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Double exponential integrability,
Bessel potentials and embedding theorems

by

DAVID E. EDMUNDS (Brighton), PETR GURKA (Praha)
and BOHUMIR OPIC (Praha)

Abstract. This paper is a continnation of (5] and provides necessary and sufficient
conditions for double exponentinl integrability of the Bessel potential of functions from
suitable (generalized) Lorentz-Ziygmund spaces, These results are used to establish em-
bedding theorems for Bessel potential spaces which extend Trudinger's result.

1. Introduction. In a celebrated paper [4), Brézis and Wainger showed
that estimates for the convolution of functions in Lorentz spaces LP9 could
be used to establish the exponential integrability of the Riesz potential of
suitable functions. This is related to the well-known result of Trudinger [18]
that Sobolev spaces can, in certain limiting cases, be continuously embedded
in spaces of Orlicz type, with a Young function of exponential character.
Very recently, the authors [5] showed that use of a double limiting form
of Hardy’s inequalities coupled with replacement of L9 by (generalized)
Lorentz-Zygmund spaces enabled double exponential integrability of the
Riesz potential of functions in appropriate spaces of this type to be proved.

The present paper continues this line of enquiry, its principal aim being
to establish embedding theorems for Bessel potential spaces which gener-
alize Trudinger’s result. We provide necessary and sufficient conditions for
double exponential integrability of Bessel potential of functions in suitable
(generalized) Lorentz-Zygmund spaces. To explain this in a little more de-
tall, suppose that p € [1,00], o € (0,n), let @ € R, & # 0, and let Q ¢ R
have finite Lebesgue n-meagure and non-empty interior. Then we show in
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particular that given A € (0,00), there exist a, M € (0,00) such that

(1.1) [ explAexplal(go * £)(@)| 7] da < M
Q

for all £ in the unit ball of the Lorentz-Zygmund space Lr/op (log )Y P (R™)
if, and only if,
(1.2) o < 0,
Here g, is the Bessel kernel.

Analogous conclusions are obtained for Riesz potentials when, however,
the functions f are also required to belong to L'(R") because the Riesz
kernel does not decay as quickly at infinity as the Bessel kernel. These re-
sults for Riesz potentials improve those given in [5] in two respects: they
give necessary and sufficient conditions for (1.1) to hold, while [5] gives only
sufficient conditions; and they extend the range of values of p from (1, ) to
[1, 0¢]. The Bessel potential results are used to show that certain Bessel po-
tential spaces, modelled upon (generalized) Lorentz-Zygmund spaces, may
be embedded in appropriate Orlicz spaces. For example, it is proved that
if p € (1,00) and @ C R has finite Lebesgue n-measure, then given any
A € (0,00), the Bessel potential space

H™MPLP(log LY (R™) = {gn/p * f : f € LP(log L)/¥ (R™)}
is continuously embedded in the Orlicz space L@A’”F, (@), where &4 /5 15 2

Young function such that & 4 1/ () = exp(4 exp(t?')) for all large enough ¢.
Results of a similar nature concerning compact embeddings are also proved,
as are analogous theorems relating to the continuous or compact embeddings
of Bessel potential spaces on domains with finite n-measure, rather than on
the whole of R™.

We also indicate rather briefly the results obtainable by the use of a
single limiting form of Hardy’s inequality. Then our techniques establish
theorerns about single exponential integrability which resemble those de-
rived by Fusco, Lions and Sbordone [8] and, in the higher-order case, in [6],
and also extend results from [5, Remark 3.11(iv}].

The paper is organized as follows. Section 2 contains the notation and
basic definitions, while Section 3 is devoted to preliminary results. The next
section contains necessary and sufficient conditions for double exponential
integrability of Bessel and Riesz potentials, and Section 5 provides embed-
ding theorems. Finally, Section 6 gives results about single expenential in-
tegrability.

a+1/p <0.

2. Notation. Let Q be a measurable subset of R™ (with respect to
n-dimensional Lebesgue measure); by |Q|, we mean its n-volume; xg will
represent the characteristic function of Q.
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Fgr a'megsurable (real or complex) function f on Q which is finite a.e
the distributional function py is given by ’

(2.1) prX) = {e € Q- |f(z) > AHa, A0,

?nd t)he non-increasing rearrangement of f is the function F* defined on
0,c0) by

(2.2) PP =mf{h ps(X) <t}, >0

If p,g € (0,00} and A, & € R the generalized Lorentz—Zygmund space
(2.3) L™(log L)*(loglog L)* = LP4(log L)* (log log L) ()
consists of all functions f on @ for which the quantity
24) | flpare

oo 1/q
( 77+ log ¢ 10g# (e + |logt|)f*(t>]q%’5) for ¢ < oo,
0

sup tY/7(e + [logt])* log® *
e 177(e + log ) og! (e + g 1) (),

for ¢ = o0,

is finite.

As .in the case of Lorentz spaces, the expression (2.4) is, in general, only

& quasi-norm. However, it can be shown, by use of a convenient form :::f the
Hardy inequality, that for p € (1,00], ¢ € [1,00] and X, & € R, the quantity
I lp.g.ae defined as in (2.4) with £*(¢) replaced by £**(¢) 1= ¢~? [ f*(s) ds
is & morm on L™9(log L) (log log L) which is equivalent to the anSi-HOI‘m
(24). In particular, for p € (1,0c), the space L4 (log L)* (log log L) is
(equivalent to) a Banach function space.

‘ Let us mention that for A = ¢ = 0 this space coincides with the clas-
sical Lorentz space L, with the quasi-norm || - |4, while for £ = 0 it is
(equivalent to) the Lorentz-Zygmund space LP4(log L)* endowed with the
quasi-norm ||+ [|,,g,» and introduced in [2]. Consequently, fors = 0 and p = ¢
we obtain the Zygmund space LP(log L) (cf. [2]), and if in addition A = 0 we
have the classical Lebesgue space LP = LP((}) with the norm el =11
which iy a Banach function space also for p = 1 and p = oo, For n;:ore detI:J:ins,
we refer to [10], [2] and [3].

Throughout the paper the symbol I, o € (0,n), is used to denote the
kernel of the Riesz potential, i.e, I,(x) = |2]°™™, © € R". The Bessel kernel
Jorr o > 0, is defined as that function whose Fourier transform is

(25) Fo(@) = (21) ™21 + [af?) 772,

where the Fourier transform of the function f is given by

Fla) = @n)y72 [ e v5(g) dy.

e :
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Let 0 < K < oo. By 9T (0, K) we denote the set of all non-negative
measurable functions on (0, K). If f € 9M+(0,K), the symbol f| means
that the function f is non-increasing on (0, K). We put

M0, K; L) = {f € M¥(0,K) : f1},
W0, K) :={w € MT(0,K): 0 <w < oo ae on{0,K)}
the elements of W(0, K') are called weights.

For p € [1, oo} we put

Y(p) = L* (0, 1; %’5) Z(p)=L* (0, L ;@%)

and endow these spaces with the norms

1/p
v~ (] f o ‘“) ,

T

[y o0y = llfHZ(oo) = | filoo,c0,0) = = esssup ).

For ¢ € (0,00) and = € R" let By(x, ¢) denote the open ball in R™ of
radius p and centre z; the symbol w,, stands for the volume of the unit ball
in R", ie wp = |[Bp{0,1)|n.

Let  be a measurable subset in R"” and let Ly(Q) be the Orlicz space
with Young function @ (by a Young function ¢ we mean a continuous,
non-negative, strictly increasing and convex function on [0,cc) satisfying
lims_,os B(t)/t = 0 = limy_, t/B(t})). The symbols [{ - |4 and || - o are
used to denote the corresponding Orlicz and Luxemburg norms, respectively;
these two norms are equivalent {cf. [9, Theorem 3.8.5]).

Let p € (1,00), ¢ € [1,@], A\,&¢ € R, and ¢ > 0. The space of Bessel
potentials

(2.6} H*L"(log L)* (log log L)*(R™)
is defined by
HeLPlog L) (log log L) (R™)
= {u=g,x f: f € IPlog L)*(loglog L)*(R")}
and it is equipped with the quasi-norm
(2.7) ] sipgne == Flogne
If 2 ¢ R™ is a domain, then
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H*LP(log LY*(log log L)*(12)
= {l|e : % € H*LP?(log L)*(loglog L)% (R™)}

and it is endowed with the quasi-norm

= inf{[[llsip,q.00 1 = U2}

Given two Banach spaces X and YV, we write X <+ ¥ or X wses V if
X C Y and the natural embedding of X in V" is continuous or compact,
respectively.

As usual, the symbols C', 1, Cs, ..., ¢, ¢1, g, ... signify positive con-
stants independent of appropriate quantities. For non-negative expressions
(ie. functions or functionals) Fi, Fy we use the symbols Fy < F; and
Fi 2 Fa, respectively, provided that Fy < CF, and OF, > Fy, with some
constant ' € (0, 00) independent of the variables in the expressions Fy, Fy.
If Fy £ F, and simultaneously By < Fy, we write F) ~ Fy.

We shall use the following convention:

1 1 0

2.8 =0, = - = 2 _0
(2.8) OOOOOO,DOandOOO

If p € [1, 00], then the conjugate number p' is defined by 1/p+1/p = 1.

3. Preliminaries. In this section we present some auxiliary assertions
which we need in subsequent sections. We start with the following two lem-
was which are particular cases of more general results on Hardy-type in-
equalities from [7)].

3.1. LEMMA (a non-limiting case). Suppose p € [1, 0] and «, 3,7, 6 € R.

(1) Let v < 0. Then there exists o constant ¢ € (0,00) such that the
Hardy inequality

(3.1)

Y{oa)

— log £)° log” (¢ — log t)tg(t)
holds for cvery g € IUH(0,1) if, and only if, one of the following conditions
is satisfied:

(3.2) v-6 <0

(3.3) y=§=0, a—-F<0.

¢
t“(e — log )" log™(e — logt) f g(r)dr
0

< ef|t(e

(i) Let v > 0. Then there exists a constant ¢ € (0,00) such that the
Hardy inequality
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1
(34) tv(e _ log -[;)7 loga(e - logt) f g(T) dT“Y(oo)
t

< et (e — logt)® log'g{e - log t)tg ()l v (p
kolds for every g € MY (0,1) if, and only if, one of conditions (3.2), (3.3)
ts satisfied.

3.2. LEMMA (a double limiting case). Suppose p € [1,00] and «, 8 € R,
a#0,8# 1.
(i) There exists a constant ¢ € (0,00} such that the Hardy inequality

(3.5) Hloga(e—logt) j‘g(f) dT“Z(oc)
0

< cfllog® (e — log £)t(e ~ log £)g(t)|| z s
holds for every g € MH(0,1) if, and only f,

(3.6) 8>1/p
and
(3.7 a—pF+1/p <0.

(ii) There exists a constant ¢ € (0,00) such that the Hardy inequality
1
e — d
(3.8) Hlog (e —logt) Zf g(7) THZW

< clflog” (e — log t)t(e — log )9 (¥) | z(n)
holds for every g € MT(0,1) if, and only if,
(3.9 a<0
and (3.7) is satisfied.

3.3. Remark. If we omit the assumptions @ # 0 and 8 # 1/p' in
Lemma 3.2, then the lemma continues to hold provided that we assume
either (3.6) and (3.7), or

(3.10) o 1=p, B=0, a<0

in part {i); and either (3.9) and (3.7), or

(3.11) l1<pgoo, a=0, —f+1/p <0,
or

(3.12) l=p, a=0 -F<0

in part (ii).
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The simple observation formulated in the next remark will be useful
later.

34. Remark. Let y =0and § = 1/p’. Then condition (3.7) implies
one of (3.2), (3.3). Indeed, we have ~ — § = —1/p" < 0, which implies (3.2)
provided that 1/p" 3 0. If 1/p' = 0, then vy — § = 0. Moreover, condition
(3.7) yields @ — 8 < 0. Hence, (3.3) is satisfied.

While the kernel I, of the Riesz potential was given explicitly, the Bessel
kernel g, was introduced by (2.5). However, it is well known (cf. [14] or [19])
that

(3.13) g, is a positive, integrable function which is analytic except at the
origin;

(3.14) 9o ¥ gr = Gopr Lo, >0

(3.15) 9o () < Cyla|" "2l for g e (0,n) and all z € R™;

(3.16) 9o (2) & [2]77"  as x| — 0.

The estimate (3.15) shows that the behaviour of the Bessel kernel as ] = o0
is much better than that of the Riesz potential. The following lemma pro-
vides us with the important estimate (3.17) for the non-increasing rearrange-
ment of the Bessel kernel.

3.5. LEMMA. Let 0 < o < n. Then there ezist constants A, B € (0, c0)
such that for all t > 0,

(3.17) g5(t) < At1" exp(~Bil/m)
and
(3.18) g (t) < g/,

a

Proof. By (3.18) and (3.15),
0<ge(z) < H(z), zeR",

where H(z) = h(le|) with A(t) = Cy17~"exp(~Cqt), t > 0. Thus it is
z?fﬁcient to show that estimates (3.17) and (3.18) hold with H instead
ggince h is decreasing, yon(A) = R™*() for all A > 0. Hence,
s (X) = |Bp(0,h™ A |n = walh™HN]®  for all A > 0,
and
H(t) = inf{A > 0 wo[R"HA)™ 1} = A((t/wa)™)
= At7/"Lexp(—~BtY™), >0,

]
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l—o/n

where 4 = Ciwn, and B = Chwy /™. Consequently,

¢
H™(t) = % f As7/™ T axp(—Bs* ™) ds < ;At"/”“l, t >0,
0

and the proof is complete. m

An estirnate for the non-increasing rearrangement of a function from a
generalized Lorentz—Zygmund space is given by

3.6. LEMMA. Let A\,e € R and let p € (0,00) and ¢ € (0,00], or
p = co = q. Then there exists o constant ¢ such that

F2(#) < ct™P(e+ [logt]) "M log ™ (e + flog ]} fllp.qr.e
for every f € LP{log L)*(loglog L)® and all t € {0, 00).
The proof is similar to that of Lemma 3.3 of [5], where the cage p €
(1,00), g € [1, co] was investigated. =

37. Remark. Let 0 < K <00, 1 <p<oo and g,v € M0, K).
Then since the spaces L? and LP" are mutually associated (cf. [3, Chapter 1,
Theorem 2.5]), we have

1

i :
(3.19) sup M@f ==

sem+oxy vl

Pf
(note that we use the convention (2.8)).

In the following lemma it is shown that the analogue of (3.19) with
the supremum restricted to (0, K; |) enables us to replace a weighted
inequality on 91 (0, K; |) by an equivalent inequality on 91(0, K). When
p € (1,00) such an analogue was obtained by Sawyer [13, Theorem 1]. His
result is formulated as part (i) of Lemma 3.9 below. In parts (i) and (iii)
of that lemma, we give estimates of the mentioned quantity from below
provided that p = 1 and p == oco. Such one-gided estimates appear to be
sufficient for our purposes. Note that here we use some ideas from [16],
where an alternative proof of Sawyer’s result is given.

3.8. LeMMA. Let 0 < K < 00 and let w,v € W(0, K). Suppose that
(3.20) T,7 : ;MY (0,K) — M0, K)

are two operators salisfying
K K

(3.21) [ TfEy g8yt = [ f(2) - T'g(t) dt
0 0

for all functions f, g € MT(0,K), fl. Let p,g € [1,00]. Then the inequality
(3.22) T Frwly < O fol

icm
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holds for all f & IM*(0, K; 1) if, and only f, the inequality
1

(3.23) .

(T'g)

< C'Hig
w

P,

holds for oll g € M¥(0, K), where for h e m+(0, K),

ql

K
520 Il = sup  do SOl
femr(0,&y)  1fvlle

(The constant C' is the some in inequalities (3.22), (3.23) and does not
depend on the functions [, g.)

Proof. (i) Assume that (3.22) holds for all f € 9+(0, K;; ). Taking
g € MF(0, K) and using successively (3.24), (3.21), (3.19) and (3.22), we
obtain

K
L] - 1)
v Pl femteggl  |[fvlp
X
_ 1 (TF) - gde
= sup oA L .
remtx;) I fvlp
ITHelalZoll, 11
5 < Clj—g
FEMH(0,K31) [Fvll |

(ii) Suppose that (3.23) holds on M+ (0, K). Let f € M+ (0, K;|). Then,
by (3.19), (3.21), (3.24) and (3.23),

i
(T f)ellq o (Tf)-gde 1
|l GEDH (0, K) Hig“q, Il £l
UKf'(Trg)dfﬂ 1
= sup : .
semrox) (ol vl
K o 1o
< sup 11 sup Jy fv-s(T'g)da
sem+ (0.5 | 591 reme(ox;1) lifv/lp
)|,
o BT
semriog) w9,

3.9. LEMMA. Let 0 < K < oo and v € W(0, K).
() If pe (1,00) and v satisfies
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i

(3.25) [ or(r)dr <o, te(0,K),
0

then for any h € M*(0, K),

K
’U(Cu")p/p’ fv(y)zguy) dy

F
0

(3.26) [|Allpr0,1 =

pl
& €T

U(m)p/p’(fvpdy)_l f'uhdy

0 a
(ii) If p= oo and ¥ € W(0, K} is such thal

I( f 9(@) dy ()] < Olgbee

S vhda

Tl

+
pl

o~
~

(3.27)

for all g € MY {0, K) (with a constent C independent of g), then for any
h € M0, K),

K 4 K oh dz
838) ot = o 2 [v(aih(o) [ 5osdy ﬁf”mT
|4 1 vahdm
- H(Df )| + S

(iii} If p =1 and v satisfies (3.25), then for any h € MT(0, K),

o _ K
(329)  ||Allprwp = [Plloow, 2 H( Bf "”dy) 1 j '”hdyHm + _fo*Hg!]Izldm'

Proof. (i) For the proof of part (i) see [13, proof of Theorem 1}.
(i) Let A € MH(0, K}, Then, by (3.24), (3.27), Fubini’s theorem and
(3.19),

JEUE g(y) dy)o(z)h(e) de
1 9y) dyyv(@)] oo

IS gwgu(ﬁ)h(@m;dy
”96 0

|7

1,v,} >
gEMH (0, K)

> (€)™ sup
gEMH (0,K)

(fu(r)h(m) d:c)-{):é—’-)—

=&

1
Le

— (@) M|o@)ne) [ = dy

o(y)

1
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Moreover, upon taking f = ¢, where c is a positive constant, (3.24) implies

K
hlle &w—d

(3.30)

and the result follows.

(iif) Let h € 20+(0, K). Then, using (3.24), Fubini’s theorem and (3.19)

b
we have

U oly) dyv(a)h(z) de
||(J:K g(y) dy)o(z)|x

X g o(@)hiz) da) dy
l9(y) fy v(z) dz|y

||(nyvdm)"l(0jyvhdm)Hm.

This and the choice f = ¢, ¢ > 0, in (3.24) yield the result, (It is easy to
see that the last term in (3.29) can be omitted since it is bounded by the
previons one.)

H}"Hoo,v,‘ll = sup
g€+ (0.K)

gEMH+(0,K)

i

In [11], [15] weighted inequalities
ITHwly < TN follp

were investigated for certain integral operators T’ provided that p,q € (1,00).
Using techniques from the theory of Banach function spaces, one can prove
Lemma 3.10, which deals with the limiting values p = 1 and g = oo.

3.10. LEMMA. Suppose o € (0,n) and @,7 € W(0,1); put
(3.31) k(y, t) = yo/™ —o/m,
Let there exist C € (0, 00) such that

0<t <y <1,

[}

“iﬁ(y) f k(y,t)g(t)dtum < Cl5(y)g(w)x
4]

(3.32)

Jor all y € DH(0,1). Then

. 1
(3.33) sup [@x .1y oo ;k(ﬁa')xw,e)r <0,
ge(n,1) v o
- 1
(3.34) sup Hwk‘('aE)X(s,t)HmHZX(O,E) { < C.
£€(0,1) v 00

Proof. (i) To prove (3.33), we take g € M*(0,1), with ||g7]; < 1, and
£ €(0,1}. On using (3.32) and the monotonicity of k(-,%), we obtain
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Yy
C > C|ghl: > Hw ) [ by, )g(t) dtH
0
Y
> H ¥)xen v f k(y,t)a(t) dth
0

> llwxe, 1 loo f k(¢ t)g(t) di
0

1
- 1 —
= [ @X(e,1) oo Bf wk(f:ﬂX(o,s)(i)”(ﬂg(t) dt
Now, taking the supremum over all g and £, we arrive at (3.33).
To prove (3.34), take £ € MM*(0,1) satisfying || 3 f],, < 1.Ifg € MT(0,1)
and |7y < 1, we obtain by (3.32), the Holder inequality and Fubini's
theorem,

o[ 4] = et |34 = a0 [ roasio sl |3
j ( f Ky, o) dt) F(y) dy
0
:IIE(M( [ kv 0)f ) (©)u(t) dt.
¢

Taking the supremum over all g € MT(0,1) with |jg711 < 1, we get
1
1
—— [ k(y,
) ! .2

(which is the “associated inequality” to (3.32)).

Now we proceed as in the previous case. Let £ € (0,1). Then, taking
f € MH(0,1) with ||%f||1 < 1 and using the monotounicity of k(y,-), we
have from (3.35),

sl =cf]

1

> [ kv, &)y dy-

B

x4t fl k(y’t)f(y)dy” ’1 xio, EJHW
t

1
o(t)

1
X8| -

[ee]

1
= [ By)k(y, Oxeen¥) = ()f(y)
0

and the proof is finished by taking the supremum over all f € M*(0,1)
satisfying || £ ||, < 1 and over allé € (0,1). w
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4. Double exponential integrability. In this section we shall look for
necessary and sufficient conditions for double exponential integrability of
the Bessel potential of a function from an appropriate generalized Lorentz—
Zygmund space. We start with

4.1. LEMMA. Let p € [l,00] and o, B € B, o £ 0, B#1/p, o€ (0,n).
Suppose that

e L7 (log L)/ (loglog LY’ (R™),  w= g, » .
Then the ineguality
(4"1) Sup [10g“(e - 10g tju*(t)] < C”f”n/u,p,l/p",ﬁ

te(n,1)

holds with o constant C' which depends only on p, o, 3, 0 and n if, and
ondy if,

(4.2) a <0

Proof (4.2
implies that

and o—F4+1/p <0.
)=>(4.1). Since v = g, * f, O'Neil’s lerama [12, Lemma 1.5

(4.3) w'(t) < uwt(t) Stgr(OF ) + [ gh(r)f(r)dr
[
The estimates (3.18) and (4.3) yield for every ¢ & (0,1),

1
(44) w'{t) € ZAe/n Jrar

1
+ [ g (n)

dr + j‘og;('r)f*(v“) dr
1
Putting
X = L™ (log L)m’, (loglog L)? (R™),
by Lemma 3.6 we have for all £ > 0,
(4.5) (1) £ et7/" (e Nlog t]) ™/ log™ (e + [log 8]) | £ ..
Using (3.17) and (4.5) we obtain

48) [ g(r)fr(r)dr
1

4]
< Aef fllx [/ exp(~BtYmye o/ (e + [log #]) "1/ log™ (e + Jlog #]) dt
L

= Cufiflx.
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The estimates (4.4) and (4.6) imply

n
(4.7) [log™ (e — log t)u* ()| 2t} < ;ANl + Na + C1||f |l x Na,
where .
Ny = (t7/* 1 log™ (e — log t) f () dT“Z(m
0
1
Ny = Hlog“(e —logt) f an(m)f* () d'rHZ(OO)
13
N3 = |llog™(e — log )| (o)
As o < 00,
{48) Ny < oo.

Applying Lemma 3.1(i) (cf. Remark 3.4), we have

(4.9) Ny =

i
t7/m1Jog®(e — logt) [ f7(r) dTHY(w
o]

< ofjt?/" (e~ log )7 log” (e ~ log )t (1) Iy ¢y < ¢l £|1x.
Finally, Lemma 3.2(ii) and the estimate g% (t) < At?/"~1 (cf. (3.17)) yield
(410)  Na < ¢f|log” (e ~ log#)t(e — log t)g3 (8)f* (1) | z(w)
< cA||t7/"(e —logt) logf (e — log ) £ (¢ W zee)

The result follows from inequalities (4.7)-{4.10).

(4.1)=(4.2). Take f : R® — [0, c0] with compact suppert in the ball
B,(0,R), R = wit™, such that | flin/opijes < oo. Putting fly) =
F(waly|™), v € R™, we have f(y) = 0 for |y| > R. Moreover, (f) = f* and
consequently,
(4.11)

For 2z € R™ put
B (z) = (g0 * Hiz), Role)= (I, * fi{z)

(recall that I;(z) = |2|°~"). By (3.16) and (3.13), there exists a constant
¢; € (0,00) such that g (z) > 11, () for all z € B, (0,2R)\{0}. This easily
yields that B, (z) = aR.(z) for all z € B, (0, R). Hence

(4.12)
By (3.15) of [5],

<cA| fllx-

H-ﬂlﬂfa,;ﬂ,l/?’ﬂ = “ﬂln/mp,l/p’,ﬁ'

B, = [Boxs.o.m)]" = c1[Roxs,0.8)]"

Ro(z) 2 eoFlwy|z|™), z eR",
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(ca = 2°="wp~"/™) where

(4.13)

t %)
F)y=t"" [ f(s)yds+ [ /=1 f(syds, ¢ 0.
a t

Since the functions y — Flw,|y[*) and { = F(t) are equimeasurable, they

have the same non-increasing rearrangement. Moreover, F is non-increasing
on (0,00). Thus

[Ra x5, 0,m)]" (£) 2 caF'(t)x(0,1)(2)

1
> f s"/”‘_lf’“(s) ds, €(0,1).
¢

Using this estimate, (4.12), (4.1) and (4.11), we obtain

1
LT /n=1 px
(414) Hlog (6 ].Og' t) ‘tf 8" f (S) ds“Z(oo) < CE“.f”n/a,p,l/p’,,B-

This easily implies (cf. [§, Remark 3.7]) that the inequality
(4.15) (T wllee < cllfo]ly
(with ¢ = ¢3) holds for all f € IM+(0,1;]), where

Tf) fsa/n lf )

w{t) = 10g (e~ logt),
v(t) = 7/ e (e — log£)L/¥ log® (e — log#)

(4.16)

for t € (0,1).
Defining the operator T by

(T'g)(t) 1= 7/ f Ydr, te(0,1),
we deduce from Lemina 3.8 that ‘the inequality
1 1
(4.17) =(T"9) < O’ g
v Pl ol

holds for all g € M+ (0,

0,1). Put K = 1. If p € [1,00), then the function v
obviously satisfies (3.25).

(i) Let p € (1,00). Then Lemma 3.9(i) and the inequality (4,17) yield
f
(4.18) 2)?/? f L9 4 <o |—1—g
fo w » wih
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for all g € 9+ (0,1). The monotenicity of

= f g(’i") dr
0

implies
t

f(T'f)“)dtz(af) fta/n ([ o) yar) d

fo vF z Q

Thus, putting

ﬁ(m):v(m)-z?/p’[fta/n 1(!” pd'r)_— ]wl,

€

we have from (4.18),

<Gy

1
—3g
w

1
’:(GIQ)

v o
for all g € M(0,1). Passing to associated spaces, we obtain

(4.19) 1(Gg)wles < CillgTllp
for every g € IMT(0, 1), where

1

1

(Go) () = [ g(r)dr,

i

€ (0,1).

Since
o(z) & ot P (e — € (0,1),
the inequalities (4.19) and (3.8) are equivalent and (4.2) follows from Lemma
3.9(id).
(ii) Let p = cc. Put
F(t) = £/ (e — logt) log® (e — log t), e (0,1).
Then, by Lemma 3.1(i1), inequality (3.27) {(with v from (4.16)} holds on
9M+(0,1). Thus, Lemma 3.9(1i) and inequality (4.17) yield

log ) /Plog? (z — log x),

<0G

1
1 wg

o) h s dy

ol

L

for all g € M+ (0,1). Passing to associated spaces, we obtain

o J o)
2 u(y)

I(Th)wljeo < C1 R

[+a]
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1 —1
1
{J 57%)
7 By) oo
) -1

1 -1
—T SN 1
zt /T(I@dy> = z{e — log 2) log” (e — log z)
w

for all © € (0,1), we get the equivalence of (4.20) and (3.8) and the result
follows from Lemma 3.2(ii).

(ili) Finally, suppose that p = 1. Then Lemma 3.9(iji) and the inequality
(4.17) yield for all g € M+(0, 1)
1
w? .

|([oa)™ ]
dy=fy”’”‘l( fg(t)dt) dy
’ 1]

Moreover, Fubini’s thcorem unplles
X

[ @' g)()
Q(t)( f y"/”‘ldy) dt

for all h € MT(0,1), ie

([ #=ho as)om] <l

for all A € M*(0,1), which is equivalent to

=1

) ([ oo as)uie)_ <o,

1/(j~
o/n

i‘ii

[=~]

for all g € M*(0,1). Observing that

( "9 () dy||°c <0y

0

I

Py T <

| k(x,t)g(t)dt, «e(0,1),

where k is given by (3.31). Since

= ( f y7/" " log (e - logy)dy)—l ~ W(z),
0

z 1

(o)

0
where
W(x) = 2" "M log™Ple —logz), =« &(0,1),
we gee that the inequahty (3.32) holds on 9+(0,1) with a finite constant

C = Cy and with the weights @ and ¥ :== 1/w. Consequently, Lemma 3.10
yvields (3.33) end (3.34). Hence for arbitrary ¢ € (0,1),

oo >

& = > U
#X00) = [wxogle 2 lim w(z)

o0

= zl—i-»%l-t« log®(e ~ log ),
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which, together with the assumption @ # 0 in Lemma 4.1, implies the first
condition in (4.2). Moreover, for all sufficiently small £ in (0,1),

(121 el = €7/ g™ (e ~ oge).
Further,
a2 ke dxas] 2 Kee)/mlen ~ e o - oge)

for all £ € (0,1), and the second inequality in (4.2) follows from (3.33),
(4.21) and (4.22). =
To obtain double exponential integrability of Bessel potentials we need
the following two assertions.
4.2. LeMMA. Let K € (0,00), o < 0 end let & C MH (0, K), & £ 0.
Then the following statements are equivalent.
(i) There exist a1, a2,L € (0,00) such that
K
[ exp (szexplarf(8) ) dt <L forall f € &
0
(ii) There ezists B € (0,00) such that

(4.23) sup f*(t)log™(e +|logt)) £ B  forall f e &.
D<K

(iil) Given any A € (0, 00), there exist a, M € (0,00) such that

K
(4.24) [ exp (Aexplaf()"Yo))dt <M forall f € 6.
0

Proof. The equivalence (i) (ii) is proved in [5, Lemma 3.10]. The proof
of the implication (ii)=-(iii} is the same as that of (ii)=(i). The implication
(iii)=>(i) is obvious. m

43 Remark. Let @:[0,00] — [0, 00] be a strictly monotone function.
Let Q CR", |@fn < oo and let H : Q — [0, 00] be a measurable function.
Then the functions z — S(H(z)) and ¢ — S(EH*(t)) are equimeasurable,
and consequently they have the same non-inereasing rearrangement, say F.
Hence

[ ®(H(=)) de = [ F@ydt= [ o(&* (1)) dr.
Q 0 0
The main result of this section reads:

4.4. THEOREM. Let p € [1,00], &, € R, a 5 0, B 5 1/p" and o € (0, n).
Suppose that Q@ C R™, |Q}, < .

icm
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(i) Let
(4.2) a<0 ond a-f+1/p <0,
Then, given A € (0,00}, there ezist a, M € (0, 00) such that

(4.25) J exp (Aexplal(g, * £)(w)| 7)) do < M
Q
for all f satisfying
426) £ € L (log L)MP (loglog LP(RY),  [Fl/omasms < 1.
(il) Let Q have non-empty interior and let the estimate (4.25) hold with
some A, a, M € (0,00) for all f satisfying (4.26). Then (4.2) is satisfied.

Proof. Statement (i) follows from Lemmas 4.1 and 4.2, and Remark
4.3. To prove statement (ii), suppose that (4.25) holds for all [ satisfying
(4.26). Set

&(t) = exp[Adexp(at~*)], t>0.
Since int @ # 0, there are 25 € Q and B > 0 such that Bu(zo,R) C Q.
Thus, (4.25)} implies

(427) S 2l x D)}y dz < M
B-,,,(IIZ‘Q,R)
for any f which satisfies (4.26).
Suppose that 2, = 0 and B = w; ™. This implies that |B,(0, R), = 1.
Take f: R" — [0, c0] with

(4.28) supp f C Bu(0,R), 0 < ||fllnjoupi/ers < oo
Then

(4.29) supp f* C [0,1].

Putting

(4.30) fey) =ef*(waltl™), yER, ¢ € (0,00),

we obtain supp f. C B, (0, R) and, moreover, (ﬁ)*(t) = ef*(t), t > 0.
Consequently,

H‘/F:; H""‘/”)Pl‘i/l”lﬁ = EHf”n/a,p‘I/p’,ﬁ-
By (3.18), (3.15) and (3.16), there is Cy € (1, 00) such that

Colr(2) 2 go(w) 2 C7 M (x) for all @ € By(0,2R)\ {0}.
Hence,
(4.31) Colly * fo) () 2 (9o % J2)(2) 2 C5 (I * Fo) ()
for all z € B, (0, R).
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Assume first that o > 0. Then
(4.32)
Together with (4.31) and (4.27) this gives

[ 2(Colz « f)(=)]) de < M
B, (0,R)

@ is decreasing on (0, 00).

(4.33)

provided that
(4.34) 0 <& SUFI opymms

Since the function

(t)“‘ l-—cr/'n {ta/nwl f f (S d5+f g°/n- 1f () }

is non-increasing on (0,1}, Lemma 3.4 of [5] (applied to fe in place of g) and
{4.29) yield for any ¢ € (1/2,1),

(I % J)* (1) < eF(t) < eF(1/2).
Taking
H{z):=Co(I, * .ﬁ)(ﬁ'«')XBn(o,R)(QJ), z € R™,
we have
H'() € Colls * )" (1), t>0.

Together with Remark 4.3, the last two estimates and (4.32) imply
[ #(Col(Ls + fo)(=))) dz

By, (0,R)

= [ o(H( )dm—fsliH*t) )dt > fszSEOOF 1/2)) dt
B, (0,R) 1/2

= -;« exp[Aexp(as”I/“C'El/“F(l/.?)“l/"‘)] — 00 ag & — 0,

which contradicts (4.33), (4.34), and consequently & < 0 (note that a s 0—
cf. Theorem 4.4).
The inequality o < 0 implies that

(4.35) ® is increasing on (0, 0o).
This, (4.31) and (4.27) give

[ (C s « fo)(@)|) do < M
Bn(D,R)

(4.36)
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provided that (4.34) is satisfied. By (3.15) of [5] and (4.30),

(4.37) (L * f)(8) 2 CreF(walz™) > C1eGlz), € R™,

where F' is from (4.13) and G(z) := F(wp|z|" )XB..(0,r)(z), C1 =
Applying (4.35)-(4.37), we obtain

M > f
By (0,R)

where Cy = G5 'C1. With g(t) := F(t)y X(0,1)(t) for ¢ > 0 and making use of
the fact that F is non-increasing on (0, 00), we have

Ci{o,n).

1
(CaeGla)) dz = [ &(CaeG*(t)) dt
0

G't)=g"(t) = F(t), te(0,1)
Since supp f* < [0,1],
1
Ft) > [ s/ 1f*(s)ds, te(0,1).

t
Thus,

(C’,;a f §o/n-1 (s)ds) dt

oL‘ﬁH OL‘ﬁJ—‘

exp [A exp (a (Cga f $7/m1 1% () ds)_lm)] dt

for all functions f satisfying (4.28) and any ¢ from (4.34). Consequently, by
Lemma 4.2 (with K = 1), there is B € (0, co) such that

sup (f.s"/” 1

ds) log®(e ~ logt) < B(Cye)™?
0<i<l
for the same family of functions f and the same set of . Hence, choosing

l—1
&= Han/O'm.l/:ﬂ’,ﬁ’

we have

(Iga/n -1 g
[)(€<1 ]

Thig implies that the inequality (4.14) holds for all f &€ M*(0,1), and the
same argument as that used in the proof of Lemma 4.1 yields the condition
a-f+1/p <0

() ds) g (e ~ log) < G| flln/o,p1/sr.-
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The general case zp € R™ and R € (0, oo) can be reduced to the case
29 =0and B = wn Lfn by using the transformation
w—l/n

y:(z—,’,{:g) nR 3 ZER”,

which maps B (zo, R) onto B’n(oaw?:lfn

potential that

), and the property of the Riesz

~1/n

uwf)(a:):(w—;fu;;)a(fu>«f)((:c~~§z:u)‘“*j,2 ) =B,

- R _

f(y) = f(y_;iﬁ' + 3:0) H Yy € Bn(ozwnl/n)'
Wn

Note that then supp f C Bn(0,uwn 1/ ™ provided that supp f C Bn (2, R)

and that || flln/sp,1/0,8 = C | Fllnjop1/e 5 where C'is a constant indepen-

dent of f. w

As was said in Section 3, the decay of the Bessel kernel g, as |z — oo
is much faster than that of the Riesz kernel [,. The same is true for the
non-increasing rearrangements g and I (cf. the estimate (3.17) and the
formula I*(t) = (¢/w,)?/"1, t > 0). Because of this, the analogue of the
estimate (4.6) with I% instead of g} does not hold for all functions f from
Lr/o®(log L)Y/7 (loglog L)P(R™). In order to get such an analogue, it suf-
fices, for example, to assume that

F e LY77(log L)V7 (log log L)P (R™) N L (R™).
Moreover, if we realize that for f € L™7P(log L}/* (log log L)?(R™) with
bounded support we have the estimate

1£lr € C N\ fllnjoprse s

(with a constant C independent of f), we can see that the following ana-
logues of Lemma 4.1 and Theorem 4.4 hold (cf. the corresponding results in

[5])-

4.5 LEMMA. Let p € [1,00] and o, f € R, e # 0, § % 1/, o € (0,n).
Suppose that

f e LV (log L)Y? (loglog I)? (R™) N L} (R™),
Then the inegquality

t:zﬁpl)[loga(e —logt)u* ()] £ ([l lnjop1/0,8 + | Flir)

ww= Ty w f

icm
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holds with a constant ¢ which depends only on p, o, B, o and n if,

if,

and only

a<0 and a—-B+1/p <0

Supifg.gl‘;zfgﬁg.ﬂ{ﬁejt[gﬁ [i, zz] and o, BER, a# 0, B#1/p, 0 € (0,n).
(i) Let

(4.2) Ca<0 ad a—f+1/p <0.

Then, given A € (0,00), there exist a, M € (0, 00) such that

(4.38) J exp(Aexplal(, = f){z)| ")) de < M

Q
for all f € X := L™/7(log L)*¥ (log log L)*(R™) N L* (R™) with
||fHX = ”f”n/o’,p,l/p’,ﬁ + Hf”l =1

(1) Let Q have a non-empty interior and let the estimate (4.38) hold with
some A,a, M € (0,00) for all f € X, |f|lx <1. Then (4.2) is satisfied.

5. Embedding theorems. In this section we make use of Theorem 4.4
to obtain embeddings of Bessel potential spaces in appropriate Orlicz ones.

5.1. NoTation. Let A, B € (0, c0) be fixed numbers and let $4 5 be a
Young function satisfying
(5.1) 8 4,3(t) = exp(A exptH/5)
with some ¢y € (0, 00).

For a function v from the Orlicz space Lg, ,(Q) and for a measurable
subset G C Q, we put

(5.2) 04,8(t,G) = [ 84 p(ju(z))) dz.
]

5.2. THEOREM. Let p € [1,00] and o, FER, a0, 8 % 1/p, o € {0,n).
Suppose that @ C R”, |Ql, < 0.

for all £ > ¢

(i) Let
(5.3) a<0 and a—F+1/p <0,
Then, for any A € (0, 00),
(5.4) HTL™P (log L)'/ (loglog L)# (R™) — Lg, (@)

(ii) Let Q have non-empty interior and suppose that (5.4) holds with
some A € (0,00). Then the numbers «, 8 and p satisfy (5.3).
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Proof. Let
(5.5) we HL:=HL™??(log L)/ (loglog L)’ (R™),

Then u = g, * f, where | fllnjepi/p,5 = [[4llgL. Let A € (0,00) and let q,
M be numnbers from Theorem 4.4, and ¢y from (5.1). Putting

(5.6) Qr={zeQ:|u(@)|/e® <t} Qa=Q\@:
and using (5.1}, (5.2), (4.25) and the fact that $4,-, is increasing, we have
(.7) ea—a(u/a®,Q) = 04 -a(u/a”, Qo) + oa,—~alu/a® Q1)

< f exp (A explalu(z)| ™) dz + |Q|nPa,—alto)
Q
M+ |Q|nPa,~alty) = C.
Moreover, Young’s inequality implies
H“/G‘WH’I’A.—& < QA,—a(u/a'aaQ) +1,

which, together with (5.7), yields |u/a®||s, ., < C + 1. Consequently,
lulg, o < a*{C +1) for any u € HL, {|u[|gr < 1, and the proof of
statement (i) is complete.

Assume now that int @ # 0 and that (5.4) holds with some A € {0, oc).

Then there exists C € (0, cc) such that
lullg, .. € C  forallu € HL, |ullgr <1

-y —

(we use the notation from (5.5)). Thus, fju/Cls, _, < 1, which implies {cf.
[9, Lemma 3.8.4})

(5.8) 0a,-o(u/C,Q) <1
and, on putting

Qu={z € Q:[u(z)/C| <o},
we have from (5.8) and (5.1),

12 04,-al(u/C,Q2) =f exp{ A exp |u{z)/C| ) da.
Q2

[[ulirz < 1.

for all w € HL, ||ullzr <1,

QZzQ\Ql:

Moreover,

f exp(A exp [u(z)/C|H*) dz < 1Q|nexp(flexptal/°’) =: K.
@
Consequently,

f exp(Aexp |u(z)/C|"Y*)dz < K +1 forallu e HL, ||jullgr <1,
Q
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which means that statement (ii) of Theorem 4.4 is true with g = Y «,
M = K 4 1. Thus, condition (5.3) follows from Theorem 4.4. u

Teking ¢ = n/p with p € (1,00) in Theorem 5.2, we obtain

5.3. EXAMPLE. Suppose p € (1,00) and o < 0, § € R, 8 % 1/p’ and
a—f+1/p" <0 Let Q CR™, |Q|, < oo. Then, given any A € (0,00),

(5.9) H*/# 2P (log L)*¥ (loglog L)#(R) — Lo, _.(Q).
In particular,
(5.10) H™PLPP(log L)M* (RY) < Lg, |, (Q).

On putting p = n > 1, we have from (5.9) and (5.10),
H'L™"(log L)Y/™ (loglog LY (R™) = La, . (Q)
and

HYL™ (log L)l/n’(Rn) — Ld&A.l/n’ (@)

b

respectively.

The following theorem deals with compact embeddings of Bessel poten-
tial spaces.

5.4. THEOREM. Suppose that p € (1,00), v < 0, 3 € R, § +# 1/p’ and
y=B8+1/p' < 0. Let £ be o measurable, bounded set in R™. Then, for any
A e (0,00),

(5.11) HPLPP(log L)% (loglog L)P(R™) s Ly, _(£2).

Proof Let A € (0,00) and let o € (v,0) satisfy o~ F+1/p’ < 0. Then,
by Example 5.3, the embedding (5.9) (with @ = (2) holds. Consequently, if
5 is a bounded subset in

X 1= HMPLPP(log L)M7 (loglog L)? (R™),

then §'is bounded in Ly, _ ({2). Since the Young function $ 4 —., increases
more slowly than ¢4 ., near infinity, Theorem 8.23 of [1] shows that it is
sufficient to prove that S is precompact in L}(£2).

Obviously, LP#{log L)*/?' (log log L) (R™) — LP(R™), and hence

(6.12) X — HMPLP(RM),
Moreover, we have with some B := By, (0, R) containing £ (cf. {17]),
HYPLP(R™) < HMPLP(B) evens LP(B) = LP((2),

which, together with (5.12), implies that S is precompact in L?{{2}, and the
result follows. m '
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5.5. COROLLARY. Suppose p € (1,00) and a > 1/p’. Let {2 be a measur-
able, bounded set in R™. Then for any A € (0,00},

HP PP (log LYYP (R™) esess Ly,  (02).
In particular,
H'LM™(log L)Y™ (R™) s L, ,(12)
provided that n > 1 and b > 1/n'.

Now, we are going to apply our results to obtain embedding theorems
for Bessel potential spaces defined on domains in R™.

5.6. THEOREM. Let (2 be o domain in R™, |2|, < oo. Suppose p € [1, oo}
and a, eR, a#0, £ 1/, ¢ € (0,n).
(i) Let
(5.3) a<0 and a-FG+1/0 <0.
Then, given any A € (0, c0),
(5.13) HeLM7®(log L)% (Jog log L)?(02) = Ls, . ().

(it) Suppose that the embedding (5.13) holds with some A € (0,00). Then
the numbers o, 8 and p satisfy (5.3).
Proof Put ¥(2) = Lg, _.(£2).
(1) Assume that (5.3) is satisfied. Let
u € HL{) := H? LM7?(log L)Y* (loglog L) (12).
Then there exists & € HL(R™) (we use the notation from (5.5)) such that
% = U|n. By Theorem 5.2,

Ha”_'y(g) S CHHHHL(JR{“) fOl‘ all ﬁ S HL(R”)

with a constant ¢ independent of %. Since [uliy¢n) = ||%]|y(q), we have

[ullyoy < Clial pomgn),
and taking the infimum over all % € HL(R™) satisfying u = ii|;, we obtain
(5.13).

(ii) Let (5.13) hold with some 4 € (0,00). Then there is ¢ € (0, o) such
that

(5.14) lullyey € clullgrey for allu € HL(2).

However, (5.14) yields [|@]ly(a) < ¢/l g rmn for any T € HL(R?), and the
result follows from Theorem 5.2. m
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Using Theorem 5.4, one easily obtains

5.7. THEOREM. Let {2 be a domain in R™, ||, < co. Suppose p € (1,00),
v<0,8€R, 85#1/p" and v~ B8+ 1/ < 0. Then, for any A € (0, co)

’

H””’L”'P(log L)l/p’ (log log L)ﬁ(ﬂ) ey LQE‘A,—-,(Q)-

6. Single exponential type results. In the previous sections we have
obtained double exponential integrability of the Bessel potentials of func-
tlons from generalized Lorentz-Zygmund spaces. An essential role was played
by a double limiting case of Hardy’s inequality (Lemma 3.2). If we replace
this double limiting form of Hardy’s inequality by a single limiting one and
use Lorentz-Zygmund spaces instead of generalized Lorentz-Zygmund ones,
analogous arguments lead to single exponential integrability results for func-
tions from Lorentz- Zygmund spaces L¥%(log L)* as well as to corresponding
embedding theorems for Bessel potential spaces. Starting with a formulation
of a single limiting case of Hardy’s inequality, we give here only a survey of
results (cf. results in [6] and Remark 3.11(iv) of [5]).

6.1. LeMMA (a single limiting case). Suppose p € [1,00] and +,6 € R,
v#0,64#1/p.

(1) There exisis o constant ¢ € (0,00) such that the Hardy inequality

’(e —logt)” f g(7) dTHY(oo) <cli{e~log t)5tg(t)||y(p)
0

holds for every g € 9U™(0, 1) i, and only if, § > 1/p’ and
(6.1) y—6-+1/p <0

(ii) There ewists a constant ¢ € {0, 00) such that the Hurdy inequality

1
H(e ~logt)? [ g(r)dr o S e =1088Pt08) v

holds for all g € MT(0,1) if, and only if, v < 0 and (6.1) is satisfied.

6.2. LEMMA, Let p € [1,00] and 4,6 € R, v # 0, § 3 1/9, 0 € (O,n).
Suppose that
7€ L7 (log L) (R™),
Then the inequality

umga*f-

sup [(e ~ logt)"u*(t)] < ¢l flin/op.s
16(0,1)
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holds with o constant ¢ which depends only on p, v, 6, o and n if, and only
if,
(6.2) v<0 and v—6+1/p <0.

6.3. LEMMA. Let K € (0,00), v < 0 and let & C 9MMT(0,K), & # {.
Then the following statements are equivalent.

(i) There ewists B € (0,00) such that
sup fX(t)(e+|logt])T < B foral f&&.
0<t<K

(1) There exist a, M € (0, 00) such that
K
f exp (a,f(t)"l/'y) dt<M foral fe&.
0

6.4. THEOREM. Let p € [1,00] and v, 6 €R, v #0, § s 1/p, o € (0,n).
Suppose that Q@ ¢ R, |Q|n < co.

(i) Let the condition (6.2) hold. Then there are constants a, M € (0, 00)
such that

(6.3) [ explal(gs * £)(@)|") de < M
@
for all f satisfying

(6.4) FeL™P(log LY (R™), I fllnsaps < 1.

(it) Let @ have a non-empty interior and let the estimate (6.3) hold for
all f satisfying (6.4). Then (6.2) is satisfied.

6.5. NOTATION. Let B € (0, oc) be a fixed number and let ¢ 5 be a Young
function satisfying

Bp(t) =expt™F  for all > 1,
with some tg € (0, o0).

6.6. THEOREM. Let p € [1,00] and 7,6 € R, v # 0, § £ 1/¢, o € (0,n).
Suppose that Q C R", |Q|, < co.

(i) Let the condition (6.2) hold. Then
(6.5) HoL™P(log L) (R™) = La__ (Q).

(ii) Let @ have a non-empty interior. Then (6.5) implies (6.2).
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6.7. EXAMPLE. Suppose p € (1,00) and 7,6 € R, v # 0, § # 1/p’. Let
Q C R", |@|n < co. Then

(6.6) Hn/PLP,P(IOg L)é{Rn) oy L‘p—w(Q)
provided that (6.2) is satisfled. In particular,
(67) PIT!/’PLP,P(RW) — L‘I’l,/pf (Q)

On putting p =n > 1, we have from (6.6) and (6.7),
HYL™"™(log LY (R™) e L (Q)
and
HULMMR™) — Lg, L (Q),

respectively.

6.8. THEOREM. Suppose p € (1,00), @ < 0,5 € R, 0 < § 5 1/p’ and
a—B-+1/p" <0. Let 2 be a measurable, bounded set in R™. Then

HPLPP(log LY (R™) <vems Ly (£2).
We conclude this section with two assertions which are analogues of

Lemma 6.2 and Theorem 6.4 for the Riesz potential. Note that the latter
assertion yields the main result of [8] and extends [5, Remark 3.11(iv)].

6.9. LEMMA. Let p € [1,00] and 7,6 € R, v # 0, 5 # 1/p', o € (0,n).
Suppose thot
f € L™*?(log L)¥(R™) N L' (R™),
Then the inequality

sup [(e —logé)™u" ()] < e(|lflln/op.s + I £i2)
te(0,1)

holds with o constant ¢ which depends only on p, 7, 8, o and n if, and only
if, condition (8.2) s satisfied.

6.10. THEOREM. Let p € [1,00] and 4,6 € R, v# 0,6 # 1/p', 0 € (0,n).
Suppose that @ CR™, |Q|, < oo,

(i) Let the condition (6.2) hold. Then there are constants a, M € (0,00)
such that
(6.8) [ explal(T, * £)(@)| ") do < M

«Q

u=1I,%f

Jor all f sotisfying _
(6.9) f e LM (log LY (R*) N IHR), || fllnjops + £l < 1.

(i) Let Q have non-empty interior and let the estimate (6.8) hold for all
I satisfying (6.9). Then (6.2) is satisfied.
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Concluding remark. Note that using a higher-order limiting form
of Hardy’s inequality and generalized Lorentz—Zygmund spaces with corre-
gponding higher-order logarithiic terms, one can obtain higher-order expo-
nential integrability of the Bessel and Riesz potentials.
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