z)dz if0<p<I.

Remark 2.3. For our case 2 < p < 00, the argument of [CW], Theo-
rem 2, shows

/2
[ sispv@as<o [ i (S D)

[W6], Theorem 6, gave a little bit more complicated result.

Remark 2.4. The classical theory using the A;-condition shows
[ Suf(z)PV(z)dz < C S @) Mo (V) () VO g
if1 <p < ooande > 0. Our MDY is smaller than CMy(Vite)t/il+e),
(In Remarks 2.2-2.4, the C’s depend only on p,n (and ¢).)
For the proof of our Theorem we need more notation.

NoTATION (continued). For a measurable set 2 ¢ R* let 2°, y and
(2| denote the complement, the characteristic function and the Lebesgue
measure of {2, respectively. For V(z) &€ LL _(R"™) let

V{Q} = [ V(z)de, = [ vdz/|0|.
2

Q
™, Q€D and n>0let

For a nonnegative function V & Li (R
V{x) .
Y(V,Qn) = {—m@ V) (1+log™ XY de £ V{Q) > o,
FfvV{Q} =0.

Very often we abbreviate LP (R“ [ llz2, fgn fz)dz and {z € R® : f(x)

> A} to LP, || ||p, [ f dz and {f > AL respectlvely

Remark 2.5. We borrowed Y (V, @, n) and the main idea of our proof
from J. M. Wilson [W1]-[W7], where he investigated the inequalities of the
type

[ sup [EwfP-Vde<C [ (SF)PMV dz
Yk

as well as our type {1.1).

3. Preliminaries I

LeMMA 3.1 Let f € | cycon L9 Then there exist {aglgep C L™ and
{Mo}gep C R so that

(3.1) ag(z) =0 on Q°,
(3.2) f agdz =0



icm

138 A, Uchiyama
(33) lagllre <1,
(3.4) Ag € {2¥ 1k e Z} U {0},
(3.5) ifAp=Ag #0, then PNQ=00r P=2Q,
(3.6) 3" Xoxa() < OMaf(s),
QeD
(3.7) Fl@)=">_ rqag(e) ae,

QEeD
where D is the collection of all dyadic cubes in R™ and where C depends
only on n.

Proof Let k € Z. Let {Q,j}j=12,.. be the maximal elements with
respect to inclusion among the cubes Q satisfying @ € D and av(|f],Q)
> 28" Then

(3.8) {Qr,;}; are mutually disjoint,
(3.9) av(f], Q) < 20F1"
Since f € L9 for some ¢ € [1,00), we have
(3.10) U @Qrs = {Maf > 2"},

J
in particular,

ien
o fi-Sran )] <o
3

Moreover,
(3.12) [U@ks| >0 (k= o0),

i

(3.13) for each Qr41,; there exists Qy ; so that
Qrj > Qur1,i and Qpy #F Qe
By (3.8) and (3.13) the Qx; (k € Z, § = 1,2,...) are all distinct.

Next, we take the “good part” of the Calderén%Zygmund decomposition
of f with respect to 2%, namely let

Gk = (1 - ZXthj)f + Z av(f, Qiﬂ,j)XQ!«.J'
b §

for k € Z. (If || fllco < 27, then {Qk,;}; is empty and g = f.) Then
(3.14) lgklloo < 2T1™ by (3.9) and (3.11),

(315) [ gnpdz= [ fde= [ gydzs by (3.13)and (3.8),
Qn,i Qk,s Qx,s
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c
(3.16) gro1—gr =0 on (U Qk,j) by (3.13),
J

(3.17) f= kllI_IFl g by (3.12)

= (gc—g-x) by (3.14)

+o0
= Z (9r+1 —gn)  a-e.
k=—po

For each Q,; set bx; = {ght+1 —gk)xgk,j. Then
(3.18) bei =0 on Qz’j,
(3.19) [ bejdz =0 by (3.15),
(3.20) IBeslles < 25720 by (3.14),
(3.21) > bk =gr+1—gr Dby (3.16) and (3.8).

§
Finally, we define {ag} and {Ag}. Let Q € D.
Case 1. If there exists @ ; so that
(3.22) Q = Qus,
then set
ag =27 o and Ay = atk+En
(Recall that for each @ € D at most one Qy,; satisfies (3.22).)
Case 2. If there does not exist Qg ; that satisfies (3.22), then set
ag =0 and Ag=0.
Then the desired properties (3.1)—(3.7) follow from (3.8}, (3.10) and
(3.17)-(3.21). =

Remark 3.1. This is an application of the argument of [C]. This kind
of argument might be implicit in [Gs].

LEMMA 3.2 Let @ € D. Let ag € L™ satisfy (3.1)-(3.3). Let A > 0.
Then

(3.23) Saag(z) =0 on QF,
(3.24) {z € Q: Ssag(z) > A} < Cexp(=2%/C)|qQ),
where C' depends only on n.

Proof. (3.23) is clear from (3.1)~(3.2). Take any P € D. Set

w= 3

(Brag(zo) — Ex-109 (30))2:
k: 2=k >1(P] ‘ '
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" where 2 € P and where [(P) denotes the edge length of P. Then

f [Sazag(x)? — col da = f Z (Brag(z) — Er-1ag(2))* dz
P k:2-h<I(P)
= [ (ag(z) - av(ag, P))’de < |P|
P
So, the dyadic-BMO norm of (Sgag)? is at most 1. Then (3.24) follows from
the John—Nirenberg inequality and from
a‘v((sda‘Q)QO) <1,
which follows from (3.1)-(3.3). (For the dyadic BMO and the John-Niren-
berg inequality see [Gn], pp. 274 and 230.) =

by (3.3).

The following two lemmas are easy. We omit their proofs,

LeMMA 3.3. Let G (# 0) be a subset of D. Let G’ C G. Suppose that
to each Q € G there corresponds ag € L. Let {ag}gec satisfy (3.1), (3.2)

and
> lag(@)| € L.
Qed
Then .
Sd(ZOIQ)(SG):Sd,( Z aQ)(m) n ( U Q) .
Qe’ QeG\G Qe

LemMa 3.4. Let (0 #)G C D. Suppose that to each Q € G there cor-

responds Ag € R. Let {Ag}geq satisfy (3.4) and (3.5). Let 0 < p < o0

Then

T Mpxol(e) < ( Y daxale ) <C D Myxo(z)

Qed QeG QeG
where C depends only on p.

4. Preliminaries IT. Recall the definition of Y (V, Q,n).

LEmmA 4.3, Letp > 0. Let Q € D. Let E C @ be a measurable set, Let
Vel Viz) 20 andV{Q}>0. Then

(4.1) V{E}V{Q} £ CY(V,Q,n)(log(|QI/|E])) ™"
where ' depends only on .
Proof. We may assume V{E} > 0. Set
F'={zeE:V(z)>av(V,E)/2}.
Then
(42)  V{E}=V{E}-V{E\E'} 2 V{E} - V{E}/2=V{E}/2

icm
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So,
Y(v.Q,n) > V{Q} fo)(l-H +%(%%)"d:v
1LV{E} V{E}NQ]
2 svig o wa)  e
So,
VIEY/VAQ} [, L+ V{E}/V{Q} Y(V,Q,n)
(43) e (s L) < Q-
Put h(t) = t(loge)~". If
V{E}/V{Q}
Eifle =
then

h(the left-hand side of (4.3)) < h(the right-hand side of (4.3)),
which implies (4.1); else (4.1) is clear. =

LeMMa 4.2. Let (@ #)G C D. Suppose that to each @ € G there corre-
spond ag € L™ and Ag € R. Let {ag}qea and {Ao}tqec satisfy (3.1)~(3.5)

and
Z }‘QXQ € Llloc'
Qead

= Z Agag(z

QeG
Letn >0,V e L, V(z) >0 and set

A=sup Y (V,Q,n).
Red

Set

Then the following hold.
) IfkeZ meNande € (0,
(44) V{z e R™: Squ(z) > 2*}

< V{a: e R™ . Z Agxao(z) > Zk‘“m}
Qed

1), then

k—m
4 Z min{CAQ—27’5'”12—27’](1—8)(.’0-?:), 1}

h=—ot

b V{o: eR™: Z Aoxg(z) > 2}"}
QEG
where C' depends only on n, € and n.

e
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(ii) If
(4.5) p € (0,2n),
then v
(46) [ Seu(ayV(e)ds < oA [ (37 Naxa(@)) V(z)ds,
Qea

where C depends only on p, n and n.

Proof of (i). Let
i= Y. Agag and 2= U @
Qe hggRh—m QEG‘:)\Q>2’“"’""'
Then Lemma. 3.3 implies Squ(z) = Syt(z) on £2°. So,
(4.7) {Squ > 2"} ¢ RU{SaT > 2*} ¢ { Z Aoxg > 2"“""”}U{Sdﬁ > 20
Qed
On the other hand,

k—m

(48) (sa>2pc{ > 2 Y Saag > 2}

h=—oc Q&G Ag=2h

k-
. Um{ Z SdaQ>682.ic—h—e(kwm~—h,)}

h=—0o QEG:Ag=2"

k—m

— U U {SdaQ > CEZk—h’_E(k_m_h)}
h=—o0 QEG: Ag=2"

= U U EQ: S5ay.

The first equality of (4.8) follows from the fact that the sets {Ssag > 0},
where @ € G and Ag = 2", are mutually disjoint by (3.5) and (3.23). Note
that Eg € @ by (3.23). Then

(4.9) > V{Eg}
QEG: =2
< Zmin{CA(log({QV[EQl))ﬂ”, 1V{Q} by Lemma 4.1
< min{CA{log™(C™* exp((c2k"h*5(k"m“h))2/0)))"“"’, 1}
x> V{Q} by (3.24) with ) = ggbmhoe(komoh)
QEG: Ag=2~

S min{OAmax{CIQQEm-{-Ml—-E)(k—h) - O, D}_n,l}V{ z )‘QXQ > Zh}
QECG
by (3.5)

icm
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=min{CAmax{...,1} " 1}V{...} byCcA>1

< min{C A2~ 2mEmg=2n(1-2)(k~h) 1}v{ 3 doxe > 2h}.
Qe

substituting (4.8)-(4.9) into (4.7) gives (4.4). m
Proof of (ii). Take € ¢ (0,1) and m € N so that

(4.10) p < 2p(l —e),
(4.11) 21 A,
Then
Y 2V {Squ > 2F}
keZ
< Zz’“’v{ > Aexe > 2'“—"”}

kel Qed

ke
+ CA2--2175'MZ okp Z 2”277(1—5)(-'9”‘”')1/{ Z Agxag > 2h} by (44)
keZ h=—co Qed

= ZmPZQkPV{ Z)\QXQ > Qk}

kEZ
+ oAy V{ S doxe > 2h} i gkpg—2n(1-)(k—h)
hek k=h+m
.+ CAome—2m) Z 2hpv{ Z Agxa > zh} by (4.10)
heZ

=27 (1+ 04z ™) S 2’”’V{ 3 hoxg > zh}

heZ

s o/ 3 ok { S agxe > 2t} by (411)

heZ

< AP/ (2m) f ( Z )\qu)dem. n

Set

Qe

LemMa 4.3. Let {ag(z)}gep and {Ag}gen satisfy (3.1)-(3.5) and
> Aoxa € Lige:

QeD

u(z) = 3 Aguqls):

QeD
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LetV e Ll ,V({z) >0 and 0 <p < 2n. Then

[ Sau(@)PV(z)de <O Y MV{QIY(V,Q,m),
QeD

where C depends only on p, n and n.
Proof. For j € N set
Gy ={QeD: 2 <Y(V,Q,n) <¥}, wu=

Z Apag,

QREA;
(If G; = 0, we define u; = 0.) Then
(4.12) u=y uy
jEN
and
. o 2
(4.13) [ (Saw;)?V dz < C(2P/CD [ ( 3 AQXQ) Vde by (4.6)
Qed;
< C29P/(am) Z AGV{Q} by Lemma 3.4
QEGj
< CA/EN-D S 2 VIQY(V,Q, )
Qed;

since Y{(V,Q,n) = 27 for Q € G;. Take

(4.14) e€(0,1—p/(2n)]
Then

[(Sawpvaz< | (Z Sdu;) Vdzr by (4.12)

<C Z Pl f (Squ; )PV dz by Holder’s inequality (if p > 1)
<CY Y MV{RQIY(V,Qn) by (4.13)-(4.14). =

JEN Qel;
5. Preliminaries ITI. The lemmas in this section are known.

LEMMA 5.1. Letk € N and vy > 1. Let V € L! and V(z) > 0. Let A > 0.
Then

50k CTRA{z e R : MV (z) > vl
d

k-1
< f Vix) (log VE\:E)> dz
{zeR™:V(z)>A}

< CA{z e R":

MV () > A},
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¢t f

{2eR™ MV (2)>ya)

MV (2) de

< J V@ (1og Y—g‘”—)) k dz

{zeR™V (z)>A}

<¢

{reR™ M9 Viz)>a)

Mc(tk)V(z) dz,

where C' depends only on k, -y and n.

The case & = 1 of Lemma 5.1 is well known. The general case will be
explained in Section 7.

LEMMA 5.2, Let k € N and
(5.3) Qo=1[0,1)x...
Let Ve LY, V(z) > 0 and
(5.4)
Then
(5.5) cMEV (2)

x[0,1)  (c RB™.

Viz)=0 on Q3.

< (x@o Ma) BV (z)
k=1

+ > (log(2 + &) (1 + 2]) ™| (xgo Ma) DV | 11,
F=0

where ¢ > O depends only on b and n and where
(X@eMa) OV (z) = V(z),

Qo Ma) PV (2) = X0 (8)Mul(xas M)V V)(z)  (j EN).
The case k = 1 of Lemma 5.2 is clear. The rest of the proof is by induction
on k.

LEMMA 5.3. Letk € N, Q € D,V e Lt V(z) > 0 and V{Q} > 0.
Then

(5.6)

{z) dzx,

, RORY (%)
QfV(J:)(ng* wmQ)) deCQfMd v

where C depends only on k and n.

Proof We may assume that

(5.7) @ =@ in(5.3),
that {5.4) holds and
(5.8) av(V, Qo) = V{Qo} = 1.
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A= f V(z)(log™ V(z))* dz.

Qo

For the proof of (5.8) (under (5.7), (5.4) and (5.8)) we may assume that

(5.9)

If1<j<k-1,then
(510)  [l(xgeMa) Vi1 < ]IxeoMéj)Vill

f MPVdzr by (5.8)
MV 21}

<C [V(ogt V)Y dz+C

<

< C ATk by Hélder’s

Moreover,

(5.10)0

Qo

A is very large.

by the first inequality of (5.2), (5.4) and (5.8)

10x@e Ma) Vi £ 1

is clear. Substituting (5.10) into (5.5) gives
(5.11) cMCSk)V(m) < XQq (m)]\ffék)V(w)
+ (log(2 + [&)F (1 + |) AR/

So,

inequality and (5.8)~(5.9).

A<LC f M ék)V dz Dby the second inequality of (5.2)

(MP vy

<¢ [ MPvae by {MPV >1) c{lzl <A}

{Jzl< A}

which follows from (5.11) and (5.9)

<0 [ {xau(@)M{V(a)

{l=|< 4}

+ (log{2 + [2))F =1 (1 + |af) " AU V/F) da

< Cllxgo MPV ||y + CAF— Dk (10g A}k,

This and (5.9) yield

which implies (5.6). »

eA € IxgeMPV |1,

by (5.11)

icm
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6. Proof of the Theorem. Applying Lemma 3.1 to our f gives
{og(z)}oen and {Ag}qep that satisfy (3.1)~(3.7). Set

n=1[p/2l+1, H={QeD:V{Q}>o0}

Then
f Sif(z)PViz)de < C Z AV{QYY(V,@,n) by Lemma 4.3
QeD
=C ) MV{QIY(V,Q,1)
QeH

NCZAPIV (1+log (VQ))nd

<CY N f xo (@) MMV (z) dx by Lemma 5.3

<C f ( Z Aoxolz) ) M(U)V(a:) dz by Lemma 3.4
QeH
<C f Mdf(w)pMc(t")V(m) dz by (3.6),
which implies (2.1}. (2.2) follows from (2.1) and from the following inequality
of C. Fefferman and Stein (see [S2], p. 53):

[ Maf(xyPW(z)de < Cp [ |F(@)PMaW(z)ds  (1<p<oo). =

7. Appendix. We outline of the proof of Lemma 5.1. By induction
it is enough to show (5.1)=1 and two implications “(5.1)k=-(5.2)r” and
“(5.2) =(5.1) 41" Firstly,

(L= CTAHMLV >} < [ Vds <OXN{MV > A}
{V>x}
can be proved by the argument of [S1], p. 7 (5}, and [S1], p. 23 (b).
(8.1) =(5.2)). Since v > 1 is arbitrary, it is enough to show (5.2),, with
v replaced by 2. Then
[ MPva
{MIVeyiay

e +)
= [ HMPEV > dp+ P A{MPY > /2
¥

[=%) k—1 k—1

14

<C f dy f K(log —1;—) dz+C f V(ng'jy“X) dz
DY {V>M/’Y}M i {V>ya} :

by the first inequality of (5.1)z
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1 V" o
= C}g- f Vi log o3 dz+... Dby Fubini’s theorem
{VS7ab i

v k
<C fV(logX) d.
{V>2)

This implies the first inequality of (5.2}. The second inequality follows from
the second inequality of (5.1); and from a similar argument. m

(5.2 =(5.1)+1. Note that (5.2)) can be written as

k
o IV'(log%) dz< [ MPvda

{V>A} (M v>ay
14 )’”
<C VI log — | dz.
{V>{/ ( BNy
7}

Note that (5.1)4=1 with V replaced by M ék)V implies

CUMEIY > s [ MPVde
{MPTV =}
< CA{MEY S 2y
Thelé}combining these two estimates implies (5.1}k+1 (with 7 replaced
by v°). =

Note. C. Pérez [P] showed similar weighted inequalities for the singular
integral operator instead of our dyadic square function.
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