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A selection theorem of Helly type and its applications
hy

EHRHARD BEHRENDS (Berlin) and
KAZIMIERZ NIKODEM (Bielsko-Biala)

Abstract, We prove an abutract selection theorem for set-valued mappings with com-
pact cenvex valnes in a normed space. Some special cases of this result as well as its
applications to separation theory and Hyers-Ulam stability of affine functions are also
given.

L. Introduction. A starting point of our investigations is the classi-
cal Helly theorem stating that a family X of convex compact subsets of an
I-dimensional Minkowski space has a non-empty intersection iff any ! + 1
elements of £ have a non-empty intersection; if the number of elements of
K is finite, the assumption that the sets are compact can be omitted (cf.
[4, Thm, 6.1]). Using this result we obtain an abstract selection theorem for
set-valued mappings with convex compact values in a normed space. Our
theorem is in fact a generalization of Helly’s (cf. Corollary 1). It also gener-
alizes the known result on common transversals for parallel segments in R?
(cf. Corollary 4). As an application of our result we also get a theorem on
separation of two real functions defined on a subset of R” by an affine one.
It generalizes the sandwich theorem obtained recently by Nikodem and Wa-
sowicz (3] and corresponds to the sandwich theorem with a convex function
proved by Baron, Matkowski and Nikodem [1]. Finally, as another conse-
quence of our main result, we get a stability theorem. of Hyers—Ulam type
for affine functions.

2. An abstract selection theorem. The main result of this paper is
the following theorem. o

THEOREM L, Let D be o non-emply subset of a set X, (Y, -|) be
a normed space and & ;D — cc(Y) (fhe family of all convex compact
non-emply subsels of ¥) be a set-valued mapping. Assume that W is an
l-dimensional subspace of the vector space of all mappings from X to Y and
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D has enough points for f|p = 0 to imply f =0, for each J € W. Then the
following conditions are eguivalent:

(i) there exists an h € W such that h(z) € &(z) for allx € D

(il) for every D ¢ D with card D = [+ 1 there emists an h € W such
that hiz) € #{x) for allx € D.

Proof. The implication (i)=-(ii) is obvious. To prove that (ii)=>(i) fix a
base Ry, ..., of W. With the norm ||| - [||1 defined by

NFlL = et + .. - eu]  for f=ayhy = ... + gy,
W is an [-dimensional Minkowski space. Consider the sets
Ky, ={heW  h(zx) e &(x)},

Clearly, these sets are convex and, by assumption, the intersection of any
I+ 1 of them is non-empty. Hence, by Helly's theorem, the intersection of
any finite number of them is non-empty. This finishes the proof in the case

where card D < co. In the case of infinite ) note that the sets K, are closed
and to prove that (,cp Kz # @ it is enough to show that Ky, N...N K,

x € D.

is compact for some z1,...,2y € D. Consider the maps wy : W — ¥ (for
z € D) defined by wo(f) = f(z), f € W. By assumption

ﬂ Kerw, = {0}.

zeD

Since W is I-dimensional, there are z1,...,z; € D such that

!
(1) [ Kerwe, = {0}.

=]
Define || fli|2 = max{||f(z)|| :i=1,...,0}, fF e W. By (1), |l - iz is a
norm on W and thus equivalent to ||| - |||1. Since the sets $(x) are compact

there exists an M such that ||y|| < M for all y € &(z;), i =1,...,1. Hence

HIflllz < M for f € Mioq Ku, and so the set ()., Ka, is compact. This
completes the proof. m

3. Some special cases. The following corollary to our main result is
equivalent to Helly's theorem.

COROLLARY 1. Let D be a non-empty set. A set-valued mapping & : D —
ce(R') has a constant selection ff (z1) N ... N Sz} # O for arbitrary
Z1,. ., i1 € D. Ifcard D < oo, then compactness of the values of & is not
NECessary.

Proof It is ehough to notice that the space of all constant functions
from D to R? is [-dimensional. a
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Using the fact that the space of all polynomials p : R — R of degree
not greater than [ is ({ - 1)-dimensional, we get the following result due to
Rademacher and Schoerberg (cf. [4, Thm. 6.9]).

COROLLARY 2. Let D C R and card D > [ + 2. A set-valued mapping
@ : D~ cc(R) has @ selection which is o polynomial of degree not greater
than L iff for arbitrary =1, ..., 21 € D there exvists a polynomial p:R—-R
of degree not greater than 1 such that p(x) € &(w;) for alli=1,...,1+2.

The next two results follow from the fact that the space of all linear
functions f : R¥ «+ R is kr-dimensional and the space of all affine functions
h:RF = R" i (k4 1)r-dimensional.

COROLLARY 3. Let D © R* and linD = R*, A set-valued mapping
®: D — ce(R") has a linear selection iff for arbitrary x1,...,%grp € D
there exists o linear function h : RF — R™ such that hiz;) € ®(z;) for all
i=1,... kr+1.

COROLLARY 4. Let D C R¥ and linD = R*. A set-valued mapping & :
D — ce(R"™) has an affine selection iff for arbitrary points x4, . .., Bkt 1yr 41
€ D there exists an affine funciion b : R¥ — R" such that h(z;) € ®(;) for
alli=1,...,(k+ Ur-+1,

Remark L. The above Corellary 4 generalizes the known result about
common transversals stating that for a family F of parallel compact seg-
ments in R? there exists a straight line intersecting all members of F iff any
three members of F are intersected by a straight line (cf. [4, Thm. 6.8]).

Remark 2. In the special case k = 1, » = 2 we deduce that a set-
valued mapping & : J - cc(R?), where I C R is an interval, has an affine
selection iff for each family ®y,...,z5 in I there is an affine f such that
f(z:) € &(a;) for i = 1,...,5. Known counterexamples {cf. [5, Remark 3])
show that less points do not suffice. On the other hand, a set-valued mapping
@ : D — cc(R), where D is a convex subset of R?, has an affine selection
iff for any four values of ¢ there s a plane intersecting them; clearly, less
points are not enough.

4. A sandwich theorem

THEOREM 2. Let D ¢ R® be such that inD = R* and let f,g: D — R,
[ £g9. Then the following conditions are equivalent: .
(i). there exists an affine funciion b : R* — R such that f < h|p < g;

(i) for arbitrary points z1,...,%xp2 € D there is an affine function
iR — R with f(2i) S h(zi) S glai), i=1,..., b+ 2

:
1
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k2

> wigle)

8
(iif) > O hfl@) <
j=1 Fe=getl
for all #1,...,2p2 € D, s € {1,..., K+ 1} and Ala---a)‘s’f-;s’_-léla“wﬂkﬁ-z
>0 such that Y35y i = Soaroyy wy =1 and 305 A = 325000 %55

k+2 k2
(iv) > ouf(w:) < > Biglas)
i=1 qz=l
for all ©,... yTh+a € D and O{%, ey ak”}ﬁé’ - »ﬁk+2 > 0 such that
k
2212 o = Zf:f Bi=1 and Ziil Ty = 3 4y PGilbi.

Proof. We will show that (1)=(iil)=(iv)=>(ii)=>(i).
The implication (i)=-(iii) is clear and (ii)=»(i) follows from Corollary 4.
To prove that (iv)={ii) fix points #1,...,2r+2 € D and consider the sets
A={(z, ) ER* xR:i=1,....,k+2, A< flzi)},
B={(zy, N eRF xR:i=1,...,k+2, A2 g(z)}.

By assumption, for all @1, ..., ¢gga, 81, - - Betz = 0 such that Zf’:{? oy =
f:f /Bi =1 and Zf:f T == ’.:c:l2 ﬁ@ﬂ’.‘.i we have
k+2 k-2
S oflm) <Y Bigles).
fe=1 i==1

This implies that convA and conv B (as subsets of lin{zy,...,zx42} X R)
do not intersect at an interior point. Hence, by the Hahn-Banach separation
theorem, these sets can be separated by a hyperplane H and (ii) holds with
the affine function h with graph H.

To prove that (iii)=>(iv) assume that S"5t oz, = S gies, where
1y Ok, 1 oy P2 2 0 and oy 4.+ Gppe = Br+...+ Brya = 1.
Suppose that e.g. a181 > 0, say a1 > 81 > 0. Then

(o — Bz + .-+ pratrgn = 0z1 + Sowo + - .. + Bpgabha.
This is—up to a multiplicative constant—again a convex combination, since
(e — 1)+ as + ... + Qg = B2+ ... + Oit2. Repeating this procedure
k+ 2 times, we get an expression as in (iii). We apply (iii) and by reversing
the above reduction we obtain (iv) (here we also use the fact that f < g).
This completes the proof. m

Remark 3. Let & = 1. Then the equivalence (i)« (iil) is just the asser-
tion of the main theorem of [3] stating that two real functions f, g defined
on an interval I C R can be separated by an affine function iff for all z,y € I
and A € [0, 1] they satisfy the inequalities :

fOz+ (1= Ay) < Ag(w) + (- Agly) and

g(xz+ (1= Ay} 2 Af(z) + (L - A f(y).
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5. Hyel'?,_Ulam stability of affine functions. As another application
of our selection theorem we obtain the following result on stability in Hyers—
Ulam sense (cf. [2]) of affine functions.

THEOREM 3. Let € be a positive constant. If o function f: RF — R~
satigfies the condition

k1

et
(2) Hf(g%cci) - ;A?I(%)H <e

Jorall i, . appr € RF and My, Ay 2 0 with A oot Apyr = 1,
then there exists an affine function h: R® — R™ such that

/(=) ~ h{m)|| <&, =z eR"

Proof. Consider the set-valued mapping & : R* — cc(R") defined by
b(z) 1= B(f(z),¢), the closed ball with centre f(z) and radius . We will
show that & has an affine selection. By Corollary 4 it is enough to show
that for arbitrary r{k + 1) + 1 points .. o Zr(e+1)41 € RF there is an
affine function h such that h(z;) € S(a;), j = 1,...,r(k + 1) + 1. Fix
15 Bp(ke1)41 and choose affinely independent y1,...,y541 € R* such
that z; € conv{yi, ..., yk4a} for all § = 1,...,7(k + 1) + 1. Define h :
RF — R" to be affine and such that h(y;) = flw), i = 1,..,k+ 1.
Then for every z; we have &; = Ajiyn + ... + Aj pri¥pes With suitable
Ajle- ooy Ad k41 = 0 such that Aji+ ...+ Aj g1 = 1, and hence

If(2;) — h(zy)||

K+ b1 k1 Bl
= Hf ( Zl )\j,i'yfi) ~ DXl + Y Asahly) - h(z A ',im) }
[ES i=1 i=1 =1

<&,

ket L ke L
= Hf(Z’\j,:iya') = Naf (v
=1 =1 .
Thus h(x;) € B(zy), which was to be proved.

Remark 4. For k = r = 1 an analogous result is proved in 3] In
our approa,ch expressions of the form (2) are appropriate. One can show by
Induction that if a function f : R¥ — R” is é-affine in the sense that

If O+ (1~ N)y) ~ Af(2) = (L= N f@W) S 2,y RE, Ae 0,1,

then it satisfies the condition (2) with the constant cye (instead of ),
where ¢y = k(k + 3)/(2k + 2). Thus, by Theorem 3, for every s-affine
function f : R¥ — R” there exists an affine function A : R* ~» R” such that
[f(2) — h(z)|| < cxe, 2 € R,
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The functor o2 X
by

STEVO TODOROEVIC (Toronto, Ont., and Beograd)

Abstract. We disprove the existance of a universal object, in several classes of spaces
including the clags of weakly Lindeldf Banach spaces.

It is well known that the Tikhonov cube is an injectively universal com-
pact space in a given weight. Surjectively universal compact spaces can also
be constructed for certain weights (see [5]) but frequently one would like to
know whether there can be universal objects in some more restrictive classes
of compacta such as, for example, the ¢lass of first countable compacta or
one of the classes of compacta which naturally oceur in functional analysis
(see [14; p. 620]). The purpose of this note is to answer a number of ques-
tions of this sert by introducing a new topological functor which might be
of independent interest. The following is an example of a result which can
be obtained by the new method.

THEOREM. For every compact countably tight space X of weight contin-
uum there is @ first countable retractive (*) Corson compact space Y which
i8 not o continuous tmage of any closed subspace of X.

It follows that a number of natural classes of compact spaces mentioned
in Question 10.6 of [14] have neither injectively nor surjectively universal ob-
Jects. Similarly, this shows that there are neither injectively nor surjectively
universal objects in the class of Corson compacta of weight continuum. In
particular, the class of first countable compacta does not have such universal
objects. The fact that there is no injectively universal fixst countable space
follows from an earlier result of Filippov [6] (see also [20]) who showed that
there exist more separable perfectly normal compacta than closed separable
subsets of a given first countable space.

To state the dual form of our result let us recall that a Banach space 2
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(l) A space X is retractive if every closed subset of X is a retract of X.
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