

Tracial states on crossed products associated with Furstenberg transformations on the 2-torus

by

KAZUNORI KODAKA (Okinawa)

Abstract. Let ϕ_f be a Furstenberg transformation on the 2-torus \mathbb{T}^2 defined by $\phi_f(x,y)=(e^{2\pi i \theta}x,e^{2\pi i f(x)}xy)$ for any $x,y\in\mathbb{T}$, where θ is an irrational number and f is a real-valued continuous function on the 1-torus \mathbb{T} . Let $A(\phi_f)$ be the crossed product associated with ϕ_f . We show that $A(\phi_f)$ has a unique tracial state for any irrational number θ and any real-valued continuous function f on \mathbb{T} .

1. Introduction. Let θ be an irrational number in (0,1) and f a real-valued continuous function on the 1-torus \mathbb{T} . Let ϕ_f be a Furstenberg transformation on the 2-torus \mathbb{T}^2 defined by

$$\phi_f(x,y) = (e^{2\pi i\theta}x, e^{2\pi i f(x)}xy)$$

for any $x, y \in \mathbb{T}$. Let $A(\phi_f)$ be the associated crossed product $C(\mathbb{T}^2) \times_{\phi_f} \mathbb{Z}$. In [5] Rouhani gave the following definition, result and question:

DEFINITION. We say that a real-valued continuous function f on \mathbb{T} can be split with respect to $e^{2\pi i\theta} \in \mathbb{T}$ if it can be written as

$$f(x) = g(x) - g(e^{2\pi i \theta}x) + c$$
 a.e.

for some real-valued measurable function g on \mathbb{T} and some real constant c.

PROPOSITION. If a real-valued continuous function f on \mathbb{T} can be split with respect to $e^{2\pi i\theta}$, then the associated crossed product $A(\phi_f)$ has a unique tracial state.

QUESTION. If we drop the assumption that f can be split with respect to $e^{2\pi i\theta}$ in the above proposition, can we still conclude that $A(\phi_f)$ has a unique tracial state?

In this note we give an affirmative answer to this question.

¹⁹⁹¹ Mathematics Subject Classification: Primary 46L30; Secondary 46L40.

2. Result. Let $C(\mathbb{T})$ be the C^* -algebra of all complex-valued continuous functions on \mathbb{T} and $C(\mathbb{T})^{**}$ its enveloping von Neumann algebra, which is identified with its second dual.

Let u be a unitary element in $C(\mathbb{T})$ defined by u(x) = x for any $x \in \mathbb{T}$. Let $P(\mathbb{T})$ be a dense *-subalgebra of $C(\mathbb{T})$ generated by u and $P(\mathbb{T})_{\mathrm{sa}}$ a subset of all selfadjoint elements in $P(\mathbb{T})$.

LEMMA 1. For any $f \in P(\mathbb{T})_{sa}$ there is an element $g \in P(\mathbb{T})_{sa}$ such that

$$f(x) - \int_{\mathbb{T}} f(x) dx = g(x) - g(e^{2\pi i \theta}x).$$

Proof. Since $f \in P(\mathbb{T})$, there is a finite set $\{a_n\}_{n=-N}^N$ $(N \geq 0)$ of complex numbers such that $f(x) = \sum_{n=-N}^{N} a_n x^n$. Since $f^* = f$,

$$\sum_{n=-N}^{N} a_n x^n = \sum_{n=-N}^{N} \overline{a}_n x^{-n} = \sum_{n=-N}^{N} \overline{a}_{-n} x^n.$$

Hence $a_n = \overline{a}_{-n}$ for $n = -N, \ldots, N$. Let

$$b_n = \frac{a_n}{1 - e^{2\pi i n \theta}} \quad \text{if } n \neq 0$$

and $b_0 = 0$. Then if $n \neq 0$,

$$\overline{b}_n = \frac{\overline{a_n}}{1 - e^{2\pi i n \theta}} = \frac{a_{-n}}{1 - e^{-2\pi i n \theta}} = b_{-n}$$

and $b_0 = \overline{b}_0 = 0$. Let $g(x) = \sum_{n=-N}^N b_n x^n$. Then $g \in P(\mathbb{T})_{sa}$ and for any $x \in \mathbb{T}$,

$$g(x) - g(e^{2\pi i\theta}x) = \sum_{n=-N}^{N} b_n (1 - e^{2\pi i n\theta}) x^n = \sum_{n \neq 0} a_n x^n$$
$$= \sum_{n=-N}^{N} a_n x^n - a_0 = f(x) - \int_{\mathbb{T}} f(x) \, dx. \quad \blacksquare$$

Let f be a real-valued continuous function on \mathbb{T} . Then there is a sequence $\{f_n\}$ of selfadjoint elements in $P(\mathbb{T})$ such that $||f_n - f|| \to 0 \ (n \to \infty)$. By Lemma 1 for f_n there is a g_n in $P(\mathbb{T})_{sa}$ such that for any $x \in \mathbb{T}$,

$$f_n(x) - \int_{\mathbb{T}} f_n(x) dx = g_n(x) - g_n(e^{2\pi i \theta} x).$$

Let $c_n = \int_{\mathbb{T}} f_n(x) dx$ and $c = \int_{\mathbb{T}} f(x) dx$. Then $c_n \to c$ $(n \to \infty)$ and

$$f_n(x) - c_n = g_n(x) - g_n(e^{2\pi i\theta}x) \quad (x \in \mathbb{T}).$$

Hence we obtain

$$e^{-2\pi i c_n} e^{2\pi i f_n(x)} = e^{2\pi i g_n(x)} e^{-2\pi i g_n(e^{2\pi i \theta}x)} \quad (x \in \mathbb{T}).$$

Let $F_n(x) = e^{2\pi i f_n(x)}$, $G_n(x) = e^{2\pi i g_n(x)}$, $F(x) = e^{2\pi i f(x)}$ and $\lambda_n = e^{2\pi i c_n}$. $\lambda = e^{2\pi ic}$. Then clearly $||F_n - F|| \to 0$, $\lambda_n \to \lambda$ $(n \to \infty)$ and

Tracial states on crossed products

$$\overline{\lambda}_n F_n(x) = G_n(x) \overline{G_n(e^{2\pi i \theta} x)}$$

for any $x \in \mathbb{T}$. Thus we obtain

$$F_n(x)G_n(e^{2\pi i\theta}x) = \lambda_n G_n(x)$$

for any $x \in \mathbb{T}$ and $n \in \mathbb{N}$.

LEMMA 2. With the above notations there is a $G \in L^{\infty}(\mathbb{T})$ with |G(x)|=1 for any $x \in \mathbb{T}$ such that

$$F(x)G(e^{2\pi i\theta}x) = \lambda G(x) \quad (x \in \mathbb{T}).$$

Proof. Since $||G_n|| = 1$ for any $n \in \mathbb{N}$ and the unit ball of $C(\mathbb{T})^{**}$ is weak* compact, there are a $\widetilde{G} \in C(\mathbb{T})^{**}$ and a subsequence $\{G_n\}$ of $\{G_n\}$ such that $G_{n_j} \to \widetilde{G}$ $(j \to \infty)$ with respect to the weak* topology. For any $x \in \mathbb{T}$ let δ_x be the pure state of point evaluation on $C(\mathbb{T})$. Since $\delta_x \in C(\mathbb{T})^*$,

$$\delta_x(G_{n_j}) - \delta_x(\widetilde{G}) \to 0 \quad (j \to \infty)$$

for any $x \in \mathbb{T}$. Since $\delta_x(G_{n_i}) = G_{n_i}(x)$,

$$G_{n_j}(x) \to \delta_x(\widetilde{G}) \in \mathbb{C} \quad (j \to \infty)$$

for any $x \in \mathbb{T}$. Let G be the function on \mathbb{T} defined by $G(x) = \delta_x(\widetilde{G}) =$ $\lim_{j\to\infty} G_{n_j}(x)$. Since G_{n_j} is continuous, it is measurable. Hence G is measurable. And for any $x \in \mathbb{T}$,

$$||G(x)|-1|=||\delta_x(\widetilde{G})|-|G_{n_j}(x)||\leq |\delta_x(\widetilde{G})-G_{n_j}(x)|\to 0 \quad (j\to\infty).$$

Thus |G(x)| = 1 for any $x \in \mathbb{T}$. Hence $G \in L^{\infty}(\mathbb{T})$. Furthermore, since

$$F_{n_i}(x)G_{n_i}(e^{2\pi i\theta}x) = \lambda_{n_i}G_{n_i}(x)$$

for any $x \in \mathbb{T}$ and $j \in \mathbb{N}$, we obtain $F(x)G(e^{2\pi i\theta}x) = \lambda G(x)$ $(x \in \mathbb{T})$ since $||F_{n_j} - F|| \to 0, \ \lambda_{n_j} \to \lambda \ (j \to \infty). \blacksquare$

Let ϕ_f be a Furstenberg transformation induced by a real-valued continuous function f on \mathbb{T} .

THEOREM 3. With the above notations ϕ_f is uniquely ergodic.

Proof. In the same way as in Rouhani [5, Proof of Theorem 2.1], in order to prove that ϕ_f is uniquely ergodic it suffices to show that the equation

$$H(e^{2\pi i\theta}x) = e^{2\pi ikf(x)}x^kH(x)$$
 (a.e. $x \in \mathbb{T}$),

for any $k \in \mathbb{Z} \setminus \{0\}$, has no measurable solution $H : \mathbb{T} \to \mathbb{T}$. So let us assume that such an H exists, so that $H \in L^2(\mathbb{T})$. Since $F = e^{2\pi i f}$, we have

$$H(e^{2\pi i \theta}x) = F(x)^k x^k H(x)$$
 (a.e. $x \in \mathbb{T}$)

for some $k \in \mathbb{Z} \setminus \{0\}$. Hence

(1)
$$H(e^{2\pi i\theta}x)\overline{H(x)} = F(x)^k x^k \quad \text{(a.e. } x \in \mathbb{T}).$$

And by Lemma 2 we also have

(2)
$$F(x)^k G(e^{2\pi i\theta}x)^k = \lambda^k G(x)^k \quad (x \in \mathbb{T}).$$

By (1) and (2) we obtain

(3)
$$H(e^{2\pi i\theta}x)G(e^{2\pi i\theta}x)^k = \lambda^k x^k H(x)G(x)^k \quad \text{(a.e. } x \in \mathbb{T}).$$

Let $h(x) = H(x)G(x)^k$ for any $x \in \mathbb{T}$. Then $|h(x)| = |H(x)||G(x)|^k = 1$ for any $x \in \mathbb{T}$. Hence $h \in L^{\infty}(\mathbb{T})$. By (3) we see that

(4)
$$h(e^{2\pi i\theta}x) = \lambda^k x^k h(x) \quad \text{(a.e. } x \in \mathbb{T}).$$

Since $L^{\infty}(\mathbb{T}) \subset L^2(\mathbb{T})$, h can be represented by its Fourier series, $h(x) = \sum_{n=-\infty}^{\infty} a_n x^n$, where $\{a_n\} \in l^2(\mathbb{Z})$. Thus by (4),

$$\sum_{n=-\infty}^{\infty} a_n e^{2\pi i n \theta} x^n = \lambda^k \sum_{n=-\infty}^{\infty} a_n x^{n+k}.$$

Therefore we deduce that $|a_n| = |a_{n-k}|$ for any $n \in \mathbb{Z}$. But since $\sum_{n=-\infty}^{\infty} |a_n|^2 < \infty$ and $k \neq 0$, we see that $a_n = 0$ for any $n \in \mathbb{Z}$. Thus h(x) = 0 (a.e. $x \in \mathbb{T}$). On the other hand, |h(x)| = 1 for any $x \in \mathbb{T}$. This is a contradiction. Thus ϕ_f is uniquely ergodic.

Remark. In the above case since ϕ_f is minimal, $A(\phi_f)$ has a unique tracial state if and only if ϕ_f is uniquely ergodic by Tomiyama [7, Corollary 3.3.10].

COROLLARY 4. With the above notations $A(\phi_f)$ has a unique tracial state.

Proof. This is immediate by Remark.

References

- [1] H. Furstenberg, Strict ergodicity and transformation of the torus, Amer. J. Math. 83 (1961), 573-601.
- [2] K. Kodaka, Anzai and Furstenberg transformations on the 2-torus and topologically quasi-discrete spectrum, Canad. Math. Bull., to appear.
- [3] W. Parry, Topics in Ergodic Theory, Cambridge University Press, 1981.
- [4] G. K. Pedersen, C*-Algebras and their Automorphism Groups, Academic Press, 1979.

[5] H. Rouhani, A Furstenberg transformation of the 2-torus without quasi-discrete spectrum, Canad. Math. Bull. 33 (1990), 316-322.

[6] M. Takesaki, Theory of Operator Algebras I, Springer-Verlag, 1979.

 J. Tomiyama, Invitation to C*-Algebras and Topological Dynamics, World Sci., Singapore, 1987.

DEPARTMENT OF MATHEMATICS COLLEGE OF SCIENCE RYUKYU UNIVERSITY NISHIHARA-CHO, OKINAWA, 903-01 JAPAN

Received November 30, 1994 (3379)