

des développements de Taylor en $0, \frac{1}{p!}D^pg_k(0) = N_{pm+k}$. On déduit alors, d'après les hypothèses faites sur la suite $(N_p)_{p\geq 0}$, que les fonctions g_k , $0 \leq k \leq m-1$, n'appartiennent à $(p!N_p^l)_{[0,1]}$ pour aucun l réel, l < m.

Bibliographie

- S. Bell and D. Catlin, Proper holomorphic mappings extend smoothly to the boundary, Bull. Amer. Math. Soc. 7 (1982), 269-272.
- [2] —, —, Boundary regularity of proper holomorphic mappings, Duke Math. J. 49 (1982), 385-396.
- M. D. Bronshtein, Division with remainder in spaces of smooth functions, Trans. Moscow Math. Soc. 52 (1990), 109-138.
- [4] J. Bruna, An extension theorem of Whitney type for non-quasianalytic classes of functions, J. London Math. Soc. (2) 22 (1980), 495-505.
- [5] J. Chaumat et A. M. Chollet, Noyaux pour résoudre l'équation \(\overline{\partial}\) dans des classes ultradifférentiables sur des compacts irréguliers de \(\mathbb{C}^m\), dans : Several Complex Variables, Proc. Mittag-Leffler Inst. 1987-88, Math. Notes 38, Princeton University Press, 1993, 205-226.
- [6] —, —, Représentations intégrales de jets de Whitney, dans: The Madison Symposium on Complex Analysis, Contemp. Math. 137, Amer. Math. Soc., 1992, 133-153.
- [7] —, —, Théorème de Whitney dans des classes ultradifférentiables, Publ. I.R.M.A. Lille, 1992.
- [8] K. Diederich and J. E. Fornæss, Boundary regularity of proper holomorphic mappings, Invent. Math. 67 (1982), 363-384.
- [9] E. M. Dynkin, Pseudoanalytic extension of smooth functions. The uniform scale, Amer. Math. Soc. Transl. 115 (1980), 33-58.
- [10] L. Hörmander, The Analysis of Linear Partial Differential Operators I, 2ème éd. Springer, 1989.
- [11] B. Malgrange, Ideals of Differentiable Functions, Oxford University Press, 1966.
- [12] W. Pleśniak, Extension and polynomial approximation of ultradifferentiable functions in Rⁿ, Bull. Soc. Roy. Sci. Liège 63 (1994), 393-402.
- [13] V. Thilliez, Prolongement dans des classes ultradifférentiables et propriétés de régularité des compacts de Rⁿ, Ann. Polon. Math., à paraître.
- [14] J. C. Tougeron, Idéaux de fonctions différentiables, Springer, 1972.
- [15] Proceedings of Liverpool Singularities Symposium I, Lecture Notes in Math. 192, Springer, 1971.

UNIVERSITÉ PARIS-SUD MATHÉMATIQUES, BÂT. 425 91405 ORSAY CEDEX, FRANCE UNIVERSITÉ DE LILLE U.F.R. DE MATHÉMATIQUE 59655 VILLENEUVE D'ASCO CEDEX, FRANCE

Received December 9, 1994 (3384) Revised version March 20, 1995

An example of a non-topologizable algebra

by

R. FRANKIEWICZ and G. PLEBANEK (Wrocław)

Abstract. We present an example of an algebra that is generated by ω_1 elements, and cannot be made a topological algebra. This answers a problem posed by W. Żelazko.

A real or complex algebra A is said to be topologizable if there exists a topology τ on A such that (A,τ) is a Hausdorff topological vector space, and multiplication in A is jointly continuous (see [3]). While one can always find a vector space topology in which multiplication is separately continuous, there are algebras that are not topologizable.

Želazko [4] showed that $\mathcal{L}(X)$, the algebra of all endomorphisms of a linear space X, is not topologizable as a locally convex algebra whenever X is of infinite dimension. Müller [2] gave an example of a commutative algebra that is not topologizable. He also noted that $\mathcal{L}(X)$ is not topologizable at all for infinite-dimensional X.

On the other hand, Zelazko [5] proved the following positive result on topologization of algebras ($\tau_{\text{max}}^{\text{LC}}$ denotes the maximal topology, i.e. the topology generated by all seminorms).

THEOREM 1. Let \mathbf{F} be a real or complex free algebra in variables $(t_i:i\in I)$. Then $(\mathbf{F},\tau_{\max}^{\mathbf{LC}})$ is a (complete) locally convex topological algebra if and only if the set of variables is at most countable. Consequently, every countably generated algebra can be topologized as a locally convex complete topological algebra.

Zelazko [5] noted that, since the above-mentioned examples of non-topologizable algebras are 2^{ω} -generated, the result of Theorem 1 is best possible if the continuum hypothesis holds.

To show that the second statement of Theorem 1 is indeed optimal, at least concerning the number of generators, we present below an example of an ω_1 -generated algebra that is not topologizable. For this we modify

toe1

¹⁹⁹¹ Mathematics Subject Classification: Primary 46H05.

Research partially supported by KBN grant 2 P 301 043 07.

87

icr

an idea due to Müller [2]. Roughly speaking, Müller's algebra is generated by the family of all functions $f:\omega\to\omega$ (here and below ω is the set of natural numbers, ω_1 stands for the first uncountable ordinal). To get an ω_1 -generated example one might try to take just a family $\mathcal F$ of functions with $|\mathcal F|=\omega_1$. But to repeat an argument used by Müller one has to know that $\mathcal F$ is unbounded, that is, there is no function g which eventually dominates every $f\in\mathcal F$. This, however, cannot be assured without extra axioms (see e.g. [1]). Therefore we use functions with larger domains.

THEOREM 2. There exists an algebra generated by ω_1 elements that is not topologizable.

Proof. For every ordinal number $\alpha < \omega_1$ we choose an injective function $f_{\alpha} : \alpha \to \omega$. We let **A** be the linear space of formal linear combinations of the following:

- a fixed element c;
- elements x_{α} , where $\alpha < \omega_1$;
- elements a_{α} , where $\alpha < \omega_1$.

We define a multiplication in A by putting

$$x_{\beta} \cdot a_{\alpha} = a_{\alpha} \cdot x_{\beta} = \begin{cases} f_{\alpha}(\beta)c & \text{if } \beta < \alpha, \\ 0 & \text{if } \beta \ge \alpha, \end{cases}$$

and

$$c \cdot z = z \cdot c = x_{\alpha} \cdot x_{\beta} = a_{\alpha} \cdot a_{\beta} = 0$$

for every $\alpha, \beta < \omega_1$ and for every $z \in \mathbf{A}$. These relations define a unique associative and commutative multiplication "." on \mathbf{A} .

Suppose now that **A** is topologizable. Then there is a system \mathcal{V} of neighbourhoods of 0 such that $\bigcap \mathcal{V} = \{0\}$ and

- every $V \in \mathcal{V}$ is balanced (i.e. $tV \subseteq V$ for every scalar t with $|t| \leq 1$);
- every $V \in \mathcal{V}$ is absorbent (i.e. $\bigcup_{n \in \omega} nV = \mathbf{A}$);
- for every $V \in \mathcal{V}$ there is $W \in \mathcal{V}$ with $W + W \subseteq V$;
- for every $V \in \mathcal{V}$ there is $W \in \mathcal{V}$ with $W \cdot W \subseteq V$.

Now fix $V \in \mathcal{V}$ such that $c \notin V$ and $W \in \mathcal{V}$ with $W \cdot W \subseteq V$. For every $\alpha < \omega_1$ there is $s(\alpha) \in \omega$ such that $x_\alpha \in s(\alpha)W$. This defines a function $s: \omega_1 \to \{1, 2, \ldots\}$, so there exist $k \geq 1$ and $\alpha < \omega_1$ such that the set $P = \{\beta < \alpha : s(\beta) = k\}$ is infinite. Next fix a (necessarily positive) number $m \in \omega$ such that $a_\alpha \in mW$.

Now for every $\beta \in P$ we have $x_{\beta} \in kW$ and

$$c = \frac{1}{f_{\alpha}(\beta)} a_{\alpha} x_{\beta} = \frac{mk}{f_{\alpha}(\beta)} \frac{a_{\alpha}}{m} \cdot \frac{x_{\beta}}{k} \in \frac{mk}{f_{\alpha}(\beta)} W \cdot W \subseteq \frac{mk}{f_{\alpha}(\beta)} V.$$

Since $c \notin V$, we get $mk \geq f_{\alpha}(\beta)$. But this means that f_{α} maps an infinite set P into $\{1, \ldots, mk\}$, so f_{α} cannot be injective, a contradiction. The proof is complete.

References

- [1] R. Frankiewicz and P. Zbierski, Hausdorff Gaps and Limits, North-Holland, Amsterdam, 1994.
- [2] V. Müller, On topologizable algebras, Studia Math. 99 (1991), 149-153.
- [3] W. Żelazko, Selected Topics in Topological Algebras, Aarhus Univ. Lecture Notes 31, 1971.
- [4] —, Example of an algebra which is non-topologizable as a locally convex algebra, Proc. Amer. Math. Soc. 110 (1990), 947-949.
- [5] —, On topologization of countably generated algebras, Studia Math. 112 (1994), 83–88.

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
P.O. BOX 137
00-950 WARSZAWA, POLAND
E-mail: RF©IMPAN.GOV.PL

INSTITUTE OF MATHEMATICS
WROCŁAW UNIVERSITY
PL. GRUNWALDZKI 2/4
50-384 WROCŁAW, POLAND
E-mail: GRZES@MATH.UNI.WROC.PL

Received March 9, 1995 (3430) Revised version March 24, 1995